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The scattering of neutrons by a deformed, rotating, even-even
nucleus has been investigated with a diffuse-surfaced complex
potential employed. Two essential approximations, for which
justi6cation is presented, are made: (1) Nuclear excitations cor-
responding to I)6 are ignored. (2) In the expansion of the nuclear
potential, V(r,8') = Z vx(r)P&, (cose'), terms with X)4 are omitted.
Comparison with earlier calculations by other authors, employing
a distorted-wave Born approximation and 5-function interaction,
indicates that the earlier work seriously overestimated direct
excitation. At low energies ( 1 Mev), the excitation cross section

given by the direct process is small compared with excitation
through the compound nucleus, but the direct process may con-
tribute significantly to the angular distribution due to itsi arge
anistropy. The relevance of this work to the measurements of the
differential cross section for excitation of the 5=2 first excited
level of U"8 is discussed in some detail. The general features of
the experimental variation of the strength function F„e/D and
potential-scattering length R' with mass number at low energy
have been reproduced by a calculation with suitably vary&ng
deformation.

I. INTRODUCTION

'ANY important properties of nuclei in the regions
90&S&112 and 88&Z, ' ' and in a certain region

of light elements (Z 13),' are correlated by the strong-
coupling unified model, which supposes that these
nuclei and their associated average potential 6elds
possess large equilibrium deformations. 4 These large
deformations can have significant consequences for the
scattering of nuclear particles. For example, the scatter-
ing and absorption of low-energy neutrons, as described
by a complex-potential or optical model, ' depend sensi-

tively on deformation. Differential elastic scattering
cross sections, transmission coeKcients, and all other
scattering and reaction characteristics commonly con-
sidered must be expected to depend on deformation to
some extent.

The effects of deformation just mentioned do not
refer explicitly to the collective motion which is associ-
ated with the nuclear shape. Strongly deformed nuclei
exhibit rotational spectra; these spectra, according to
the strong-coupling model, correspond to a rotation of
the nuclear shape and represent a particularly simple

type of excitation. This motion must be rather strongly
coupled by the large deformation to the motion of par-
ticles scattered by such nuclei. A mechanism is thus
present for direct excitation of rotational levels by in-
elastic scattering without formation of a compound

nucleus. Excitation of these levels by formation and
decay of a compound nucleus also contributes, of course.

It is of interest, then, to calculate neutron scattering
cross sections on the basis of a model which employs a
complex potential well as in the optical model but with
appropriately nonspherical shape, and which incor-
porates also a rotational motion. In the present work,
all couplings apart from that to the collective rotational
motion are assumed to be adequately simulated through
the imaginary part of the potential. Similarly, it should
be borne in mind that the direct coupling discussed here
has been simulated in previous optical-model calcula-
tions by optimal choices of values for the available
parameters. The previous choices of parameters will not
generally be the best values here.

In Sec. II the model is formulated explicitly. In Sec.
III results of calculations of cross sections for direct
rotational excitation are presented and compared with
cross sections for excitation via the compound nucleus.
The former contribution is found to attain a sizable
fraction of the latter for incident energies E&1.5 Mev.
Angular distributions for the direct excitation are highly
anisotropic and generally asymmetric with respect to
90'. Calculations in Sec. III for the most part are per-
formed for a target nucleus having parameters charac-
teristic of U"'. In Sec. IV the model is applied more
extensively and specifically to U"'. Particular attention
is given to the angular distribution for inelastic scatter-

f th U S lng to the 6rst excited level; the result computed for*Work performed, in part, under the auspices of the U. S.
Atomic Energy Commission. compound-nucleus formation followed by statistical de-

( Now at TRG, Inc. , 17 Union Square West, New York, New cay to that levels dpes not agree weil with the experi

tute for Ad~~~~~d Study
Princeton, New Jersey. Mev, but the calculated direct contribution does not

$ Present address: London Computer Center, I'erranti Ltd considerably improve agreement at this low energy. In
London, England.

R. Mottelson and S. G. Nilsson, Phys. Rev. 99, 1615 (1955) Sec. V is considered low-energy scattering which is
' G. Scharff-Goldhaber, Phys. Rev. 103, 837 (1956). describable in terms of (1) the strength function or ratio

of average neutron width to average level spacing in the
Rakavy, Nuclear Phys. 4, 375 (1957).
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compound nucleus and (2) the potential-scattering
length. The general features of the experimentally de-
termined variation of these quantities with mass num-
ber are successfully reproduced. The results for the
strength function constitute the principal instance of
improvement in agreement between calculation and
experiment reported in this paper.

II. FORMULATION OF THE MODEL

A. Speci6cation of the Problem; Expressions
for Cross Sections

The Hamiltonian for the interacting system of
rotating target nucleus and incident neutron is taken
to be

II= —(k'j2src) 7'+ T„t,+V(r,8'), (1)

in which T„t, is the rotational energy operator for the
target, assumed to be of fixed axially symmetric shape;
(r,8', pp') are the coordinates of the neutron relative to
the nuclear principal axes; and V(r,8') is the (complex)
potential representing the interaction of the neutron
with the deformed target. Spin of the neutron, and
hence spin-orbit coupling, are omitted.

The Schrodinger equation for the target may be
written

k2

T Dssx'(8 )= )I(I+1)—K']Dsrrc'—(8c), (2)
28

I=0, 2, 4, (ground-state band,
even-even target, E=0),

I=K, E+1,E+2, .
(odd-A or odd-odd target, E&p).

Here Dsrrrr is the usual (unnormalized) symmetric-toP
wave function corresponding to a state of angular
momentum I with projections M and E, respectively,
along a space-fixed s axis (chosen in the direction of the
incident neutron beam) and the nuclear symmetry
axis'; 8, are the Euler angles of a set of principal
nuclear axes relative to the space-Axed set'; and 8 is
the moment of inertia for the rotation. The neutron-
induced rotational transitions in question connect
states of diferent I within a band of Axed intrinsic
character and projection E. In the present work, we
shall restrict ourselves to the case E=O with initial
target spin I=O (i.e., to even-even targets), which
limits significantly the number of possible entrance
channels and the complication of the expressions to be
calculated.

