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Approximate Wave Functions for the Ground State of Helium*
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Approximate 'S electronic wave functions for the ground state of the helium atom have been obtained
by the method of superposition of configurations. Parameters determining the radial factors of orbitals,
with spherical harmonic angular factors up to 1=3, were varied to minimize the calculated energy. For each
choice of the ten parameters varied in this way, a complete calculation was carried out, involving the con-
struction and diagonalization of the twenty-by-twenty configuration interaction matrix obtained from all
independent 'S functions determined by the ten independent orbital radial factors. The best energy ob-
tained was —2.90276 atomic units, differing from the experimental value by 0.001 atomic unit.

I. INTRODUCTION

'HE helium atom is perhaps the simplest example
of a quantum mechanical many-body problem

which cannot be reduced by separation of variables to
a set of one-body problems. After carrying out a center
of mass transformation, there still remains a non-
separable Schrodinger equation for two interacting
electrons moving in a common central field. The most
successful approach to integrating this equation has
been the method of Hylleraas. ' This consists of a varia-
tional calculation with a trial wave function depending
explicitly on the separation between the two electrons,
r». Recent calculations by this method have obtained
a value of the total electronic energy within the current
experimental error (an error of less than 0.00001
atomic unit). '

Unfortunately, the method of Hylleraas cannot
easily be applied to systems with more than a very
small number (three or four) of interacting particles.
This is true primarily because the number of relative
coordinates r,; increases quadratically with the number
of particles, while the number of independent co-
ordinates r; increases only linearly. For this reason,
either there will have to be significant developments in
methods for dealing with Hylleraas wave functions or
it will be necessary to use different methods for systems
with a larger number of particles.

The most promising method generally applicable to
systems with a hnite number of fermions is the method
of superposition of con6gurations. This is a variational
calculation with a trial wave function which is a linear
combination of Slater determinants (orthonormal anti-
symmetrized product wave functions). The Slater
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determinants are constructed from an orthonormal set
of one-particle wave functions (orbitals). For a given
set of Slater determinants, the coefficients in a linear
combination of these chosen to have stationary energy
are just the components of an eigenvector of a matrix
eigenvalue equation. For a 6nite set of Slater deter-
minants, this eigenvalue equation can be solved by
standard methods.

A more significant problem is that of determining the
set of orthonormal orbitals from which the particular
set of Slater determinants under consideration are to
be constructed. The number of Slater determinants,
which must be considered for a given degree of accuracy
in a perturbation calculation, can be significantly de-
creased by choosing these orthonormal orbitals to
include those which are occupied in a Slater deter-
minant of stationary energy. ' Such orbitals satisfy the
Hartree-Fock equations appropriate to a wave function
expressed as a single Slater determinant.

Because this method can be applied without practical
de.culty to systems with a considerably greater
number of particles, it was felt to be desirable to carry
out similar calculations on the helium atom in order to
compare results with the Hylleraas method and to
obtain information on the rate of convergence of the
general method.

The present paper reports the results of such calcula-
tions, carried out to a greater degree of accuracy than
that of earlier work on helium by the same method, 4 but
with no intention of exhausting the resources of this
method. ' The reported calculations were carried out on

' R. K. Nesbet, Proc. Roy. Soc. (London) A230, 312 (1955).
z G. R. Taylor and R. G. Parr, Proc. Natl. Acad. Sci. (LT.S.)

38, 154 (1952); Green, Mulder, Lewis, and Woll, Phys. Rev. 93,
757 (1954); H. Shull and P.-O. Lowdin, J. Chem, Phys. 23, 1362,
1565 (1955); P.-O. Lowdin and H. Shull, Phys. Rev. 101, 1730
(1955); E. Holttien, Phys. Rev. 104, 1301 (1956).' After this paper had been submitted for publication, Tycko,
Thomas, and King LPhys. Rev. 109, 369 (1958)] reported work
on He resulting in a much better ~S energy ( —2.903443 a.u.). For
the case of a helium-like ion, their method leads to results of the
same form as ours. Their better energy resulted from using more
l values. For atomic systems w ith more than two electrons, their
method is more diS.cult than and not identical with the method of
superposition of configurations- as described here.
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Case (a)
l A~

