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Nuclear Structure Effects in Internal Conversion*t
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The problem of the influence of nuclear structure on the calculation of conversion coefficients is discussed
and a distinction is made between those effects (static) which are essentially calculable without a detailed
nuclear model and the effects (dynamic) for which such a model is mandatory. The theory of the conversion
process is developed in such a way as to provide formulas wherein both types of effects are exhibited. No
attempt is made to provide specific numerical results for the dynamic effects but instead a framework is
provided within which the internal conversion predictions of any nuclear model can be readily tested. In
order to do this it is necessary to know not merely the conversion coefficient but the matrix elements for the
separate final states as complex numbers. This information, which is available at present for only the X
shell, is utilized to provide numerical results for the E shell and for several values of transition energy and
atomic number. Electric and magnetic 2 -pole transitions with 1 ~& 1.~& 5 are considered.

I. INTRODUCTION

'' "NTII the effect of the nonzero radius of the
nucleus was taken into account it was considered

that internal conversion coeS.cients were essentially
independent of nuclear structure. While this is true for
light nuclei and for many transitions in heavy nuclei
as well, it is now realized that appreciable structure
effects can appear in the conversion process for some
heavy nuclei.

Nuclear structure can be said to affect the 2~-pole
conversion coe%cients in a "static" way and in a
"dynamic" way. It gives rise to a static effect through
the average nuclear charge distribution which acts on
the atomic electrons in the stationary states of the
electron-nucleus system. It gives rise to a dynamic effect
in the sense that the nuclear matrix elements for atomic
electron ejection are different from those for gamma-ray
emission. Thus the static effect, on the one hand, can
be expressed entirely in terms of the electron wave
functions. The dynamic effect, on the other hand,
involves the explicit appearance of the nuclear wave
functions and the operators governing electromagnetic
transitions in nuclei.

It is generally accepted that the static effect can be
dealt with adequately without recourse to a detailed
model of nuclear structure by introducing a reasonable
charge distribution from which to calculate the elec-

trostatic potential produced by the nucleus in its
stationary states. There is reason to believe, however,
that in a number of cases the dynamic effect can only
be treated adequately with a rather complete nuclear
model. Indeed the general failure of very simple nuclear

models to predict many gamma-ray lifetimes lends

strong support to this view.

* First reported in the Bull. Am. Phys. Soc. Ser. II, 2, 228
(1957).

t This article is based in part on work performed for the U. S.
Atomic Energy Commission at the Oak Ridge National Laboratory
and is a condensed version of Oak Ridge National Laboratory
Report ORNL-2395 by T. A. Green and M. E. Rose.

The static nuclear structure effect has been treated
for the E shell by Sliv' and for the E and I shells by
Rose.' In each calculation the nucleus was considered
to be a sphere of constant charge density. , Except in a
few cases the conversion coefficients are smaller than
those calculated for a point nucleus. ' The discrepancy
amounts to a few percent for atomic number Z less than
60. For larger values of Z considerably larger reductions
can occur.

In the above-mentioned calculations of conversion
coefficients the authors differ somewhat in their manage-
ment of the dynamic structure effect. Sliv treats this
effect by supposing that the nuclear currents are
confined to the surface of the nucleus. Rose adopts a
different approximation which will be described in Sec.
IIIb. For a finite nucleus the two calculations lead to
conversion coefficients which differ by less than Ave

percent in almost all cases of physical importance. The
result of either treatment is that the part of the con-

version coe85cient which is dependent on dynamic
structure effects is but a few percent of the part which

is independent of these effects.
Now, as was pointed out by Church and Weneser, 4

nuclear models which allow for shell structure effects can
lead in some cases to (dynamic) structure-dependent
contributions to the internal conversion coe@cients
which are sizable fractions or perhaps even large multi-

ples of the structure-independent contributions. Fur-

L. A. Sliv, J. Exptl. Theoret. Phys. U.S,S.R. 21, 770 (1951);
L. A. Sliv and M. Listengarten, J. Exptl. Theoret. Phys. U.S.S.R.
22, 29 (1952);L. A. Sliv and I. M. Band, "Coefficients of internal
conversion of gamma radiation, "Academy of Science, U.S.S.R.,
1956, reproduced in the United States as Report 571CCK1 of the
Department of Physics of the University of Illinois.

'M. E. Rose (unpublished). These results will appear in a
forthcoming book.

'M. E. Rose. Some of these results have been published in
Beta- and Gamma-Ray Spectroscopy, edited by K. Siegbahn
(North-Holland Publishing Company, Amsterdam, 1955), Ap-
pendix IV. Other results have been circulated privately.

4 E. Church and J. Weneser, Phys. Rev. 104, 1382 (1956).
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thermore the experimental values' ' of the conversion
coefficients for a few transisitions, notably 3II1 and E2
transitions, seem to be in disagreement with the results
of Sliv's calculation.

Recently, it has been shown by Reiner' that the
unified model can give 351 matrix elements which can
increase the calculated conversion coefficient by a factor
of about 20 in the case of the 482-kev transition in
Ta'". This compares with an experimental ratio of
5+2. For nuclei near closed shells smaller but significant
changes can be expected in some cases. Thus, calcu-
lations of Kisslinger" indicate that configuration inter-
action in Tp" should reduce the computed coefficients
by about 10%. In the majority of cases it is to be
expected that the dynamic eGects of nuclear structure
are very small. Nevertheless, the occasional occurrence
of large dynamic effects (particularly in strongly
deformed nuclei) can now be considered as fairly well

established.
It should be recognized that the dynamic contribution

to the conversion coefficient adds coherently to the
static contribution. It is therefore necessary to exhibit
the latter as a set of amplitudes for each final state of
the electron and these amplitudes must have the
correct absolute phase. Instead of one real number, the
conversion coefficient, it is necessary to know two
complex numbers in those transitions for which the
angular momentum of the electron is —,'and in general
it is necessary to know 2j,+1 complex numbers in
order to incorporate the dynamic eGects in the calcu-
lation of the conversion coefficients. This program can
be carried out for the E shell, thanks to an unpublished
tabulation of the matrix element for that case," and
the present paper is addressed to this task.

Our aim is, therefore, to develop the theory of
internal conversion in such a way that the dynamic
structure effects are explicitly exhibited in a formal way
without specifying the nuclear model to be used even-
tually. When a specific model is adopted, the relevant
contribution to the final state amplitudes can be added
to the calculated amplitudes which represent the static
effect only. In any event, it will be appreciated that the
calculation of the static eGect, which is essentially
independent of the uncertainty introduced by nuclear
models and can be calculated with a large degree of
reliability, should be separated from that part per-
taining to the dynamic structure eGects. To determine
the existence of the latter type of effect the experi-

~ F. K. McGowan and P. H. Stelson, Phys. Rev. 107, 1674
(1957).

~ K. Siegbahn (private communication).' G. S. Goldhaber (private communication).
A. H. Wapstra and G. J. Nijgh {private communication).

'A. S. Reiner, Proceedings of the 1957 International Conference
on Nuclear Structure, Rehovoth, Israel (North-Holland Publishing
Company, Amsterdam, to be published). See also forthcoming
publication in Nuclear Physics.' I,. S. Kisslinger (unpublished).