To put the Schrodinger equation for the coupled
system in a form convenient for solution, one may

' Strictly, one must include the wave function for individual
particles of the target and symmetrize with respect to the sign of
E; the results here, however, are unchanged.' In the notation of H. Goldstein /Classical Mechanics (Addison-
Wesley Press, Cambridge, 1950)], for example, (8&,SQ 83) = (e, q,io).
8&, in particular, is the angle between the symmetry axis and the
direction of the incident beam.

expand the potential V(r,8') as

V(r,8') =P, ri„(r)Pq (cos8'), (3)

k' d' l'(l'+1)
+

2tÃ

+ I'(I'+ 1)+vp(r—) ENr r'(e)—
2g

+rip(r) P (l"I"
i tlP, (cos8') lf I ' l)ter"r"'(r) =0, (g)

g/ I Il f

where the terms )t&~ 4 in (2) have been neglected, as will
be discussed presently, and the matrix element (l l)
is given by '
(/"I"; /

l
Ps (cos8')

l

l'I', l) = W (I"1"I'l';12) (2I"+1) '

X (2l"+1)'(2I"00
l
I'0) (2l"00

I
l'0) . (9)

For ~ greater than the maximum extent of the potential
V(r,8'), the radial wave functions ui r '(s) have the form

r 'Nip (r) =nip kl (kpr)+ki'" (kor)

r 'ur r'i(r) = (kp/kr ) 'sf i r'k~ "'(kr r), (I'WO), (10)
' G. Racah, Phys. Rev. 62, 438 (1942), Eqs. (38), (45), (50),

and (51}.

in which, for a plane-reQectionally invariant shape
LV(r, 8') = V(r, sr —8')g, the sum runs over only even
values of )r. A deformation coordinate p may be defined
by assuming the potential to be of the form

V(r,8') = V(~—Z(8')), (4)
where

Z(8') =EoL1+pV»(8') j, (3)
in which the constant It'.p may be defined by V(0,8')I4
= J'o"V(r,8')dr so as to be something like an average
eGective radius when the well is both deformed and
diffuse. The expansion coefficient wx(s) in (3), when
expanded as a power series in the deformation parameter
P, contains no terms of lower degree in P than PM'.

We now write the wave function corresponding to
an incoming partial wave of orbital angular momentum
/ with s projection m=O in the channel I=O:

tel'I' (r) l' gr' (8 pp 81 82) (6)

where 'Jjr r io contains the entire angular dependence
for both the neutron and the nucleus, and constitutes
an eigenfunction of total angular momentum I,, with
projection 0, composed of angular momentum I' and l';
explicitly,

g„.«=g„(i'I'~, —~lto) V,..(8, ~) V, , „(8,,8,). P)
(We have employed here for the nuclear wave functions
the suitably normalized

Vrss(8t, 8s) =
l (2I+1)(4 j'*(—)~Ds o'(8;).)

Substitution of (1), (2), (3), and (6) into the
Schrodinger equation II/'=PP' yields the following
coupled set of differential equations for the ui r '(r):
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d~, (rot) I' oo oo oo—(&)= 2 2 2 Z(-)-'~t. '*
dQ m'=I' I =0 L'=0 L"=P

L/+g I

&(2 t»„'(1'f"00
) LO)

)& (lT'm', —m'
~

I.O)I'z, (cos8), (11)

2, z P i'—'(2t+ 1)l (2l'+ 1)i
L=I L'—I'

t

X (1'I'm', —m'~ 10) (5z s5t t rf~.z'). —

The corresponding integrated cross sections are

o.z. f"'& =—Q Q (21+1)~5z erat t
—rf) z'~'. (12)

2
L p Lz p

where the hLO), hL&2) are the usual outgoing and incoming
spherical Hankel functions, respectively";

k, = L(2m/f )Z—(m/~)I(I+1) j-:

is a channel wave number; and gL I' for open channels
I is identical with the coeKcient Si L., pL' of the collision
matrix as commonly defined. " Equations (10) serve
also to specify the normalization of g'.

Di8erential cross sections for shape elastic scattering
(I'=0) and direct inelastic scattering with excitation
of the I' rotational level (I'=2, 4, ) are given in
terms of the g's by

by a spheroidal potential. These workers found that the
ratio of average neutron width to level spacing, F„/D,
is but little changed by omission of terms with / ~&6

(implying the same for I' since, in the limit of zero
energy, f= 0 only) .

(ii) Contributions to the potential expansion (3) from
A. ~&4 -are neglected; Even for a deformed square well,
these can be shown to be quite small, as is illustrated in
Fig. 1 (solid curves). The functions vx(r) oscillate for
X~&4, with the average values of the functions being
zero.

For a diGuse potential, the region of falloG of vp is
increased; e2 spreads out, with the volume remaining
approximately constant; the o&, (X&&4) not only spread
out but also decrease in magnitude. These are illustrated
in Fig. 1 (dashed curves) for a nuclear potential which
is a linear function of r —R(8') (see below) with a 1 to 0
fallo8 distance 6' equal to 0.95PRe."

Another reason for ignoring the P ~&4 is that nuclei
undoubtedly possess intrinsic deformations of order
higher than quadrupole and these, being unknown,
contribute to the vq(X&~4) in an unknown manner.
Therefore, it is only consistent with our present state
of knowledge to ignore the higher orders.

(iii) For convenience, the nuclear potential form (4)
is assumed with V(r —R)—= V(x) a linear function in

Finally, the cross section for compound-nucleus
formation is

Vo tF)

~"=—2 (2~+1) (1—2 E le~ z'I'), (13)
$02 L=p

in which the sums over I', /' run over all possible values.
The sum of the direct rotational excitation cross
sections, o '""+o.4f"", will be denoted by o.&""' and
similarly for the differential cross sections. The total
reaction cross section, of""&+o.&'&=(w/kss) P~(21+1)
X (1—~t7&s'~'), will be denoted by o &'"'&.

B. Discussion of Approximations

The following approximations are made:
(i) Target states with I&~ 6 are neglected I Eqs. (6),

(8)]. Without this restriction, the calculations would
become quite unwieldy. "An indication that this neglect
introduces no great error is provided hy the calculations
of Margolis and Troubetzkoy" on zero-energy scattering

Q

Q.
O
I-
IK

0

I/2 Vo

~I2 ~o

0.32 P Ro

v&(r)

v+(r)

' L. I. Schift, Quantum 3fechanics (McGraw-Hill Book Com-
pany, Inc. , New York, 1949)."J.M. Blatt and L. C. Biedenharn, Revs. Modern Phys. 24,
258 (1952).

"States of higher spin could be included more easily in the
adiabatic approximation Lace D. M. Chase, Phys. Rev. 104, 838
(1956); 106, 516 (1957)g, though their excitation energies would
be neglected.

» B, Margolis and E. S. Troubetzkoy, Phys. Rev. 106, 105
(1957).

Fzo. 1. Real part of radial potential functions ey(r). The solid
curves are for a deformed square well. The dashed curves are for
a linearly diffuse potential of the type given in Eq. (14), with
S'=0.95PR p.

~4 To terms of 6rst order in p, v2(r) has the form of an inverted
rectangle of width 6' and area (5/4m)&Vp(1+if)RpP independent
of n' Lace Eq. (21) below).
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the surface region:

&(*)= —&o(1+ol)X~ —x/S'+-,', ——,'a'&*&zz), ', (14)

The 90—10% fa,lloff distance, 0.86', will be denoted by

(0) =—g Bz "Pi(cosa),
dQ &o' ~

To ;iz(-ko) Tr, i'(kz )&z"=sZZZK
V J Zz' aiIl"ITr" s"i" (kr")

(16)

x(—)"-'z(uu; —;))z(t'IA; s') ), (17)
Early spherical optical-model calculations employed

square-well potentials, while more recent investigations
have employed various diffuse potentials, especially
the so-called Saxon potential, which varies as
[1+e' ~"~ ] '. Present experimental data (and the
model) are not sufFiciently accurate to distinguish fine
details of nuclear surface. The linear surface potential
divers from the Saxon well in the appearance of corners,
which can give rise to reflections resulting in small
differences in angular distributions (see Sec. V). A
linear surface potential plus deformation does not
exhibit corners [see Fig. 1 (broken curves)].