Case (b)
A& a;

RI
R2
R3
R4
R5
R6
R7
R8
Rg
Rlp

0 0 +2.675
0 0 +1.437
0 1 +5.390
0 1 +3 125

0 +4.006
1 0 +2.314
1 1 +4 125
2 0 +5.844
2 0 +3 620
3 0 +4.860

0 0
0 1
0 2
0 3

0
1 1
1 2
2 0
2 1
3 0

+2.0
+2.0
+2.0
+2.0
+3,0
+3.0
+3.0
+4.0
+4.0
+5.0

Tarsr, E l. The radial basis orbitals {E;)in terms oi
their parameters /, 2;, and a;.

functions for l=0, three for l=1, two for l=2, and one
for l=3 (see Table I). This distribution was found to
give about equal weight in a variational calculation to
the effects of the last radial function in each set of
given l. The choice of A, was based on preliminary
calculations.

From this set of orbitals, twenty orthonormal two-
electron 'S wave functions could be constructed. In
general, these are linear combinations of plater deter-
minants (see Table III).The matrix of the '.wo-electron
Hamiltonian (the configuration interaction matrix)
was diagonalized in stages, first 1&(1, then 10)&10 to
include all s orbitals, then 16X16 to include all s and

TABLE II. The orthonormalized P's in terms of the g s.

sP(ss) =+ 1.94757', +
sP(ss) = —15.38638irs +
sP(ss) = — 2.05146srs +
sP(ss) = —71.67213sts +
P(PI) = —11.07721g5 +
sP(ps) = — 5.29740sts +
p (ps) = —108.43400iss

iP (dr) = —107.39902gs +
|P(ds) = —338.53038srs +
sP(fs) = 138.59193stso

Case (a)
2.81013'2

10.15471g2

7.07248' 2

4.47994' 2

20.08616'6
20.81242' 6

18.13522'6

52.74214' g

40.40129'g

0.06280g3

+ 41.31016g3
+149.53752g3
+440.18944g3
—63.32703'7
—161.35987'7

+270.76519g7

—0.29053' 4

—36.05458y4
—69.60687g4
+33.98275q4

|p(») =+
sP(ss) =-
sP(ss) =+
p(S4) =-
&(PI)=+
f(Ps) =+
0(ps) =+
f(dI) =-
a(d.) =-
f(fs) =

Case (b)
0.12685'2
6.31806'2

18.07539'2

79.30618'2
22.48513'6
75.21197'6

155.44751' 6

91.17156'g
135.34486' g

4.73436gI +
3.03463qI +
2.47709qI +

24.54078gI +
7.26487' 5

10.26822q5
81.52165q5
35.01400gs +

148 57894gs +
157.4852+ IP

+ 0.88428g3
11.64329' 3

—34.24766' 3
—64.43750rj3

+ 27.81103q7
I- 47.38958qy

+ 63.09454g7

+ 0.07755g4

+ 6.60030g4
+10.89368g4
+14.20752g4

the Whirlwind Computer at MIT with digital com-
puter programs which were already in existence, and
were carried to the point where it would have been
necessary to design new programs, specialized to the
helium calculation, to proceed efhciently to a higher
degree of approximation.

IL PROCEDURE AND RESULTS

The basis orbitals were chosen to be functions of
the form

si, (l,rrs, m, ) =R,&(r) I' s"(e,y) t (m, ),

where Vp is a normalized spherical harmonic and
tt(m, ) is one of the two possible elementary spin func-
tions. The radial functions were of the form

g .
E

pA t'+l g
—a;'r

sl

where A, is an integer. Ten different sets of parameters
(A;, a, , and l) were used, with four independent radial

TABLE III. The twenty '5 wave functions
constructed from the P's.

e& =P(ss,. 0), P(s&,. 0)
iI's = (2-i)[iP(s„o),iP(s„o)+f(s„.0), P(s„o)7
+s =sP(ss' 0), sP(ss; 0)
4's = (2 &)[P(ss, 0), f(s; 0)+sP (s; 0), P (s; 0)7
@s = (2 1)[0(ss, 0), sP (ss, 0)+P (ss, 0), sP (ss, 0)7
es = P (ss,. 0), g (ss,. 0)