"This tabulation will be included in the publication referred
to in reference 2.

mental results should always first be compared to the
calculations with only static effects included. "

In the following, the conventional theory of internal
conversion is formulated in such a way as to exhibit.
the dynamic structure eGect as a series of ratios of
nuclear matrix elements. These appear with certain
coefficients which can be calculated without specifi-
cation of a model and these coefficients are tabulated so
that they may be used in conjunction with any model.
This makes it possible to study the dynamic effect with
various nuclear models without redoing each time the
very tedious part of the calculation which involves the
static eGect alone.

In this paper we shall consider pure multipoles only.
This is no loss of generality since, as is well known, the
contributions of two multipoles which mix are added
incoherently. " Strictly speaking, the mixing ratio is
also calculable in terms of the nuclear model and the
phenomenon of mixing could be referred to as a nuclear
structure eGect. However, it seems more appropriate to
separate this problem from the coherent eGects of
nuclear structure to which we have already referred.
If desired, the incoherent eGect can be taken care of by
the introduction of empirically adjusted mixing ratios;
these mixing ratios can also be measured in the angular
correlation process. There is no corresponding way to
represent the coherent eGects nor would it be desirable
to introduce too many empirically adjusted constants
in any event.

8xkn oo L 2

ZZZ
2J~+1 Mr Mgr 1M—I a

X ' d'x Jrr(x) Ar, ~(x;o) ',
~v~

2&CF

(2)

"See M. E.Rose, ProceedAzgs of the 1957International Conference
on Nuclear Structure, Rehoeoth, Israel (North-Holland Publishing
Company, Amsterdam) (to be published}."M. E. Rose, 3Eultipole Fields (John Wiley and Sons, Inc. ,
New York, 1955). We shall henceforth designate this reference
by the symbol I.

"The derivation of Eqs. (1), (2), and (3) will be discussed as
soon as the notation has been explained, We use units such that
A=m=c= i.

II. DEVELOPMENT OF THE THEORY

Consider a neutral atom of atomic number Z whose
nucleus is in a low-lying excited state. Selection rules
permitting, such a nucleus can undergo a transition to
a state of lower energy either by emitting a gamma ray
or by ejecting an orbital electron from the atom. I.et the
transition rates for these two processes be called N~
and N„respectively. Then, by definition, the internal
conversion coefficient is the ratio of N, to N~. The
starting point of our development is the following pair
of equations for N~ and N, ."
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where

Mg;= d'x
+&X ~&e

d'y{ J~(x) J.(y) —p~(x)p. (y))

Xr ' exp(ikr). (3)

'~ The notation is the same as that discussed on p. 65 of I.
R. K. Osborne and L. L. Foldy, Phys. Rev. 79, 795 (1950).

These authors show how to construct appropriate charge and
current operators phenomenologically.

In the above equations the symbols have the following
meaning. The constant k, a positive number, is the
difference in energy between the two nuclear states; o.

is the fine structure constant. J~ and J; are the total
angular momentum quantum numbers of the final and
initial nuclear states and 3f~ and iV, are the corre-
sponding projection quantum numbers. The vectors x
and y are position vectors in the three-dimensional
spaces whose volume elements are d'x and d'y. The
variable, r, is equal to

~

x—y~. Jiv(x) and piv(x) are the
transiton current and charge densities which describe
the interaction of the nucleus with the electromagnetic
field. Similarly, J,(y) and p, (y) describe interaction of
the ejected electron with the electromagnetic field.
These densities are assumed to obey the usual con-
tinuity equations.

dlvJiv=zkpiv, dlvJ~= —skp, .

J, and p, are defined in the conventional manner in
terms of the Dirac matrices and the Dirac one electron
wave functions of the initial and final states. These
functions are calculated for a spherically symmetrical
potential which is determined by supposing that the
nucleus is a sphere of constant charge density and
radius, 8=1.23&&10 " cm, where 2 is the nuclear
mass number. Atomic screening is accounted for ac-
cording to the Thomas-Fermi-Dirac model. The wave
functions are represented in the manner described on
pages 65 and 66 of I and the continuum functions are
normalized on the energy scale. The parameter ~ is a
nonzero integer which specifies the total angular mo-
mentum quantum number j= ~ii~

——', and the parity
quantum number /= j+a/2~x~ for the final electron
state. The angular momentum projection quantum
number for this state is p."The initial electron state is
analogously described by quantum numbers ~', j', l',
and p, .

We shall not write down specific formulas for the
nuclear charge and current densities since none will be
needed for our purposes. The reader should perhaps be
warned that our notation for these densities is ex-
tremely compressed. In the case of most nuclear models,
the integrals of the densities will be off-diagonal nuclear
matrix elements of sums of single-nucleon operators. "
In addition to supposing that the densities satisfy Eq.
(4), we shall in the course of the development make a
few further reasonable assumptions about them which
are as nonrestrictive as possible.

The vectors Al. ~(x; o) are defined by the relations

A&~(x; 1)= j&—(kx)Tr„ I~(8,&),

i L+1 ~'
&~ (» 2)=l

(2L+1

(
I jl+iTr„z+i(2L+ 1) (5)

sr(x. 3) —
~ ( j T M

~ 2L+1)
(L+1)r

+
I ~ j.+i ..+i ,

ZL+1

in which spherical coordinates, a=
t x~, 8, P have been

introduced. ji, (ka) is the spherical Bessel function of
order I. and the Tt, i~ are the vector spherical har-
monics defined by Rose."

Before proceeding to use Eqs. (1), (2), and (3) we
shall remark briefly on the manner in which they have
been established. Derivations of these equations have
been given by several authors, each of whom adopted a
different representation of quantum electrodynamics.
Tralli and Goertzel" and Kramer" use the SchrOdinger
representation. They differ, however, in their treatment
of the photon field. Coester" employs the interaction
representation. We have verified by direct comparison
that all three methods lead to expressions for the con-
version coefficients which agree with those obtained
from Eqs. (1), (2), and (3).

The rest of this section will now be devoted to the
simplification of Eqs. (1), (2), and (3).We will introduce
the usual multipole expansion of 3f~;, carry out a neces-
sary integration by parts, do the angle dependent parts
of the integrals in x and y space and carry out the pro-
jection quantum number sums which appear in Eqs.
(1) and (2). This will lead to expressions in which only
the radial integrals remain to be carried out. It will
then be seen that it is possible to decompose each of the
conversion coeScieiits for pure 2~-pole radiation into a
part which is independent of dynamic structure eGects
and a part which is not. Explicit formulas for each of
these parts will be given.

In order to make effective use of the conservation of
angular momentum it is essential to express the function
r ' exp(ikr) in terms of angular momentum eigenfunc-

» See pp. 22, 23, and 30 of I. For purposes of comparison it is
important to note that the vector fields of Eq. (5) above are
equal to {s./2)& times the corresponding fields oi I.

"N. Tralli and G. Goertzel, Phys. Rev. 83, 399 (1951).
's G. Kramer, Z. Physik 146, 187 (1956). Kramer points out a

number of valid objections to the method used by Tralli and
Goertzel. However his Eq. (38) leads to a result for the conversion
coefficient which is the same as that obtained by Tralli and
Goertzel. Also see G. Kramer, Z. Physik 147, 628 (1957) for
additions and an important correction to the above article.' F.Coester (unpublished). Coester uses the S-matrix formalism
in the interaction representation.
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tions by using the well-known expansion, "
e'I

where

Mr, ——Q D Mz~(m)+Mr, ~(e)),
L~ M

(7)

(4rrik) 'Mr, ~(m) = I d'x J~(x) Br,~*(x; 1)

4 0

day J,(y) Az (y; 1)

+ d'x Jq(x) Az~*(x; 1)

and

X d'y J.(y) K"(y; 1), (&)

3 f
(47rik) 'Mr~(—e) =Q d'x J~(x) BrM*(x; o)

@=2

X d'y J,(y) Ar, ~(y;o)
0

+ I dsx J~(x) Az, ~(x; o)J,„
X d'y J.(y) Bz (y;o)

d'x p~(x) Yr,~*(8,y) kr, o ~ (kx)
~v~

d'y~. (y)Yz (0',4')i (ky)
0

jr, (kx)hr, &'&(ky); y) x
x (6)

hr, "&(kx)jz,(ky); y&x.