For some of the earlier calculations reported here,
mo(r) was further approximated by straight line seg-
ments and v&(r) by a parabola; results so obtained are

specified accordingly.

where Z is as defined, for example, by Biedenharn,
Blatt, and Rose." The summation index X in (16)
assumes only even values, thus giving an angular
distribution symmetric about 90', a well-known conse-
quence of the neglect of interference terms in the
statistical model. In the sums over /', l", and I",proper
account must be taken of conservation of parity. The
corresponding integrated cross section is

(2J+1)To~i (ko)Tr, i (kr )
~r "=—oZEEZ

s' ! /' J Pzi~airpi Tz«al apl (krii)
(18)

[At energies above the threshold for excitation of states
not belonging to the ground-state rotational band, such
states should be included in the denominators of (17)
and (18); this question lies outside the scope of the
calculations to be described in this paper. $ The entire
excitation cross sections are to be obtained by simple
addition of direct and compound-nucleus contributions,
(11) and (16), (12) and (18)"

To calculate the required TJ~~, one needs elements of
the collision matrix other than Sl ~;p~ =/~ g . These
can be obtained similarly to the g's by modifying
suitably Eqs. (6), (8), and (10) to correspond to an
incoming wave in channel J, /, I. Thus,

C. Incorporation of the Statistical Theory

As mentioned in Sec. I, excitation of rotational levels
can occur via compound-nucleus formation as well as
by direct excitation [for which the cross sections are
given by (11) and (12) above]. Contributions of the
former type will be computed by the statistical theory
of Kolfenstein, and Hauser and Feshbach. ' The sta-
tistical prescription originally given requires generali-
zation for the present sort of model, and this has
already been given by Yoshida. " One may define an
appropriate set of transmission coefFicients, which in
our case depend upon total angular momentum J,
target spin I, and relative orbital angular momentum I
(as well as the channel wave number kz): Triz(kz).
These are given explicitly as

Ni z '(r) ui z "(z),
g''I"; t(I, /PI'; t) ~(I"I";I/I', [PI', I),

and Eqs. (10) become

Tzr'= 1—P P ~
Sz i, zr'~'.

z='N&r ' (r) =Sri;ri ki&'&(kzr)+ki~ &(kzr),

(1&) r 'Ni r z'r(r) = (kr(kr )~Sr &;rizkini(kz r),
(I',l') & (I,l). (19)

In computing the compound-nucleus contribution, one
shouM take proper account of the intrinsic spin of the
neutron, and therefore, though no spin-dependent inter-
action is included in the present work, it is convenient
to employ transmission coefficients Tl, &~ with a channel
spin label s; Tz, &z is then given by Eq. (15) for both
possible values, I&—,', of s (s=—,'only, if I=0). In terms
of the Tl,g, the differential cross section for excitation
of the I' level through compound-nucleus formation
(from the I=0 ground state) is given by"

~o S. Yoshida, Proc. Phys. Soc. (London) A69, 668 (1956).
'6 For I'=0, expressions (16) and (18) represent compound

elastic scattering.

In the work to be reported in this paper, however,
calculations have been made only with the entrance
channel I=0 [as in (10)]; accordingly compound
nucleus contributions have been computed by approxi-
mating the Tziz in (16) and (18) (even those with I=0,
apart from one hybrid calculation reported in Sec. V)
by the T& computed for a spherically shaped potential.

"Biedenharn, Blatt, and Rose, Revs. Modern Phys. 24, 249
(&952).

"The result satisfies the reciprocity theorem in consequence of
the symmetry of the collision matrix SI &', I&~. The latter retains
its symmetry in spite of the complex potential and resultant
non-Hermitian Hamiltonian because the Hamiltonian is sym-
rnetric. We are indebted to Dr. C. Longmire for elucidation of
this point.
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FIG. 2. Ratio of cross section o2("'& for direct rotational ex-
citation of the I=2 level to the square of the deformation param-
eter p, vs cube root of mass number A, for various values of p.
The average radius Rp of the deformed well is taken to be epAg

with rp=1.35X10 ' cm; other values assumed are diffuseness
6=0 (square well), well depth V0=42.2 Mev, ratio oi imaginary
to real potential i 0 08=, en. ergy of I=2 level 3II,'/S=50 kev, and
incident neutron energy E=1 Mev. If a distorted-wave Born
approximation based on a S-function (linear-in-8) approximation
to the extraspherical interaction were valid, curves would coincide
independently of p; the lowering with increasing p shows that such
an approximation grossly overestimates 0-2("').

D. Invalidity of the Distorted-Wave Born
Approximation with 6-Function Interaction

I.et us consider the distorted-wave Born approxi-
mation de6ned by employing a zero-order wave function
obtained by omitting from the Hamiltonian the non-

spherical terms

Q tIx(r)Ex(cos8') (20)

To summarize, in the limit of small deformation

(P —+0): (i) the above defined distorted-wave Born
approximation for do s &"'&/dQ and Irs&"'& becomes correct
to terms of the order of p', and (ii) if V(r,8') is taken
to be a square well, then, to terms of that same order

in the cross sections, IIs(r) may be rePlaced by the 8-

function surface interaction of (21). The first published

of V(r,8') and then treating these in first order as a
perturbation. )For the present discussion, (20) need
not be cut o& at X=2.$ This approximation gives cross
sections correctly only to terms of no higher degree in

P than P', and accordingly is appropriate only for small

deformation P. To the same order in P, all contributions
from X)2 in (20) vanish. The term X=2 evidently
connects the state I=0 only with I'= 2 even if terms in

tIs(r) of arbitrarily high degree are retained; The part
of the cross section os&""& of lowest degree in p is pro-
portional to p' and corresponds to retaining only the
term in IIs(r) of 6rst degree in P. In the case of a square
(nondiffuse) well, this term assumes the form given by

IIs(r) —+ —(5/4w) iVs(1+i' )RCPb(r Rs). (21)—

results on this subject" were obtained by use of these
approximations. " It is of interest to compare such
results with those of the present more elaborate
calculation.

One would expect approximation (ii) [Fq. (21)j to
be adequate only if the maximum of ~R(8') —RII~, as
given by (5), is much less than a quarter wavelength of
the neutron in the, neighborhood of r=EO. Taking —,'tj 0

for the local kinetic energy and inserting max~R(8')
—RII~ =0.64PRII, one may express this condition as
(V,/2D, )'(0.64P)«w/2, where Ds=—IIi'/2risRs', ol'

P«0.26 for a heavy nucleus; this condition is not
satisfied for the P's of interest, which are 0.3.