7 (2 ) [P(s& 0) P (s4 0) +sP(ss 0) 4'(s& 0)7
+s = (2 &) [tt (ss, 0), iP (s4, 0) +sP (ss, 0), sP (ss,' 0)7
@o = (2-&)['P (ss; 0), iP (ss; 0)+if (ss; 0), sP (ss; 0)7
+so ——iP(S4, 0), sP(S4, 0)

+sr= (3 ')[O(ps' 1),P(ps; —1)—W(p~; o), N(ps; 0)
+P(Ps; —1), P(Ps; 1)7

+ss ——(6-i) [k(P&, 1), 4{psi —1)—4(ps; 0), 4(psi 0)
+0(ps; —1), sP(ps; 1)+0(ps; 1), |P(p~; —1)

0(Ps, 0), 0(Ps;—0)+0(Ps; —1), k(Ps; 1)7
+ls (3 s)[P(Ps i 1)i P(psi 1) 0'(Psi 0)i P(p siO)s

+iP(Ps; —1), P(Ps; 1)7
+ss= (6 1)B'(Psi 1)i &(Psi 1) &(Psi 0)i&(ps 0)'

+P(p„—1), |P (Ps, 1)+P(P„1),|P {Ps; —1)
—P(P„0),g (P„o)yy(Ps; —1),P(p, ; 1)7

+ =(6 ')[k(p '1), k(p; —1)—P(p;0), 4(p;0)
&(Ps; —1), & {Ps; 1)+&(Ps; 1),N(Ps; —1)

g(P„0),y(P„0)—+g (Ps; —1),P(P„1)7
+so=(3 )[4'(P» 1),P(P» —1)—iP(Psi 0), sP(Ps', 0)

+IP(ps, —1)P(Ps' 1)7
ili„,= (5 &) [iP (ds, 2), P(d„ —2) —iP {dsi 1)iiP (d, —1)

+iP(di; 0), g (di; 0) —sP(ds; —1), iP(ds 1)
+P(di; —2), p(di; 2)7

iI„=(10 s)[ip(dsi 2), iP(ds, —2) —iP(ds., 1), iP(ds, —1)
+0(ds; o), 4(ds; o) —@(ds; —1), @(ds; 1)
+&(dsi 2)i&{dsi —2) —0(dsi 1)ik(ds' —1)
+P(d2, 0), P(dI; 0) —0(d2; —1}&4(dj.; 1)

+P (ds; 2), iP (ds; 2)+—iP(ds; —2), iP(d, i 2) 7
4'so ——(5 &)[P(ds; 2)i iP(ds; —2) —P(ds; 1), ip{ds, —1).

+P(d; 0), P(d; 0) —P(ds; —1), |P(ds; 1)
+a{do; -2), 0(ds, 2)7

+so ——(7 &)[P(f,i3),P(fs; —3) -P(f, ;2),0(f, &

—2)—
+0(fs; 1), P(fs; —1)—4(fs; o), k(fs; o)
+0(fI; —1) 4(fI 1)—0(f~' —2) P(fi;2)

+a(fs; —3) f(fs 3)7
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p orbitals, then 19X19to include all s, p, and d orbitals,
and Cinally the full 20X20 matrix (see Table IV). The
improvement in energy obtained at each stage gave in-
formation on the contribution from each symmetry
type of orbital.

A preliminary transformation was carried out which
obtained the best linear combination of the s orbitals
in an approximate Hartree-Pock calculation. In all
cases the Hartree-Fock energy was obtained to five
significant decimals. This number is quoted as the 1X1
stage in diagonalizing the 2DX20 configuration inter-
action matrix. The other orbitals were orthonormalized
and all necessary one- and two-electron integrals calcu-
lated before the configuration interaction matrix was
constructed. The particular methods used for this
numerical work have been described elsewhere in. con-
nection with the digital computer programs used. '

Although it would have been desirable to carry out
a complete calculation to obtain values of the ten a;
parameters by the method of steepest descents, this
was not practicable because of the large number of
variables. Preliminary calculations and previously re-
ported work' provided good initial values of these
parameters, so they were varied in small sets or one
at a time.