In Eq. (6), (y=
~ yj, 8', P') are the spherical coordinates

of the point y. An asterisk means complex conjugate.
The above expansion does not converge uniformly with
respect to both variables x and y for unrestricted values
of these variables. Consequently the term-by-term in-

tegration of the series has to be introduced with appro-
priate care. The result of the above transformation can
be expressed as follows.

In Eqs. (8) and (9) the vectors Br,~(x; o) are obtained
from the vectors Ar.~(x; o) of Eq. (5) by replacing
jr, (kx) by kr, &" (kx). An asterisk aPPlied to either kind
of vector means take the complex conjugate of its
spin-angle factors Tr z~. The notation J'pd'y means
integration over the region for which O~y&x; the
notation J;"d'y means integration over the region for
for which x~y& ~. In obtaining Eqs. (8) and (9) we
employed our equivalent of Eq. (4.5) of I. This equa-
tion provides an expansion of the unit dyadic times
r 'exp(ikr) in terms of the vectors Ar.~(x;o.) and
Br,~(x; o). An examination of the integrands which
appear in Eqs. (8) and (9) shows that because of the
Hankel functions the integrals are improper. In each
case the integrals are convergent.

In Eq. (7) we have expressed Mr; as a sum of terms
Mz (e) and Mr, ~(m) which can be referred to as
electric 2L-pole and magnetic 2L-pole terms, respec-
tively. This decomposition is based on the nuclear
angular momentum and parity selection rules which
arise from the solid angle integrations implied by Kqs.
(8) and (9). For given I., greater than zero, these
selection rules are just the well-known rules for electric
2L-pole gamma radiation and magnetic 2L-pole gamma
radiation which are also contained in the integrals of
Eq. (1) for iV~

For I=0 there is no gamma radiation. Furthermore
Ms'(m) is zero. However, Ms'(e) is not zero and gives
rise to what may be termed electric monopole transi-

tions. " We shall not concern ourselves with such

transitions here since our primary interest lies in the
conversion coeKcient which implies the possibility of
radiative transitions.

Reference to Eq. (1) shows that our expression for

S~ does not involve the nuclear charge density p&.

This quantity does appear, however, in our expression
for Ml, ~(e) as can be seen from Eq. (9). In order to
discuss the nuclear structure dependence of the con-

version coefficient, we shall want to compare the
structure dependence of E~ with that of lV, . This com-

parison is facilitated if both quantities are expressed

entirely in terms of J~. The required transformation
can be carried out as follows. In each of the last two

terms of Eq. (9) p& is replaced by (ik) 'divJ& ac-

cording to Eq. (4). The derivatives are then removed

from J~ by permissible partial integrations, and finally

the readily verified relations, "

d'x p~(x) Yz *(0,$)j r.(kx)

d'y p.(y) Yz (~'A')kz"'(ky) (9)

and

Ar~*(x; 3)=k ' grad (j z, Yz~*)

Br~*(xi 3)=k ' grad(kz, "'Yz~*)

(10a)

(10b)

21 See Eq. (1.22) of I. In this equation the sum is multiplied by
2+ik rather than 4mik because Rose uses radial functions which
diRer ours by a factor (2/~l~.

are employed. It is then found that the sum, 5, of the

~ E. Church and J. Weneser, Phys. Rev. 103, 1035 (1956).
2' See p. 30 of I.
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last two terms of Eq. (9) can be written in the form functions CP(x) such that

109

S=—~ d'x J~(x) Bi,~~(x; 3)
~VN

X d'y u. (y) Y~"(e'A')i ~(ky)

d'x J~(x) AL,~*(x;3)

X " d'y u. (y)Yi (e'A')ki"'(ky), (11)

which no longer involves p~. This makes it possible to
express the nuclear dependence of X, in terms of J~
alone.

The next step in the calculation is the evaluation of
the solid angle parts of the volume integrals which
appear in Eqs. (1), (8), (9), and (11). This is accom-
plished by first expressing the vectors AI„~(x; 0) and
Br,~(x,o.) in terms of radial functions and the spin-angle
functions, Ti„i,~ of Eq. (5). The spin-angle functions
are then expressed in terms of spherical harmonics
through the easily veri6ed relations, '4

xXgrad Yr, (e,y)
~i.i"(e,4) =~

IL(L+1))&
'

~x~ gradY, ~ (Ly1)~Y,—~
~i, u-i (eA) = (12)

L(L+1)(2L+1)3'*

~x[ gradYr, +LiYJ.
T M(e y)—

LL (2L+1)g&

In Eqs. (12), @=x/( x~. By making use of Eqs. (12)
and by introducing the Dirac wave functions of the
electron, it is possible to carry out the solid angle inte-
grations in the electron space explicitly. " It results
therefrom that the M dependence, the p dependence,
and the p,

' dependence of each of the integrals over the
electron space is contained entirely in a multiplicative
Clebsch-Gordan coeKcient, which we shall designate by
the notation C(j 'Lj; p'M) used in I. As is well known,
this Clebsch-Gordan coefficient contains the angular
momentum conservation laws for the electron.

The solid angle integrations cannot be carried out
explicitly in the space of the nucleons until the function
Jii (x) is specified. We shall proceed by making the very
reasonable assumption that for all nuclear models an
angular momentum conserving Clebsch-Gordan coef-
6cient also arises from the integrals over the nucleon
space. Specifically, we assume that there exist radial

x' dedy(sine) Jii (x,e,y) Tl., i,~*(e,y)

= ( )'+—~"+~C(J;LJf,M, —M)4p(x). (13)

The essential part of the assumption is that the
functions CP(x) are independent of M, M;, and Mf.
These functions will of course depend on the many other
quantum numbers necessary to specify the initial and
final nuclear con6gurations. It is readily demonstrated
that the existence of the functions O'P(x) follows from
the very reasonable assumption that the nuclear
current operator is an irreducible tensor of rank one."

Because of the properties of the Clebsch-Gordan
coeKcients, it is possible to carry out the sums over the
projection quantum numbers which appear in Eqs. (1),
(2), and (7). The 2~-pole matrix elements Mr, ~(m) and
Ml, ~(e) are first expressed in terms of reduced matrix
elements M,~(m) and M„~(e) as follows:

ML~(m) = ( )'+~C(J,LJ—g, M, ,
—M)

XC(j'Lj p, 'M)M ~(m),

MI.~(e) = ( )~C(J,LJf, —M;, —M)
(14)

XC(j 'LJ; p'M)M„~(e)

For the clarity of the subsequent formulas, ~ has been
introduced as a subscript in order to emphasize the
dependence of the reduced matrix elements on that
parameter. Equations (14), (7), and (3) are then used
to evaluate the sums over the projection quantum
numbers in Eq. (2). In addition to the angular momen-
tum selection rules, we also postulate that the usual
parity selection rules for electromagnetic interactions
are valid.