A distorted-wave Born approximation with a square
well yields cross sections 02&"", in the vicinity of a
single-particle resonance, which for small enough
absorption (f) and reasonable p may greatly exceed
the maximum possible for conservation of particles.
This result can be due only to use of the Born approxi-
mation Lnot to the interaction form (21)]and indicates
that this approximation is unreliable for this problem. "

In Fig. 2 is shown Irs&"'&/P' as a function of the cube
root of the mass number 2 for various values of
deformation p. Values of the other parameters are
given in the caption. (This calculation is not directly
applicable to actual nuclei because not all nuclei in the

0
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X
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0.8 ~ A l70, P~O. i J
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0.2

-l.o -0.75 "0.5

A Iro, p 0.316
I~I

-0.25 0 0.25 0.5 0.75 l.O

cos 8

FIG. 3. Ratio oi differential cross section do 2&"'&rdQ for excitation
of the I=2 level to the square of the deformation p for two
values of p at different A (see Fig. 2). The curve for p=0.316
has been multiplied by a factor 10 relative to that for p=0 to
render the shapes easily comparable. Results for p=0 represent
those of a distorted-wave Born approximation with 8-function
surface interaction. Values of parameters are as given in the
caption of Fig. 2. LThe curves with P &0 and those of Fig. 2 were
calculated with the special approximations to the potential
functions sp(r) and v2(r) mentioned at the end of Sec. IIB.j

ie D. M. Brink, Proc. Phys. Soc. (London) A68, 994 (1955);
S. Hayakawa and S. Yoshida, Proc. Phys. Soc. (London) A68, 656
(1955); M. Moshinsky, Rev. Mex. Fis. 5, 1 (1956).

'Results of the present machine calculation for a.2("') as a
function of A in the limit of small p with the parametric values
used by Brink. (see Fig. 2) do not quite agree with Brink's results,
which were obtained in the distorted-wave approximation. Our
curve is displaced toward lower A, to an extent somewhat de-
pendent on A and having higher peaks at the resonances relative
to his. Accordingly, an independent distorted-wave Born approxi-
mation was made by machine; the results agreed substantially
with our full-scale calculation. An earlier hand calculation also
verified these results.

s' See also Moshinsky (reference 19) and Yoshida (reference 15).
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range exhibit a rotational spectrum and, moreover,
f't'/28 and P are not independent of A.) If the Born
and 5-function approximation were valid, the curves
for all &(l would coincide with that labeled P=O. The
absolute magnitude of &rs&""'/P' at the single-particle
resonances is seen from Fig. 3 to decrease by a factor

6 from P=O to /=0. 316. Also, the resonance struc-
ture moves toward higher A; that is, the effective radius
decreases with increasing &(t for R&& fixed and defined as
it is here.

A similar calculation but with diffuseness 6~3.0
X10 " cm gave a substantially larger &rs/P' with a
resonance structure displaced toward lower A.

In Fig. 3 are shown the corresponding di6erential
cross sections (d&rs'"&/dQ)/P' for &&i=0 and 0.316 at
A =170 and 238. For A =238, the shapes (though, as
just seen, not the magnitudes) for the two P's are very
similar, the anisotropy being somewhat larger, however,
for the large P than in the Born limit. For A = 170, the
shapes are considerably less similar, the anisotropy
being somewhat less and the asymmetry relative to 90'
greater for the large P. Since the single-particle reso-
nance structure is shifted by changing P, one might
expect most similar angular distributions for different
P's at different A; this did not prove to be true near the
resonance peak at A=170 for P=O, and A=191 for
P=0.316 (the result for the latter is not shown). The
curves of Figs. 2 and 3 were calculated with the further
approximation for r&&&(r) and t&s(r) mentioned in Sec.
IIB above.

0.6

OA

b

~b 04

O. I

E {HEY)

FIG. 4. Ratio of cross section for direct rotational excitation
0""& to total reaction cross section 0&"~& (=0&"'&+a&'&) for U"'
as a function of incident energy for two values of p. Parameter
values assumed are Rq=1.35(238)&X10 "cm, 6=2.2X10 "cm,
't/'0=44 Mev. The ratio attains a large fraction of its average value
at an energy E~1 Mev. The corresponding curve for &=0 is a
horizontal line at 0.&"'&/0&"~&=1 for Z)50 kev. LThese curves
were computed with approximate expressions used for e0 and eg

(see text).j

III. EXCITATION OF ROTATIONAL LEVELS
WITH APPLICATION TO URANIUM-238

The uranium nucleus is strongly deformed and the
naturally occurring element consists almost entirely of
a single even-even isotope. Results of experimental
measurements of its nonelastic, differential elastic, and
total cross sections for neutrons are available, "and, in
particular, measurements have recently been made by
Cranberg and I.evin" of the differential cross section at
several angles for excitation of the I= 2 rotational level.
This nucleus, therefore, constitutes an auspicious case
for investigation and application of the present model.

The present work must provide an answer to the
essential question of how important is direct rotational
interaction compared with compound-nucleus formation
in determining cross sections. An indication of this is
given in the discussion below.

Various calculations made with respect to U"' show
the general behavior of rotational excitation cross sec-
tions, including the effect of varying several parameters,
and may be considered to apply qualitatively to other
deformed nuclei. These results will be discussed here.

Direct t&s Conspound Nucleus E-xcitation; Dependence
oe lmug &sary I'oterI, ti al

In Fig. 4 is plotted the calculated ratio of the direct
rotational cross section 0.'"'~ to the total reaction cross
section &r&'~'& (including compound elastic scattering)
as a function of incident energy E for several values of
the absorption parameter t' Other p.arameters are those
of the standard set." The ratio depends rather sensi-
tively on g, being reduced by a factor 5 for an increase
of l from 0.012 to 0.05. The curves of Fig. 4 were
calculated with the further approximation for so and s2

mentioned above, but the more exact calculation gives
nearly the same result, especially for (=005.

The predominance of the compound-nucleus con-
tribution at low energy for inelastic scattering to the
I=2 level alone may be seen in Fig. 5. The compound-
nucleus part calculated in the WHF statistical theory,
o s&', for f=0.05, and the direct part o s&"",for )=0 and
0.05, are given up to E=0.55 Mev (the energy of the
Cranberg-Levin experiment"). (o s&'& was calculated
from transmission coefficients of the spherical optical
model with parameters approximating those given by
Beyster and Walt" for U"s.) Evidently, at such energies,
the direct rotational contribution is insigni6cant for the
integrated cross section, but it will be seen below that
it is not insigni6cant for the angular distribution
because of its high anisotropy.
"M. Walt and J.R. Beyster, Los Alamos Scienti6c Laboratory

Report LA-2061, 1956 (unpublished); Beyster, Walt, and Salmi,
Phys. Rev. 104, 1319 (1956)."L.Cranberg and J. S. Levin, Phys. Rev. 109, 2063 (1958).

The set of parameters r0=1.35&&10 "cm, 6=2.2)&10 "cm,
V&&

——44 Mev, f=0.012, tl =0.33, and 3A'/e =50 kev will be referred
to conventionally as the standard set. r0 is defined by the expres-
sion assumed for the average radius: I4=roA&. (The value
3k~/5=45 kev would be more nearly correct for the 6rst excited
state of Uu'. )
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FIG. 5. Calculated partial excitation functions at low energy for
h I—2 1 1 f U"8. The curve labeled 0.2&') represents the con-

n to thetn u ion romt b t from compound-nucleus formation according o e
WHF statistical theory, and those labeled 0-&" the contributio
from direct rotational excitation. The former was calculated wit
Rp

——1.30 (238) ')& 10 ' cm, 5=2.0)& 10 '3 cm, Vp ——44 Mev,
&=0.05, P=O, a set simulating the parameters determined in a
spherical-well calculation for U"' by Walt and Beyster"; the
latter were calculated with Rp ——1.35(238)&X10 " cm, 6=2.2

10 ', Vp=44 Mev, P=0.33. A consistent calculation of
0.2&') and 0-2'«) would require use of Eq. (16) with transmission
coeKcients computed for the supposed P of 0.33. In the low-energy
range shown here, the slow-rising 0.&&"') constitutes only a small
fraction of the total 0 ~. LThe curves for ~2&"'& were computed with
approximate expressions used for ro and r2 (see ec. ).]