Parameters and results of two calculations are re-
ported here. The second Lease (b)$, with all a, the
same for given 1, is remarkable in that variations away
from this extremely simple choice of parameters did
not give an improvement i' calculated energy at all

' significant in comparison with the difference between
the experimental energy and that of our best calcula-
tion. As an empirical rule, the best choices of parameters
appear to describe trial orbitals which have maximum
radial densities near the same value of the radius. They
dier markedly from parameters needed to describe the
spectroscopic He orbitals, which spread away from the
nucleus as either the angular momentum or the number
of radial nodes increases. This agrees with the results of
other atomic wave function calculations where the
orbital basis was chosen by a variational criterion. '

It is estimated that further variation of parameters,
with the same number of basis orbitals, would not
improve the best energy given here by more than
0.00005 atomic unit.

Table I lists the parameters of the R,'s for the two
cases reported. Table II gives the one-electron functions
(P's) which result from orthonormalization and the
approximate Hartree-Fock calculation involving the
orbitals with l=0. The |P's have been indexed according

'Various articles in Quarterly Progress Reports, Solid-State
and Molecular Theory Group, Massachusetts Institute of Tech-
nology (unpublished): R. K. Nesbet, April 15, 1955,pp. 38 and 41;
October 15, 1955, p. 4. I . J. Corbat6, Digital Computer Labora-
tory, Massachusetts Institute of Technology Report DCL—58,
March 15, 1955 (unpublished).

7P.-O. Lowdin and H. Shull, Phys. Rev. 101, 1730 (1955);
S. F. Boys, Proc. Roy. Soc. (London) A201, 125 (1950); A217,
136, 235 (1953).

TABLE IV. Con6guration interaction energies.

Matrix di-
agonalized

F.nergy
(a,u. )

Value of t
contributing

Contrlbut1on
to energy

(a.u. )

10X10

16X16

19X19

20X20

10X10

16X16

19X19

20X20

Case (a)
—2.86168

—2.87.887

—2.90029

—2.90238

—2.90276

Case (b)
—2.86158

—2.87860

—2.89992

—2.90203

—2.90242

—0.01719

—0.02142

—0.00209

—0.00038

—0.01702

—0.02132

—0.00211

—0.00039

TABLE V. C s resulting from 20X20 diagonalizations.

1

3

5
6
7
8
9

10

Case (a) Case (b)

+0.99596—0.00026—0.05671
+0.00175
+0.02220—0.01229—0.00011—0.00019
+0.00113—0.00075

+0.99596
+0.00179—0.03329
+0.00153
+0.03943—0.03198—0.00107—0.00602
+0.01095—0.00607

i Case (a) Case (b)

11 +0.05010 +0.04420
12 —0.03086 —0.03478
13 +0.02259 +0.02655
14 —0.00165 +0.00362
15 +0.00521 —0.00847
16 +0.00362 +0.00581
17 —0.01211 —0.01173
18 +0.00291 +0.00407
19 —0.00325 —0.00464
20 +0.00411 +0.00399

to / value (s for /=0, p for 1=1, etc.), with a subscript
to cover the cases of more than one P for a particular l
value. A subscript has been used rather than the
common notation to emphasize that only the s~ orbital
resembles a "normal" He one-electron wave function.
P(sr) is the approximate Hartree-Fock 1s He wave
function resulting from the preliminary calculations
while, for example, the lp(p, ), which might have been
labeled 2p instead, has a radically different radial dis-
tribution than the function normally referred to by
the description "a 2P He orbital. " The tP's also have
the quantum numbers m~ and m„which have been
omitted in Table II but have been included in TableIII
which lists the twenty 'S wave functions (4') which
were constructed from the P's. The no~ assignments are
included with 1 assignments inside the brackets while
the following convention is used for spin assignment.
If a P precedes the comma in a particular term, it has
+—', spin; and if it follows the conuna, it has —s spin.
For example, P(pr, 1),P(ps, —1) means the product of
a pr orbital with m~ ——1 and te, =+s with a ps orbital
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with mg = —1 and nz, = ——',. Table IV gives the energies
resulting from diagonalizing the con6guration inter-
action matrices. The final 'S wave functions are a
linear combination of the 4's of the form