A completely analogous reduction of Eq. (1) can also
be carried out without difhculty. One obtains the fol-
lowing formulas for X~ and Ã, .

2Jf+1
X„=87ikn Q, dx C»~(x) j&(kz)

2J;+1r.=i l &,

L+1
+ dx Cr P(x)jl, ,(kz)

2L+1 0

L
I +u-i'(*)jr+i(k*), (15a)

2Jr+1 ~ 2j+1
X,=2~a'

2J;+1 ~ I,=a 2L+1

X(~M. (m) ~'+~M„(e) ~') (15b)

In Eqs. (15), R stands for the nuclear radius. The

24 See, for example, M. E. Rose and L. C. Biedenharn, Oak ' See, for example, the discussion relating to Eq. (5.59) of M. E.
Ridge National Laboratory Report ORNL-1779 (unpublished). Rose, Elementary Theory of Angular Momentum (John Wiley and' See, for example, pp. 65—68.of l. Sons, Inc. , New York, 1957).
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~B
X„z(m,2) = dx Czz(x)gz(x).

~o
(17b)

In Eqs. (17a) and (17b)

~B
Iz(m) = ' dxepz(x)j z(kx), (18)

R„(m) = dy kz, &'~ (ky) (F„G„.+G„F„),J,
(19)

summations in Eqs. (15a) and (15b) include only those
values of J and a for which the Clebsch-Gordan coef-
ficients of Eqs. (15a) and (15b) do not vanish. This is
ensured by the properties of CP, (X=L, L&1). Thus
)Jz—3;~ ~L(3z+3; and for each such L, ~L j'~—
gj ~L+j '. In the expression for X, the first integral
in the curly bracket refers to magnetic 2~-pole gamma
radiation and the second integral refers to electric
2~-pole gamma radiation. For a given J. one of these
terms must be zero because they correspond to different
nuclear parity changes. For the same reason, for any
given L either M„z(m) or M„z(e) is zero.

In accordance with the discussion in the introduction,
we now consider pure 2 -pole transitions, i.e., transi-
tions in which each of the sums over L in Eqs. (15)
reduces to a single term. Such a transition can be either
electric or magnetic. Following Rose, we use the symbol

Pz to designate the conversion coefficient for magnetic
radiation and the symbol ng to designate that for
electric radiation. The formulas for Pz and nz are
obtained from Eqs. (7) through (15). We shall consider
the magnetic case first.

It is convenient at the outset to transform Eq. (8)
in such a v ay that the comparison with the theory for
a point nucleus can be readily made. This is done by
extending the domain of integration over y in the
second term of Eq. (8) so that the y integral is carried
out over all space. A compensatory term is then added
to the expression for Mz~(m). A study of the Dirac
wave functions for small values of y shows that this
manipulation is permissible in spite of the singularity
of the Hankel functions in Bz,~(x; 1). The new second
term in Mz, ~(m) is then the product of the same nuclear
integral which appears in E~ and an electron integral
which, in the limit of vanishing nuclear radius, tends
toward that obtained by Rose for a point nucleus. The
calculation of M„z(m) from Eqs. (14), (8), (5), and

(12) is straightforward but tedious. We find

~M' &(m) ~2=4xk2(2l+1)(2l'+1)(2j'+1)
&&L- (L+1)- ( + ')'C'(ll'L 00)

&&p'2(ljj'lj —'I,) iiV„z(m, 1)+N (m, 2) ~' (16)

where W(l'j 'lj; —',L) is a Racah coefficient in the nota-
tion of I and l(«) =l( «) In E—q. (1—6).

X„z(m,1)=R„(m)Iz(m), (17a)
and

and

Pz(x) =4, ' (kx) dy jz(ky) (F.G„+G.F.)
0

—jz, (kx) J dy hz "i(ky) (F.G„+G.F„). (20)
0

The function C»z is defined by Eq. (13) and the
functions F, (y) an. d G„(y) are equal, respectively, to y
times the Dirac radial functions f„(y) and g„(y) which
are defined in Eq. (5.8) of I.

The introduction in Eq. (16) of two terms 1V„z(m,1)
and E„z(m,2) separates the conversion coefFicient into
a part in which only the static effect of nuclear structure
plays a role and a part arising from the dynamic eGect.
This latter term also contains factors whose numerical
values are inQuenced by the static eGect. Only the
static effect is involved in the case of X.z(m, 1) because,
according to Eq. (17a), 1V„z(m,1) is the product of the
nuclear integral Iz(m) for gamma-ray emission Lsee
Eqs. (15)$ and an integral R„(m) which involves the
nucleus only through its effect on the electron wave
functions. The nuclear integral cancels out of this part
of the conversion coefficient. The second term X„(m,2),
it will be apparent, represents the dynamic effect of
nuclea, r structure.

An explicit formula for the conversion coefficient is
readily obtained from Eqs. (15) through (18). The
result is

ink(2j '+1)(2l'+1)
Ps, = ZPj+1)(2l+1)

L(L+1)(2L+1)

xc (11'L; oo) w'(jl~'l'; —;L)(.+.')'
S„z(m,2) '

&& R„(m)+ . (21)
Iz(m)

The corresponding formula for a point nucleus is given
on page 69 of I. A comparison of this equation with Kq.
(21) above shows that in the theory of a point nucleus
the ratio X„.z(m, 2)/Iz(m) is set equal to zero. The only
other difference between the two formulas is that in Eq.
(21) the electron integral, R„(m) (Ri+R2 in Rose's
notation), is to be evaluated for a nucleus of finite
extent whereas for a point nucleus Coulomb wave
functions are used. Further analysis of the structure-
dependent term X„z(m,2)/Iz(m) will be carried out in
Sec. IIIb.

We shall conclude this section by presenting the
formulas which apply to electric 2~-pole conversion.
As can be seen from Eq. (15) the principal task is the
evaluation of the reduced matrix element cV„z(e) which
can be obtained from Eqs. (9) and (11) in the same way
that 3f,.z(m) is obtained from Eq. (8). As in the mag-
netic case it is convenient to extend the y integrations
for which x~y(~ in such a way that O~y(.
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g pB
N z(e, 1)=R„(e)Iz(e)+

~ ~
dx Cr. P(x)

EL+1) a 0
~
M, z(e)

~

'=4 sk'(2t+ 1)(2t'+ 1)(2j'+ 1)
XL-i(2L+1)-iC2(tt'L; 00)W2(jtj't'; -', L)

X ~N ~(e,1)+N z(e,2)
~

', (22) 2L+1
Xjr+i(kx) lim f [F„(a)G„(a)

kwhere

Compensating terms are then added to the expression and consequently that
for M„z(e). We find

pB goo

N„(e,1)= dx C'z, i (x)j r, i(kx) dy gr,
—

(y)
Jp p

+(L/L+1)l dx Ci,+.i (x)jr+i(kx)

where

R„(e)= dye~ (y)

—F„(a)G„(a)]hi,&'& (ka) ), (29)

X dy ~.+(y), (23)
~tp

The functions Cr,~iz(x) are defined by Eq. (13), and
the functions PzP(x) are defined by the relations

4~'(x) =k~+i"'(kx) dy &~'(y)

where

—jinni(kx) dy n~+(y), (25)
Jp

$z, (y) = (a' z) (F„G„+G„—F,. )j z i

L(F,G„G„F„.)j r,—,+L (F„F—„+G„G.)j r„(26)
4+(y) = (~' ~) (F.G"+G.F—")iz+i

+ (L+1)(F.G' G.F")i~+i-
+ (L+1)(F„F„+G„G,')j r,. (27)

The functions ql, + are obtained from the functions $r,+

by replacing the Bessel functions by the corresponding
Hankel functions.