180
238

352/8
(kev) P

90 0.30
50 0 33

ty2 (rot)

(b)

0.66
0.18

F4(rot)
(b)

0.016
0.024

0 (reac)

2.15
1.29

tr (rot)/tr!reac)

0.314
0.159

2~ See S. T, Butler, Phys. Rev. 106, 2'72 (1957). The necessary
experimental measurements could presumably be made only with
charged particles.

When the energy becomes so high that many channels

are open, the statistical contribution o.2(' is expecte to
become very small compared with the calculated o-2 ' '.
Thus, at sufficiently high energies &&10 Mev), direct
rotational excitation may predominate for the low-

1 in rotational levels exactly as direct particle ex-

citation may for low-lying individual-particle levels. "
Also relevant to the present discussion is Fig.

(rot) (rot)where the direct excitation functions o-2 and o-4

are plotted up to E=6 Mev. With t =0, these increase
so steeply with energy above 0.5 Mev that both exceed
the geometric cross section at E 3 Mev. The tre-
mendous peak in o.4("") at that energy is due largely to

4

TABLE I. Calculated cross sections 0.~&" ) and 0-4&" ) for direct

sum to total reaction cross section, for U~' and a typical even-even
nucleus of the first rare-earth region at an incident energy E=0.55
Mev. The quantity 3A'/s is equal to the energy assumed for the
fi ited (I=2) state. The diffuseness was inadvertently taken
slightly different in the two cases, being 2.0&(10 cm for 3 ==180 .

and 2.2)&10 "cm for A =238. In these runs |was taken to have
the small value of 0.012. These calculations were made with
approximate expressions used for so and vs (see Sec. IIB) an
hence are subject to some uncertainty (see Fig. ).

a resonance of the ingoing l=4 and outgoing l'=
waves; the bump in o-2(''t) at 8 1 Mev results chief
from l=2, l'=0 and 1=2, l'=2 waves. As well as
decreasing with increasing f, the cross sections display
a softer resonance structure, as would be expected.
These calculations were made with use of the special
approximation for vo and v2, except that the result of an
exact calculation is also shown for 1=005 .only. The
difference due to this change in vo and v~ is seen to be
very substantial for the quantities in question here."

In order to determine at all closely the fractional
contributions from direct rotational excitation, it is
clearly necessary to establish the value of the parameter

i; or, conversely, the amount of direct excitation re-
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"The differential cross section dtT2''«)/dQ at 8=0.55 Mev
shown further on (Fig. 8) also is considerably different from that
calculated from the approximation for vp, v2. The low-energy
scattering quantities F„/D and R' (see Sec. UI), on the other hand,
were not much affected. Sensitivity to the form of potentials may
be slightly disturbing in view of the extent of the indeterminancy
of the proper choice of spatial shape and radial variation and in
view of the choice made here; however, the changes induced by
altering vp and v2 may only correspond to moderate but unde-
termined changes in the values of certain of the parameters, e.g.,
fp.

2 5 4 5 6
E(MEV)

Fio. 6. Calculated excitation functions 02&'«) and 0-4& «) for
direct rotational excitation of the I= 2 and I=4 levels of U"' for
various ratios of imaginary to real potential g. Other parameters:
ft0=1.35(238)'*X10 r3 cm, 6=2.2X10 " cm, Us ——44 hfev,
p=0.33. Except for the curves labeled "corrected" (with &=0.05),
all curves were calculated by use of the approximate expressions
for vp aild v2.
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quired for agreement with experimental inelastic
angular distributions may determine 1 rather precisely.

Comparative Results for First Rare Ear-th Region

A comparison will be interjected of the magnitude of
direct rotational cross sections in the first rare-earth
region with the magnitude for U"', which was discussed
above. This is summarized in Table I. Standard
parameters" were used except for those listed, which
are representative for the categories of nuclei in

0258
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FrG. 7. Calculated excitation functions 0-2("') and 0-4("t) of U'-'

under variations of several parameters. The parameter varied in
(a) is the average potential radius 80=ra(238)'&10 " cm, in
(b), the diffuseness n (90—10/0 falloff distance), in (c), the
deformation P. Parameters not otherwise specified are those of
Fig. 6 with &=0.012.
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question; the energy E is 0.55 Mev. The direct con-
tribution 0.2'""), it appears, may be considerably more
important for even-even nuclei with 3 170 than with
A 238 (see Fig. 2).

ValiCkty of the Adkabatic Approximation

A calculation was made also with vanishing rotational
level spacing (infinite moment of inertia 8) to test the
validity of an adiabatic approximation. " The pa-
rameters assumed were those of Table I for 3=180.
(The particle energy of the adiabatic approximation
was considered to be the average of the channel energies
for initial and Anal states. ) The error introduced in
the direct rotational cross sections was less than 10'Po
for energies a few hundred kev or more above threshold.
Angular distributions displayed a greater diGerence
but still were quite similar. These results indicate that
this approximation would probably have sufficed for
the present work. (II the states I~&6 were included, the
deviation would likely increase slightly, to an extent
dependent on the effect of these states on the calculated
quantities. )

Effect of Variation of Other Parameters

The variation of the direct rotational cross sections
with several of the parameters is discussed below.
Except where specified, the parameters are those of the
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standard set. '4 Approximate expressions were used for
sp and 'v2.

Variatiom with rs.—In Fig. 7(a) are shown os&"'& and
04'""&, again up to an incident energy E=6 Mev, for
three different values of the mean radius Rp corre-
sponding to rp=1.33 1.35 and 1.37, all )&10 "cm. As
would be expected, the single-particle resonance
structure is shifted to lower energy by increasing rp,.
the quantity (Vs+E)rs', proportional to the square of
the interior wave number, remains unchanged if rp is
increased from 1.33 to 1.37 and E decreased by 2.8
Mev; the falloG toward threshold tends to reduce the
shift of the maxima.

Variatiori, with h.—The effect of changing the
diffuseness is indicated by Fig. 7(b), which gives o.s'"'&

and 04&"'~ for 6=0 and 2.0)&10 "cm. These cross sec-
tions increase with diffuseness, as does 0 ~'~., 'presumably
this may be attributed to reduction of immediate elastic
reQection.

Variatioe with P.—The decrease of os&"" with in-
creasing P (for E&3 Mev) constitutes an interesting
feature in Fig. 7(c).

A egllar Distribltioes

A turn is made now to the diQ'erential cross sections
do.sero'&/dO and do.4&"'l/dO. In Fig. 8 is shown the former
of these at E=0.55 Mev with (2) the standard set of
parameters, (1) the standard set except that l =005.
The salient characteristic is a strong anisotropy. For
case (2) the distribution is strongly peaked rearward;
for case (1) it is much reduced in the rearward hemi-
sphere but still declines greatly in the forward direction.
These curves will be discussed further in Sec. IV.