diagonalizations. All energies are quoted in Hartree
atomic units (a.u.), where 1 a.u.—27.205 ev.
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The mass of 3' has been determined by measuring the threshold energy of the reaction Li'(He', e)B'.
Observations were made on both the neutrons from the reaction and the positrons from the decay of Bs.
The threshold energy is 2.9661&0.0017 Mev, giving a mass of 8.0271.57&0.000008 amu for B'. The half-
life of B' was measured to be 0.78+0.01 sec. Evidence was found for possible excited states in B' at 0.6~0.1
and 0.80~0.05 Mev with respective widths of 0.2&0.1 and 0.07&0.04 Mev. Assuming that the decay pro-
ceeds exclusively to the 2.9-Mev state of Bes, the log ft value is 5.7.

II. EXPERIMENTAL PROCEDURE

The neutrons emitted in the reaction Lis(He', e)Bs
just above the ground-state threshold have energies in
the neighborhood of 110 kev due to the motion of the
center of mass. Neutrons that are emitted at bombard-

INSULATOR
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0 I R3466

IONpHES

0
~ 0
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COUNTER

FAST

COUNTER

5 BFS TUBES
.IN PARA FFIN

MODERATOR

FIG. 1. Schematic representation of target and
counter arrangement.

~ L. Alvarez, Phys. Rev. 80, 519 (1950).
~ R. K. Sheline, Phys. Rev. 87, 557 (1952).

I. INTRODUCTION

HE first experimental evidence for the nuclide B'
was reported by Alvarez, ' who found it to be a

delayed alpha-emitter decaying by means of a 13.7-
Mev positron (0.65-sec half-life) to the same excited
state of Be' as does Li'. He produced B' in the reactions
B"(pH')B' Be'(p 2s)B' and C"(p ncx)B'.

Sheline' observed B' in the following reactions:
B"(y 2s)B' 8"(y 3')B' and C"(y P3e)Bsy and meas-
ured the half-life for the positron activity to be 0.61
&0.11 sec.

We have used the reaction Lis(He', rs) B' to determine
the ground-state mass of B', to search for excited
states in 8', and to measure the half-life of the positron
activity associated with the decay of B'.

ing energies just above possible excited-state thresholds
(energetically available to us) do not exceed 225 kev.
Neutrons in the energy range 110 to 225 kev wijl be
referred to as "slow" neutrons to distinguish them from
"fast" neutrons of energies greater than 225 kev, such
as those emitted from the beam-de6ning diaphragms
and from the target at bombarding energies well above
the ground-state threshold.

The neutron detectors and their relation to the target
are shown in Fig. 1. The detectors and the techniques
for observing "slow" neutrons associated with the
states of 8' have been described in a previous paper. '
The target (near room temperature) was supported just
inside the end of a metal tube which is attached to a
reservoir containing liquid nitrogen. Ke have evidence
from other experiments' to show that this arrangement
is extremely eGective in preventing the buildup of
contaminants on the target. The vacuum jacket to the
right of the cold trap may be slid to the right on an
"0"-ring seal, the valve closed, and the target changed
without losing vacuum inside the cold trap.

The beam emerges from the output slit of the mag-
netic analyzer, 25 ft from the target, with an energy
spread of 0.1%,passes through an 18-in. concrete shield-
ing wall, through a strong-focusing lens, and (as it
nears the target) through a 0.1-in. aperture before
entering the cold tube. The magnetic analyzer was care-
fully calibrated using the reactions AP'(p, y)Srss and
Lir(p, e)Be' with monatomic, diatomic, and triatomic
beams. The mean energy of the beam was determined to

' Butler, Dunning, and Bondelid, Phys. Rev. 106, 1224 (1957).
4 J. W. Butler and C. R. Gossett, Phys. Rev. 108, 863 (1957).