As in the magnetic case, it is possible to isolate a
term in which the only eGect of nuclear structure is of
the static type. In order to see this, however, it is

necessary to employ a theorem which is proved in Ap-

pendix A and stated as Eq. (A.5). lt follows as a par-
ticular case of this theorem that

dy nz'(y) = 'dy n~ (y)—

2L+1
+ lim [(F.(a)G, (a)

k

—F"(a)G.(a))kz"'(ka) j, (»)

~B
N„z(e,2)= dxC'r i (x)fr. (x)

Jp

+(L/L+1)-: dx C ~ '(x)4.+(x) (24)

= (K K) (R5+R6)+L(R6—Rp+R3+R4), (30)

I~(e) =
Jp

R

. ()j. .(k)

I
C u- '( )j + (k*) (31)

&L+1)

N ~(e,1)=R„(e)I~(e),
N z(e,2) =N z(e&2)+N z(e)1) N„z(e, 1)—

(32)

It will be seen in Sec. III that the contribution of
N.z(e,2) depends on dynamic effects.

By making use of Eqs. (15), (22), and (32) it is easy
to obtain a formula for the conversion coefficient. One
finds

n.ek (2j'+ 1)(2t'+ 1)
o,z= P (2j+1)(2t+1)C'(tt'L; 00)

L(L+1)(2L+1)
N~(e2) '

XW'(j tj 't'; —',L) R„(e)+
I'(e)

(33)

Although the formulas are more complicated, the result
contained in Eqs. (24)—(33) is quite similar to that.
obtained in the magnetic case. The electric conversion
coefficient, calculated for a finite nucleus, differs from
that given on page 70 of I for a point nucleus in two
respects. First of all, for a point nucleus, Coulomb wave
functions are used in the radial integrals. Secondly, for
a point nucleus, the structure dependent ratio
N„~(e,2)//I~(e) is set equal to zero. Further analysis of
the structure dependence is carried out in Sec. IIIc.

The radial integrals E3 to E6 are defined on page 70 of I.
The important result exhibited by Eq. (29) is that

the first term of N, ~(e, l) is the product of the same
nuclear integral I~(e) which enters into the gamma-ray
lifetime [Eqs. (15)],and an integral R„(e)which involves
only the static effect of nuclear structure. The sum,
N„~(e,1)+N„~(e,2), can thus be regrouped to form an
equal sum N„~(e,1)+N„z(e,2), in which the contribution
of the 6rst term to the conversion coefficient is inde-
pendent of the dynamic effect of nuclear structure. It
is sufFicient to define N„~(e,1) and N„z(e,2) by the
equations
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III. FURTHER ANALYSIS OF THE STRUCTURE-
DEPENDENT CONTRIBUTIONS TO THE

CONVERSION COEFFICENTS

a. Introductory Remarks

A study of Eqs. (17)—(21) and (23)—(33) shows that
the nucleus affects the internal conversion coefficients,
(a) through the nuclear functions CLL and 4L+iL, and

(b) through the electron wave functions which are
aGected by the nuclear charge distribution. The wave
functions enter into the radial integrals R„(e) and E„(m)
and into the electronic functions QL(x) and pL+(x). As
stated in the introduction, a basic assumption of the
present work is that while a detailed nuclear model may
be necessary for the evaluation of the nuclear functions
CL, and C~~~, such a model is not necessary for an
accurate evaluation of the radial integrals and the elec-
tronic functions. It is our aim therefore to choose a
reasonable nuclear charge distribution and do once and
for all as much of the calculation as can be done without
specifying the nuclear functions. The problem, then, is
basically one of storing information about the electronic
aspects of the conversion process. We have chosen to do
this by expanding the electronic functions in rather
rapidly convergent power series whose coefficients can
be tabulated as functions of atomic number Z, photon
energy k, and multipole order I-. The necessary infor-
mation is stored in these coefficients.

The nuclear charge distribution adopted in the
present work is that of a sphere of constant charge
density and radius E.= 1.2A s X10 "cm. Sliv has shown'

that various physically reasonably variations from this
distribution lead to changes of less than a few percent
in the radial integrals. The effect of reasonable changes
in the nuclear charge distribution on the functions

QL(x), etc. is larger but still less than about 10% in
most cases. This point is discussed in greater detail in
Sec. IVb.

In concluding the general remarks, let us mention
that, as can be seen from Eqs. (21) and (33), it is
necessary to know the radial integrals R, (e) and E„(m).
At present, the only tables of these integrals which are
available are those calculated by Rose" for the E shell,
using a point nucleus and no screening. "

The use of an extended nuclear charge distribution
leads to rather diGerent &-shell radial integrals for
large values of Z, and screening also changes the E-shell
radial integrals by a few percent. For this reason it is
necessary to apply correction factors to the tabulated
radial integrals in order to obtain the ones which are
required for the present work. The determination of
these correction factors was carried out in part by

7 See the introduction to the tables of internal conversion
coe%cients by Sliv and Band (reference 1).

2' For purposes of obtaining information about nuclear struc-
ture, the restriction to the E shell is not serious except for transi-
tions for which E conversion is energetically impossible. In order
to treat these cases it is necessary to have an analysis of the
L-shell conversion coeKcients. Plans to carry out such a program
are now being formulated by one of us (M. E. R.).

methods which were of necessity mathematically crude
and which may introduce errors of several percent in the
final expressions. These correction factors will be
discussed briefly in Sec. IVc where a more precise
statement about the errors in the calculation will also
be given.

Xo radial integrals have been tabulated for the I.
and 3f shells. For this reason we are obliged to restrict
our analysis to the E shell.

b. Further Analysis of the Magnetic
Conversion Coefficient

where a„(x) is the coefficient of (x/R) +'+'" in the ex-
pansion of PL(x).

It is also possible to expand the Bessel function
which appears in IL (m) Lsee Eq. (18)7 in powers of x/R
In this way one immediately obtains the result that

( )n (k+)L+2n

IL(m) =P
n=02" (2I.+222+ 1)!!I!

~B (X ) L+2n

X dx@'LL(*)
~

—~, (35)
EZ)

where (2l+1)!!—=1X3X5X .X (23+1).
Now, (kR)2 is less than 2X10 ' for almost all transi-

tions of interest in internal conversion. Hence under
almost all physically conceivable conditions the first
term in the expansion of IL(m) will be an excellent
approximation. This is true, for example, even if

'!n B p Jtl

dx c»L(x/g)L+2~102~I dx @ L(x/g)L (36)
0 0

For this reason we shall henceforth set

(kR)L tB
f x~L

IL(m)= dxCLL(x)~ —
~

.
(2I.+1)!!~0

(37)

Equations (34) and (37) show that IiI„L(m,2)/IL(m)
can be expressed as a sum of ratios of nuclear matrix
elements. If this result is inserted into Eq. (21) it is

We now turn to the details of the calculation and
start with the magnetic conversion coeKcient. Our
basic concern is the transformation of the structure-
dependent ratios X„L(m,2)/IL(m) which appear in Eq.
(21). As the first step, all the functions which appear in
the definition of QL(x) [Eq. (20)7 are expanded in ab-
solutely and uniformly convergent power series. In this
way a uniformly convergent power series for QL(x) is
obtained. It then follows from Eq. (17b) that if 4LL(x)
is bounded,