In Fig. 9 are given do.s&"'~/dO and do &""'/dO at E=2.5
Mev with (1) the standard set of parameters and (2)
the standard set except that /=0. 05. At this energy,
the cross sections tend to peak between 0' and 90' and
again between 90' and 180'; they are somewhat larger

0 I I I I I I I t & I & I ~ I

- I.O -0.75 - 0.5 -0.25 0 0.2 5 0.5 0.75 1.0

COS e

Fro. 8. Calculated differential cross section dg-2("')/dQ for direct
rotational excitation of the I=2 level of U"' at an incident energy
E=0.55 Mev. Parameters for curve (1) are those of Fig. 6 with
f'=0.05; for (2), the same except f 0.012 and U0=45 Mev.

0 ~i s I

O.RS 0.5 0.75 l.p),0 p.75 -p.5 -0.25 0
COS 8

FIo. 9. Calculated differential cross sections df72("')(dQ and
do4("'&/dQ for U" at E=2.5 Mev. These are labeled I=2 and
I=4, respectively. Parameters for curves (1) are those of Fig. 6
with /= 0.012; for (2), the same except /=0.05.

~7Alder, Bohr, Huus, Mottelson, and %inther, Revs. Modern
Phys. 28, 432 (1956); N. P. Heydenburg and G. M. Temmer,
Annua/ Review of Xeclear Science (Annual Reviews, Inc. , Stan-
ford, 1956), Vol. 6, p. 77."B.R. Mottelson and S. G. Nilsson, Phys. Rev. 99, 1615
(1955); S. G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat. -fys.
Medd. 29, No. 16 (1955).

in the forward hemisphere. At a still higher energy,
4.1 Mev, the forward peaking is rather pronounced.
Though the angular distributions are oscillatory, they
bear yet little correspondence with the result of a
plane-wave Born approximation using the b-, function
approximation (21); the Born distribution is given by
the factor Ljs(QRs)j', in which Q is the momentum
transfer (kr'+kz ' 2kzk—r cos8) '*.

IV. SPECIFIC APPLICATION TO URANIUM-238

To eGect a thorough study of a deformed nucleus
with the present model requires determining suitable
values for the parameters rp 6 Vp, i, and P (the energy
of the erst excited rotational state is presumed to be
known). Except for P, all these parameters also enter
the usual spherical optical model. As in the latter model,
relevant experimental data include the differential
elastic-scattering cross section, the nonelastic cross
section, and (though not independent of these) the
total cross section at various energies. In this optical-
rotational model the differential and integrated partial
cross sections for excitation of the I=2 and I=4
rotational levels are also of particular relevance.

Independent experimental and theoretical guidance
may be looked to in choosing rp, 6, Vp, and f Indica. tions
concerning 6 derive from high-energy electron scat-
tering experiments. Fairly close estimates of P have
been made on the basis of measured (E2) transition
probabilities between levels of a rotational band, "and
by comparison of calculations of independent-particle
states in a deformed well with observed properties of
low-lying levels in strongly deformed nuclei. "
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FIG. 10. Total and reaction cross sections for neutrons on U"'.
Curves (1) represent the results of the spherical-well calculation
of reference 22 (Saxon-type well, r0 = 1.30X10 3 cm, 90—10%
potential fallo6 distance =2.2 )& 10 cm, V0 decreasing from 44
Mev at low energies to 42.5 Mev at E= 10 Mev, g increasing from
0.05 to 0.1). Curves (2) represent approximately the best simu-
lation to the spherical-well computation which is obt:minable with
the linear falloff of Eq. (14) $90-10%falloff distance n =2 OX 10 "
cm, rp Vp and f taken as in (1)$.

In the present work on U"', a partial study has been
carried out in the low-energy region (E&5 Mev).

SPherical linzif; choice of P.—It is appropriate to
consider first how well the present calculation agrees,
in the limit P ~0, with previous spherical optical-
model calculations, particularly in view of the employ-
ment here of a linear diffuseness. Figure 10 shows the
total cross section cr("" and cross section for compound-
nucleus formation 0-" for E(10 Mev, calculated for
U"' by Beyster and Walt using a Saxon-type well, and
the simulation thereto calculated in the present work
with the same rp, Vp, f, and a diffuseness 5=2.0X10 "
cm, chosen to give approximately the best possible
agreement for o.&""& (a 6 of 2.2X10 " cm would give
the same 90—10% fallo8 distance as that of Beyster
and Walt). The agreement is rather good, the dis-
crepancy being largest for 2 Mev (E(4 Mev, rather
than at higher energy as one might expect from the
consideration that the neutron would be better able
to feel out the shape of the potential there. A com-
parison of the corresponding differential elastic cross
sections at E=2.5 Mev is shown in Fig. 11. The agree-
ment is good except in the valleys, where the potential
with linear diGuseness yields deeper minima.

A choice for the value of nuclear deformation, P, must
now be considered. A value of the intrinsic electric
quadrupole moment of U"' is available from Coulomb
excitation. "This is a measure of the deformation of the
nuclear charge distribution. It is an unsettled question
whether the charge deformation is equal to the potential
deformation —they are the same for an anisotropic
harmonic oscillator at equilibrium (i.e. , the energy is a

10
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C3 2

Ld l.o

0.5
V)

0.2

O. I
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I I l l I
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8 (DEGREE&)

FIG. 11.DiR'erential elastic-scattering cross sections for neutrons
on U"' at an incident energy E=2.5 Mev. The curves represent
calculations of shape-elastic scattering: curves (1) and (2) are for
the same parameters as (1) and (2) in Fig. 10.

minimum with respect to deformation for a given
configuration). We have selected a value of P=0.33
for U"' which represents an approximate mean between
values reported from Coulomb excitation. ' Our results
are not sensitive to small variations in P.

Tofal, reaction, and digereefigl elustic cross sections.
The total cross section was found to be approximately
proportional to Eo' and independent of Vo for variations
in Vp and Rp which leave (Vp+E)R', i.e., the product
of interior wave number and average radius, unchanged,
a result which has been pointed out analytically in the
spherical, square-well optical model.