00 B

g L(m 2) —P g (g) dx g&LL(x) (x/g)L+2+2n (34)
n=P 0
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easy to show that Pz can be written in the form

Pz=('z(I1 p—z~—«xpg4 —z) I'

+yzl1 pz+&Zz+& exp(iPz+i) I'},
where

ap(x) (2L+1)!!
p„exp(+„)=- p„)0,

(kR) zR„(m)
a.(x)

Z„= P R(L+2+2n; L),
=p ap(x)

and
L IRz+ (m)I'

I.+1 IR .(m)I

(38)

(39)

(40)

(41)

Z

96

30

k I =1

S.O 6.54(-2)
1.8 1.72 (—2)
0.5 1.92 (—3)
S.o 1.27(-1)
1.8 4.38(—Z)
0.5 8.23 (—3)
S.o 1.87(-1)
1.8 7.92 (—2)
0.5 2.00(—2)
s.o 3.6o(-1)
1.8 2.46(—1)
0.5 1.21(—1)
0.3 8.27 (—2)

5 11(-2)
1.69(—2)
1 27(-3)
1,O4(—1)
4.19(—2)
6.45 (—3)
1.6S(—1)
7.70(—2)
1.74(—2)
3,95{—1)
2.69(—1)
1.29(—1)
8.41(—2)

L=3

4.92 (—2)
1.63(—2)
1.01(—3)
9.89(—2)
4.02 (—2)
S.Sz(—3)
1.s7(-1)
7.42(-z)
1.s3(—2)
4.05 (—1)
2.74 (—1)
1.28(—1)
8.O3(-2)

L=4

4.69(—2)
1.s1(—2)
8.06(—4)
9.44(—2)
3.76(—2)
4.67 (—3)
1.51(-1)
7.o3 (-2)
1.34(—2)
3,99(-1)
2.72 (—1)
1.19(-1)
7.32 (—2)

TABLE II. yz, . Multiply each entry by 10 to the
number in parentheses.

4.46(—2)
1.38(—2)
6.ss(-4)
8.93 (—2)
3.48(—2)
3.96(—3)
1.43(-1)
6.s3 (—2)
1.16(—2)
3.96(-1)
2.68(-1)
1.11(—1)
6.69(—2)

The nuclear ratios R(a; b) are defined by the relation

R(a; b)

dx Czz(x/R)' d'x J~ Tz, z~~(x/R)'

fQ 8

J,
dx 4 z,z(x/R)' d'x J~ Tz, z~*(x/R)'

(42)

The last equality in Eq. (42) follows from Eq. (13).

TABLE I. p L,. Multiply each entry by 10 to the
number in parentheses.

Z k L=1 L=2 L=3 L=4 L=5

96 5.0 7.76(—2) 4.57 (-2)
1.8 5.50(—2) 3.55 (—2)
0.5 4.46(—2) 3.21{—2)

78 5.0 3.96(—2) 2.42(—2)
1.8 2.77(—2) 1.86(—2)
0.5 2,21(—2) 1.64(—2)

64 5.0 2.13(—2) 1.41(—2)
1.8 1.54(—2) 1.09(—2)
0.5 1.23(—2) 9.58(—3)

30 5.0 3.34(—3) 2.68(—3)
1.8 2.72 (—3) 2.23 (—3)
0.5 2.31(—3) 2.00(—3)
0.3 2.23(—3) 1.97(—3)

3.S8(—2)
2.97 (—2)
2.9s (—2)
1.94(—2)
1.S8(—2)
1.so(-z)
115(-2)
9.44(—3)
8.8O(—3)
2.39(—3)
2.04(—3)
1.91(—3)
1.89(—3)

3.12 (—2)
2 72(-2)
2.91(—2)
1.69 (—2)
1.46(—2)
1.45 (—2)
1.o3(-z)
8.76(-3)
8.so(-3)
2.20(—3)
1.9S (—3)
1.84(—3)
1.84(—3)

2.87 (—2)
2.58(-2)
2.97(-z)
1:s7(-2)
1.39(-2)
1.44(—Z)
9.48 (—3)
8.35(-3)
8.3S(-3)
z.o9 (—3)
1.89(-3)
1.81(—3)
1.82 (—3)

A formula for the parameter t ~ is readily obtained
from a comparison of Eqs. (38) and (21). Cz does not
involve any nuclear matrix elements.

Equation (38) is suitable for application in connection
with specific nuclear models since all of the quantities
in it except the ratios R(a; b) can be tabulated once
and for all. Hence, given a nuclear model it is possible
to evaluate the ratios R(L+2+2n; L) of Eq. (40) and
obtain a predicted value for Pz

For practical purposes Eq. (38) can be further sim-

plified, for it turns out that yz and the ratio pz+i/p z,

are generally so small that for photon energies, k less

than 2, and atomic numbers Z greater than 60 the
terms containing pz+i in Eq. (38) are less than 1.5%
of those containing p I, for almost any conceivable

nuclear model. " For this reason we shall henceforth
drop the terms in pg+. 1 entirely.

Let Pz(Z) and Pz(ZP) designate the conversion coef-
ficients for two nuclear models for which the structure-
dependent sums are Z„and Z„', respectively. It follows
from Eq. (38) that

Pz(~) I1—p-~-«xl (~0-z) I'+yz

Pz(~')
I
1 p-D-z'exp(~p-z) I

'+yz
(43)

TABLE III. @ 1. For given values of Z and k cos@ L,

is a nondecreasing function of L.

96 5.0
1.8
0.5
5.0
1.8
0.5

COSQ 1

0.986
0 999
1.000
0.973
0.999
1.000

64

30

5.0
1.8
0.5
5.0
1.8
0.5

cosf-1

0.968
0.998
1.000
0.982
0.998
1.000

2' This point is discussed in greater detail by T. A. Green and
M. E. Rose, Oak Ridge National Laboratory Report ORNL-2395
(unpublished), Sec. III. We shall henceforth designate this
reference by the symbol II.

Equation (43) is the Anal result and it is used as follows.
The parameters p z, yz, and p z are tabulated as
fug. ctions of Z, k, and I. in Tables I, II, and III and
hence their values for any given nuclear transition can
be determined by interpolation and extrapolation. (For
most practical purposes P z can be set equal to zero. )
Z z and Z z,

' are determined from Eqs. (40) and (42).
The purpose of introducing a reference model is to

provide a calculated value of the conversion coefFicient
P(ZP) without resorting to the complications which a
realistic model would entail. Then Pz (Z) is the magnetic
conversion coefficient for the realistic model. Accord-

ingly, for Z' one adopts a simple model which permits
the evaluation of Z I. in a trivial way. In this case the
dynamic effects in the reference model will be relatively
small and the comparison of the observations with the
reference model will indicate the presence or absence
of strong dynamic sects.
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Z k L=1 I =2

96 5.0 1.87(—1) 1.83 (—1)
0.5 1.80(—1) 1.79(-1)

78 5.0 1.48 (—1) 1.49 (—1)
0.5 1.44{—1) 1.47 (—1)

64 5.0 1.22 (-1) 1.27 (-1)
0.5 1.20(—1) 1.26{—1)

30 5.0 7.84(—2) 8.91(—2)
1.8 8.09(—2) 9.15(—2)

L=3

1.so(—1)
1.76(—1)
1.49(—1)
1.47 (—1)
1.29(—1)
1.2S(—1)
9.45 (—2)
9.67 (—2)