A deep minimum in the total cross section around
E= 1.5 Mev represents a salient feature of the experi-
mental data (in other heavy elements as well as U"s)
and could be reproduced even very approximately only
for quite limited ranges of several of the parameters.
Favorable values of Vo and ro lay in the neighborhood
of 45 Mev and 1.35 )& 10 " cm, but these values are
somewhat uncertain since an adequate parameter
study, using the correct expressions for the potential
functions vo and v2, was not carried out. To approach
the desired minimum in 0-" " appeared to require a
very low absorption parameter (f 0.01) at this
energy. " (With P=O, on the other hand, a fair 6t was
achieved with f =0.075.) Numerous considerations
demonstrated, however, that such a low f is inap-
propriate for purposes of predicting and accounting
for inelastic and reaction cross sections from the model.
Specifically: (1) with t 0.012 (and rp= 1 35X 10 ".
cm, d =2.2X10 " cm, V'=45 Mev), at E=0.55 Mev
(where the appropriate f would be expected to be at
least as small as at 1.5 Mev) o&'"' is computed to be
1.22 barns; the measurements of Cranberg and Levin"
at this energy, however, yielded a larger value, 1.43
"A lower o &"') might be achieved by reducing r0, according to

the remark above, but the reduction required would be unrea-
sonably large and presumably would not satisfy requirements at
other energies,
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barns, for inelastic scattering to the I=2 level alone.
(With I.=0.05 at 0.55 Mev one finds o.&-~' =2.58
barns. ) (2) A very small I gives an angular distribution
for scattering to the I=2 level which is contrary to
experiment, as discussed below. (3) A very small I
yields a ratio of average neutron width to level spacing
at low energy, P„o/D, of 0.41X10 ' for i =0.012 and
Vp ——45, a value much smaller than the measured one
(see Sec. V)." (4) A value 0.05 for f accords with
previous rough determinations of f for other (unde-
formed) nuclei from the spherical optical model. "

In connection with differential elastic cross sections,
some difficulty was experienced in fitting the experi-
mental maxima at 8 80' for 8=2.5 Mev and, espe-
cially, 4.2 Mev. Since a thorough parameter study was
not made, however, relevant curves are omitted. The
spherical optical model, it may be mentioned, produced
fairly satisfactory differential cross sections. "

Differential inelastic cross sectiort for the I=Z level.

The experimental differential cross section for excitation
of the I=2 first excited (45-kev) level of U"' at an
incident energy X=0.55 Mev, as measured by Cranberg
and Levin, "is shown in Fig. 22. Shown also is the cross
section dos&'i/dQ calculated on the basis of the WHF
statistical theory from (1) transmission coefficients

computed, as in Fig. 5, for a spherical well, with I, in

particular, equal to 0.05, and (2) outgoing transmission
coefficients computed for this same spherical well, but
ingoing transmission coe%cients [Toi'(ko) in Eq. (17)]
computed for the deformed well with standard pa-
rameters" except t =0.05 (hybrid). (The calculation of

' J. A. Harvey et al. , Phys. Rev. 99, 10 (1955)."J.R. Beyster and M. Walt, Los Alamos Scientific Laboratory
Report LA-2099, 1957 (unpublishedl.
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FIG. 12. Differential cross section for excitation of the I= 2
level of U"' at E=0.55 Mev. The experimental points are those
of Cranberg and Levin. "The solid curve (1) is the cross section
calculated on the basis of the WHF statistical theory, from trans-
mission coeKcients computed for a spherical well with parameters
given in Fig. 5; the dashed curve (2) is a hybrid one calculated
from the same outgoing transmission coeKcients, but ingoing
coefBcients for a deformed well with the parameters of Fig. 6 and
&=0.05 (by use of the approximate forms of v0 and v2).

the Toi'(ko) was based on the approximate forms for
Vp) V2.

The experimental results are substantially more
anisotropic than those of the statistical calculations,
and the difterence is outside the estimated range of
experimental uncertainty: the measured anisotropy
defined by o(90')—o.(157') has a most probable value

55 mb/sterad and a lower limit 41 mb/sterad.
The. spherical-well statistical result is 25 mb/sterad.
A consistent statistical calculation using transmission
coefficients for the deformed well, on the other hand,
might yield a somewhat diferent result. The hybrid
calculation presumably provides some measure of this
effect"; to the extent that it does, it seems unlikely
that even a complete deformed-well computation would

supply enough anisotropy for entirely satisfactory
agreement between the compound-nucleus contribution
and experiment.

The contribution from direct rotational excitation,
do.s&'"'/dQ, was given for two sets of parameters in Fig.
10. The result for |=0.012 is definitely excluded by
experiment. The result for I =0.05 is only slightly larger
at 8=90' than at 0 157' and hence does not sub-
stantially help to account for the measured anisotropy.
Increasing the well depth Vp by 2 Mev or the diGuseness
6 by 0.3&&20 " cm changed the angular distribution
relatively little. (Parenthetically, a change leaving
Voro' unaltered produced virtually no effect. ) Even if a
distribution of the most favorable shape could be
achieved by suitable changes in parameters, as may
well be possible, the maximum effect is limited by the
fact that at this energy the integrated cross section is
relatively small if I is acceptably large ( 0.05);
specifically, it appears that a. (90')—o.(180') cannot be
larger than 10 mb/sterad for the direct contribution.

With regard to asymmetry relative to 90', Cranberg
and Levin measure o.(35')/o (145')=1.07&0.1.'From
the lower limit, one finds o (145')—o (35') (2.6 mb/
sterad. The WHF statistical theory, of course, yields
no asymmetr'y. The direct contribution given by the
curve of Fig. 8 for t =0.05 is barely excluded by the
lower limit (and that for |=0.012 definitely so), but
this circumstance could presumably be repaired by
reasonable parameter juggling.

In summary, the observed anisotropy in excitation
of the I=2 level is substantially larger than one would
predict on the basis of the statistical theory with a
spherical well and probably, though not certainly, also
with the appropriate deformed well. Direct rotational
excitation can supply at most about 4' of the measured
anisotropy [o (90')—o (157')].

Measurement of the angular correlation between the
inelastically scattered neutron and the corresponding
subsequent y ray might provide a means for dis-

I

3~ Indicative, perhaps, of a potentially larger effect is the
detailed result that transmission coefFicients for /=0, 1, and 2
ingoing waves were changed from 0.25, 0.51, and 0.05, respectively,
for the spherical well, to 0.48, 0.27, and 0,14 for the deformed well.
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tinguishing more certainly the direct from the com-
pound-nucleus contributions, " and constitute a
sensitive indicator of satisfactory parameters.

With regard to neutrons of incident energy 2 Mev,
the minimum 90 mb/sterad at 0~60', obtained by
Cranberg and Levin in the diGerential cross section for
scattering to all levels below 0.5 Mev, imposes some
restriction upon the allowable calculated dos&""'/dQ

and do 4&""/dQ as well as upon the elastic contribution
at this angle, and seems also to indicate that most of
the compound-nucleus decay proceeds to higher levels.
A computation at 8=2 Mev with the standard pa-
rameters except that $=P.05, for example, gives
dos'""'/dQ=31 mb/sterad, drr4'""'/dQ=2p, dos&"'&/dQ

(shape elastic) =91 (which, however, is sensitive to the
parameter values), all at 8=60', and o"/4rr=238
mb/ster ad.

V. ZERO-ENERGY SCATTERING
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The average low-energy reaction (or compound-
nucleus formation) cross section can be related to the
independently observed ratio of average neutron width,
I'„, to average level spacing, D, in the compound
nucleus'4:

7r 2m.~ F„
&(cl &(resol — (I

~ ~ 0
~

2)~
k' k' D

(22)

according to Eq. (13). The potential elastic scattering
cross section 0-(I' approaches a constant value at zero
energy, which can be used to define a quantity R' as
the radius of a hard sphere yielding the same elastic
cross section. Then in the neighborhood of zero energy
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FIG. 13. Theoretical values of F„'/D (normalized to 1 ev)
according to various nuclear models: (1) Spherical square well
with rp=1.45X10 cm Vp=42 Mev, &=0.03. (2) Spheroidal
square well with same parameters as curve (1) and P=0.150,
3A.'/s=90 kev. These are the same parameters employed by
Margolis and Troubetzkoy" except that their 3A'/8 =0; this curve
is in agreement with theirs. (3) Disuse spheroida. well with same
parameters as (2) except b, =2.5X10 "cm.