1.77(—1)
1.74(—1)
1.4S(—1)
1.47(—1)
1.3O(—1)
1.29(-1)
9.76(—2)
9.95 (—2)

1.75{-1)
1-73(-1)
1.48 (—1)
1.46(—1)
1.30(-1)
1.3O(-1)
9.95 (—2)
1.01(—1)

TAI3LE IV. —ai( —L)/ao( —I). Multiply each entry by 10 to
the number in parentheses. Linear interpolation in k is accurate
to 1% or better.

are expressed in terms of sums, Z„of nuclear ratios.
However, as can be seen from Eqs. (24) and (31) there
are two nuclear functions Cl. 1 and CL,+1i which enter
into the basic formulas. Consequently the results
involve two types of nuclear ratios. These will be seen
to be

S(a; fi)

dx4z rz(x/R) ~ d'x Jzz Tz, z t~*(x/R)
p V~

Two procedures have been adopted for the reference
model calculations. These are: (1) "Xo peeetration"
model. Here one assumes all dynamic effects are absent;
i.e., Z„=O. This model has been used by Rose to obtain
the coefFicients referred to in reference 2. (2) Surface
client mode/. This is the basis of Sliv's results. ' One
takes

J = Jo(y, !7)S(x—R), x JO=O, (44)

for both electric and magnetic transitions. For Sliv's
model the pertinent result here is that R(L+2+2n; L)
=1.As indicated, the difference in results provided by
these two models is small. It is at most 13% for large
Z and k and in the large majority of cases is of order 1

or 2y.
Of the coeflicients u (ir)/ao(ir) which appear in Eq.

(40), the first is unity and the second is tabulated in
Table IV. It is expected that the use of just two terms
in the sum of Eq. (40) will usually be a good approxi-
mation since it can be shown that the third coe%cient
which is positive, is less than 0.05 for Z less than 96,
less than 0.03 for Z less than 80 and less than 0.02 for Z
less than 60.

c. Further Analysis of the Electric
Conversion CoeKcient

The analogous formulas for electric conversion will
now be developed. As in the magnetic case, the results

~R
dx e.„'(x/R).

0

dx Cz rz(x/R)'

d'x Jg Tz z+,~*(x/R)

d'x Jzz Tr„z t~*(x/R)'

(46)

It is simplest to begin the analysis by considering the
nuclear integral Iz(e). The Bessel functions which
appear in Eq. (31) can be expanded in the usual uni-
formly convergent power series. Moreover, just as in
the magnetic case, the smallness of (kR)' shows that
it wiIl almost certainly be a very good approximation
to use only the term of lowest order in (kR)'. Thus we

set

(M) ' z~ 1'xi~'
I'(e) = dx +. t') —

i
. (47)

(2L—1)!!"0 &R )

This is, of course, the "long-wavelength" approximation
usually made in the theory of gamma-ray emission.

J, J
dxc'z i (x/R)' d'x Jzz Tz, z, t~*(x/R)'

(45)
and

T(a; fi)

TABLE V. 0t7 I, 1. Multiply each entry by 10 to the
number in parentheses.

TABLE VI. ~L,. Multiply each entry by 10 to the
number in parentheses.

Z k L=1 L=2

96 5.0 1.03 (—2) 5.63 (—3)
1.s 4.37(-3) 2.59(-3)
0.5 2.08 (—3) 1.42 (—3)

78 5.0 4.69(—3) 2.60(—3)
1.8 1.87 (—3) 1.11(—3)
O.5 S.16(—4) 5.22 (—4)
0.3 6.39(—4) 4.34(—4)

64 5.0 2.51(—3) 1.42 (—3)
1.8 9.82 (—4) 5.81(—4)
0.5 3.99(—4) 2.52 (—4)
0.3 3.02 (—4) 1.99(—4)

30 5.0 5.26(—4) 3.11(—4)
1.8 1.95(—4) 1.17(—4)
0.5 6.81(-5) 4.09(-5)
0.3 4.53 (—5) 2.86(—5)

3,92(-3)
1.ss(-3)
1 17(-3)
1.79(—3)
s.o6(-4)
414( 4)
3.7o(-4)
9.91(-4)
4.21(-4)
1.96(—4)
1.62 (—4)
2.1S(—4)
s.47(—5)
3.o7(—5)
2.2O(—5)

L=4

3.O1(—3)
1.53 (—3)
1.o7(-3)
1.39(—3)
6.4s (—4)
3.63 (—4)
3.45 (—4)
7.63 (—4)
3.37 (—4)
1.68 (—4)
1.45 (—4)
1.69 (—4)
6.69(—5)
2.52 (—5)
1.84(—5)

L=S

2.48(—3)
1.32(—3)
1.04(—3)
1.14(—3)
5.52 (—4)
3.35 (—4)
3.33 (—4)
6.24(—4)
2.S5 (—4)
1.52 (—4)
1.35(-4)
1.38 (—4)
5.5s (—5)
2.17(-5)
1.62(-5)

Z k L=1 L=2

96 5.0 6,79 (—2) 6.81(—2)
1.8 6.79(—2) 6.24(—2)
0.5 6.27 (—2) 5.73 (—2)

78 5.0 2.61(—2) 2.61(—2)
1.8 2.18(—2) 2.16(—2)
0.5 1.66(—2) 1.63 (—2)
0.3 1.48(—2) 1.51(—2)

64 5.0 1.18(—2) 1.23 {—2)
1.8 9.22 (—3) 9.55 (—3)
0.5 6.18(-3) 6.51(-3)
0.3 5.24(—3) 5.65 (—3)

30 5.0 1.42 (—3) 1.59(—3)
1.S 9.S3(—4) 1.11(—3)
0.5 5.15(—4) 5.94(—4)
0.3 3.86(—4) 4.54(—4)

L=3

6.2S(-2)
6.3O(—2)
2.62 (—2)
2 23(-2)
1.81{—2)
1.7s(—2)
1 25(-2)
9.97 (—3)
7.21(-3)
6.54(—3)
1.65 (—3)
1.19(—3)
6.55(—4)
5.12 (—4)

6.70(—2)
6.56(—2)
7 37(-2)
2.64(—2)
2 33(-2)
2.o5 (—2)
2.14(—2)
1.26(—2)
1.o5(-2)
8.07(-3)
7.61(—3)
1.69(—3)
1.24(—3)
7.13(—4)
5.6s (—4)

6.81(—2)
6.94(—2)
s.73 (—2)
2.6S(—2)
2.45 (—2)
2.33 (—2)
2.53 (—2)
1,28(—2)
1.09(—2)
9.01(—3)
8.78 (—3)
1 73(-3)
1.29(—3)
7.65(-4)
6.20(—4)
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Now consider the model-dependent ratio

E z(e,2)/I~(e)

which appears in Eq. (33). From Eqs. (23)—(33) and
Eq. (47), it is not hard to see that the above ratio can
be expressed in the form

COSr1 COS T2 COS7 COST-3

TABLE VIII. Cosrl, and cosr I, 1 for L= 1 and L=2. Wherever
the estimated error in the tabulated values is particularly large it
is stated. For L&~3, cosr L, 1 is practically unity. Cosrz, changes
value rapidly from —1 to +1 in the neighborhood of k=k.
Values, If:, of k for which cosrL, =O are also listed. (The estimated
error in k is ~0.05 in all cases. )

iV„~(e,2) = P I b„(~)S(L+1+2n,; L 1)—
I~(e) =o

+c„(~)T(L+1+2m; L—1)7, (48)

where the coeKcients b„(~) and c (a) can be determined
from the series expansions of the Bessel functions, the
Hankel functions, and the electron wave functions.