"G.R. Satchler, Proc. Phys. Soc. (London) A68, 1037 (1955).
"See, for example, reference 6.
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k2

according to Eq. (12). The equalities on the right-hand
sides of (22) and (23) obtain in the limit of zero incident

Fro. 14. Neutron strength function I'„0/D as a function of mass
number. I'„'/D is the ratio of average s-wave neutron width to
level spacing at low energy normalized to 1 ev. Experimental
values are those of Zimmerman, Schwartz, and Hughes"; triangles
indicate points from measurements on individual resonances,
circles points from measurements of average cross sections in the
kev region. The curves represent theoretical calculations based on
a diffuse deformed complex-potential well. For the solid curve the
variable deformation P assumed is given at intervals in A by the
staggered numbers directly below the corresponding abscissas.
Other parameters were assigned the fixed values rp=1.35X10 "
cm, d =2.2X10 " cm, Vp=44 Mev, /=0.05. The energy of the
first excited level was varied appropriately with A. The dashed
curve (where shown) was computed like the solid one but with a
deformation larger by 33/& at each point. At several values of A,
the eGect of varying a parameter is shown by a labeled point joined
vertically with the appropriate curve. The sets of values of
deformation were chosen primarily by reference to experimentally
inferred intrinsic quadrupole moments. "
neutron energy and, in the case of (22), well-spaced
resonances. '

A spherical optical-model calculation for" I'„'/D
characteristically leads to a single maximum in the
region 100(A &240. With a deformed potential, the
resonance splits, leading to two or more separated peaks.
The splitting may be understood as arising from /'=0,
2, etc. , resonances t see Eq. (8))." The effect of de-
formation and diffuseness is illustrated in I'ig. 13 for
various parameters.

The curve for a deformed square well in Fig. 13 was
calculated using the same parameters as Margolis and
Troubetzkoy" and reproduces their results very well.
This tends to confirm the validity of the adiabatic
approximation (which they used) for s-wave scattering:
the transit time of a neutron inside the nucleus is short
compared with the period of nuclear rotation. The
addition of diffuseness, however, increases the ampli-
tude of the resonances.

Calculations of I'„'/D were made also with the
deformation varied with A so as to agree with measured

3' The quantity P„(and hence I' /D) is proportional to the
incident wave number k, P„represents I'„arbitrarily normalized
to an incident energy E=1 ev.
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TABLE II. Calculated strength function for U"'. The radius
parameter rt) was taken as 1.35/10 "cm and the deformation P
as 0.33 for each case.

(10» cm)

2.2
2,2
2.2
2.5

Vo
(Mev)

0.05
0.012
0,05
0.05

104T'~0/t D

1.60
0.42
1.33
1.50

36Zimmerman, Schwartz, and Hughes, Bull. Am. Phys. Soc.
Ser. II, 2, 218 (1957); R. M. Zimmerman, Proceedings oi the
Gatlinberg Conference on Neutron Physics by Time of Flight,
1956 [Oak Ridge National Laboratory Report ORNL-2309
(unpublished), p. 10j.

3~ A small third-harmonic deformation of the nucleus also would
aiIect I' ',/D in this neighborhood LK. W. McVoy, Bull. Am. Phys.
Soc. Ser. II, 3, 224 (1958)j.

intrinsic electric quadrupole moments. " The energies
assumed for the first excited states similarly were varied
roughly according to their observed average dependence
on A. Other parameters were given fixed values con-
sidered generally appropriate on the basis of optical-
model analyses of higher-energy scattering data;
specifically, the values assumed were 6=2.2)&10 "
cm, rs ——1.35)(10 " cm, and Vs ——44 Mev and f=0 05, .
except as otherwise noted. The calculated results and
experimental measurements" are shown in Fig. j.4. In
certain intervals of A the calculation was done for two
sets of values of deformation, the larger values exceeding
the smaller by 33%, corresponding roughly to the extent
of experimental uncertainty" and indicating the degree
of sensitivity to the values assumed. Similarly, at a
few values of A the eGect of reasonable variations in
the well depth Vo and diffuseness 6 are displayed.

The general features of the experimental data are
well reproduced by the calculation. Improvement over
results of the spherical model due to splitting of the
single-particle resonance at A 160 is obtained as
expected. The calculated I"„'/D for the (strongly
deformed) nuclei with A&230 is as large as (indeed,
for the parameters chosen, larger than) measured
experimentally, a point of some previous question
though a spherical potential with diGuseness may also
achieve this result'~; with large deformations a maxi-
mum even appears at 2~230 (Fig. 14).

Figure 14 shows that for many nuclei the calculated
I'„/D is a rather sensitive function of some parameters
of the model and, moreover, experimental values vary
widely between neighboring elements. Accordingly, a
more detailed program of fitting for specific nuclei,
taking account also of other relevant scattering data,
might profitably be undertaken. For U"' the effect of
variation of several parameters is displayed in Table II.

It has been assumed valid to compare results of the
rotational-optical model, which, as formulated for the
present calculations, properly applies only to even-even
(spin-zero) targets, with measurements for nuclei of all

types. By way of justification, it is pointed out that in
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FIG. 15. Potential-scattering length R' as a function of mass
number. Experimental values are those of Seth, Hughes, and
Zimmerman. "Solid and dashed curves (3) were computed from
a deformed well as detailed for the corresponding curves in Fig. 14.
(In intervals where both curves appear in Fig. 14 but only one
here, the two curves differ little, and the one is shown which was
determined more accurately. The apparent discontinuity at
2—188 is due to this procedure. ) Curve (2), from reference 39,
corresponds to a diffuse spherical well with r0=1.35' IO ' cm,
V0=42 Mev, &=0.08. Curve (1) corresponds to the strong-
interaction model, being given by R'=R=1.35Ag)&10 "cm.

if the larger of the two assumed values of deformation
is used. E.' is generally much less sensitive to variations
in parameters than I'„'/D.
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38 Hughes, Seth, Zimmerman, and Garth, Phys. Rev. (to be
published); K. K. Seth, Revs. Modern Phys. 30, 442 {1958).

"Feshbach, Porter, and Campbell (unpublished); reported by
V. F. Weisskopf in Physica 18, 952 (1956),

the adiabatic approximation the scattering of s-waves
by deformed nuclei is entirely independent of the spin
of the target.

The potential-scattering length R' corresponding to
the calculation with variable P is given in Fig. 15."
Shown also are (i) results of experimental measure-
ments, " (ii) the strong-interaction model prediction,
R =E, and (iii) a prediction of the spherical optical
model with disuse surface. "The gross dependence on
A, in so far as the experimental data determine it, is
produced satisfactorily by both the deformed and the
spherical optical-model curves. At a few points which
pertain to substantially deformed nuclei, however,
inclusion of an appropriate deformation appears to
have improved the agreement appreciably. For tanta-
lum the improvement is distinct, for samarium more
marginal; for thorium improvement is attained only