The next step in the analysis is the use of Eq. (48)
for the further reduction of Eq. (33). In treating the
magnetic case at this point, we factored out the radial
integrals R„(m). In the electric case for z=L,30 this
factorization is not appropriate because Rr, (e) vanishes
at certain photon energies. For this reason we factor
out R„(e) only for K= L 1and w—rite—Eq. (33) in the
form

«=DzLI1 ~—r &Z ~& exp(i. , i) I'

+
I
fI~—~~~«xp(i«) I'7 (49)

The nuclear structure dependence of nl, is entirely
contained in the sums Z„, which are defined by the

96

78

64

30

5.0
1.8
0.5
5.0
1.8
0.5
0.3
5.0
1.8
0.5
0.3
5.0
1.8
0.5
0.3

96
78
78
64
64
64
64

Q 56 +0.14

0.92 p. 11+0.0'

Q 88 +0.60

0.66 p. pG+0

Q 92 +0.02

—0.98

0 74—0.02~'02

0 93 1+0.01

—0.99

0.94
0.98—0.99—1.0

0.65
0.90
0.40
0.95
0.65
0.45
0.35

0.997
0.998
0.997
0.994
0.998
0.960—0.991
0.992
0.998—0.975—0.999
0.998
0.999—1.000—1.000

64
30
30
30
30
30

0.92
0.96
0.99
0.94
0.98
0.99

0.95
0.98
0.99

0.99
1.00

0.22
1.00
1.10
1 ~ 10
1.05
1.00

0.97
0.99
1.00
0.98
0.99
1.00

0.98
0.99
1.00

0.99
1.00

TABLE VII. U&. The number in parentheses is the estimated
absolute value of the percent error in the tabulated value of UL, .
Additional values which are useful for plotting UL, as a function
of k or as a function of Z are given below the main group of values.

Z k L=1 L=2 L=3

equation

Z„= P I
5 (~)S(L+1+2e;I. 1)—

n=o

+c„(~)T(L+1+2e;L—1)7, (50)
96 50

1.8
1.0
0.5

78 50
1.8
1.0
0.5
0.3

64 5.0
1.8
1.0
0.5
0.3

30 50
1.8
1.0
0.5
0.3

0.51(13)
0.28(35)
o.14(5o)
o.12 (5o)
0.58(7)
0.25 (10)
0.05 (40)
0.22 (7)
o.36(s)
0.6o(5)
0.24(5)
o.oz(7o)
0.23 (7)
o.37 (4)
0.72 (3)
o.z6(2)
0.00
o.26(2)
o.41(z)

1.09(4)
O.96(5)
o.77 (6)
0.49(7)
0.87(5)
O.62 (6)
O.39(6)
o.o9(1o)
o.1o(7)
o.77(4)
o.46(4)
0.20(3)
o.o9(7)
0.27(4)
o.67(3)
o.z4(2)
o.o4(z)
o.32 (2)
0.47(2)

1.52 (4)
1.37 (4)
1.15(4)
0.86(5)
1.13(4)
o.s6(4)
O.59(4)
o.zs(5)
o.o9(5)
O.94(3)
0.60(3)
O.33(3)
0.02 (20)
o.17 (4)
O.69(3)
o.zs(z)
o.o4(z)
O.32 (2)
0.48(2)

1.81(3)
1.69(,3)
1.4S(4}
1.25(4)
1.33(3)
1,05 (4)
o.'77(4)
0.47 (3)
o.zs(3)
1.o7(3)
0.72 (3)
0.43 (3)
O. 12(3)
0.05(5)
0.71(3)
o.27 (2)
0.02 (2)
o.32 (2)
0.48(2)

2.05(3)
1.97 (3)
1.81(3)
1.65(4)
1.4S(3)
1.21(4)
0.94(4)
o.67(3)
o.4s(3)
1.17(3)
o.sz(4)
O.53 (4)
0.24(3)
o.o6(5)
o.73 (3)
o.zs(2)
Q.O1(2)
o.3o (2)
0.46(2)

Z k L UL Z k L UL,

96 0.3 1 O.32(4O)
85 0.3 2 . &0.03
78 0.8 1 0.05 (40)
78 0.4 2 &0.02
74 0.3 3 &0.02
72 0.5 2 &0.03
68 0.3 4 &0.02

o.9 1 o.oz(7o)

64 0.65
64 0.45
64 0.35
64 0.23
64 0.15
60 05
60 0.3
50 05

&0.02
&0.02
&0.01
&0.02

o.12(3o)
&0.02
&0.02
&0.02

~ The allowed values of a are L and —L—1.

TABLE IX. —Cp( —L—1). This quantity is
independent of Z and k.

L=1 L=2 L=3 L=5

0.566 0.350 0.257 0.203 0.169

where 5 and T are the matrix element ratios of Eqs.
(45) and (46). Equations (49) and (50) involve the
parameters DI., Ur, , ~„, r„, 5„(a), and c„(~) Formul. as
for these parameters are given in II and they will
therefore not be reproduced here. The parameters
a I 1, ~L, Ul, , cos~L„and cosv=l. 1 are tabulated in
Tables V—VIII. The parameter bo( —L—1) is unity by
definition and the parameters co(—L—1), bi( —L—1),
and ci( L 1) are give—n in—Tables IX—XI. Finally,
bo(L), co(I), b, (L), and ci(I-) are given in Tables
XII—XV.

From the information contained in Tables IX—XV,
Z„can be approximated by the first two terms in each
of the sums in Eq. (50). This approximation is expected
to be a good one in most cases for as is shown in II the
third coefficient in each series is generally less than a
few percent of the first.
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As in the magnetic case it is convenient to make use of a reference model Z with which to compare any
other given nuclear model Z. For such a pair of models it follows from Eq. (49) that

o&(~) I1—co & ~Z z ) exp(i~ z &)—I'+
I
~z ~Dz exp(i~z) I'

)
nr(Z') I1 cv —r, ~Z r, ~'exp(i~ r, ~) I'+

I
Ur, ~IXI,'exp(irI) I'

(51)

where Z„and Z„' are the appropriately calculated sums
of matrix element ratios.

If Sliv's surface current model is used for reference
the values of Z„o can be obtained from Eqs. (44), (12),
(45), and (46) from which it follows that

S(u; b)
—=1,

T(a; b)
—= (L/L+1):. (Surface current model )(.52a)

Of course, for the "no penetration" model,

X P d'* J~ b.+I
n=o J «L+1)

( g ) z+2+2n

Xgrad I'
&R)

g—Fz~*—(2n+ 2)b
R

easy to deduce that

(g)z-
d'x J& grad F& *I —

I

&R)

S(u; b) = T(a; b) =0. (52b)

+(2L+2~+3) I I
c„. (53)

(L+1) ' 2m+2
b-I 1+b-()7 (54)

) 2L+2m+3

It then follows immediately as the result of integration
by parts and the use of Eq. (4) that Z„can be expressed
in the formd. A Low-Energy Approximation in which the X„

for Electric Conversion are Expressed in Terms
of the Nuclear Charge Density Rather than

the Nuclear Current Density
)l d«g p~I'z~+(z/R)~+~+2~

2L+1
Z„= P b

n o2L+ 2=v+3
+AX„,

It is well known that in the usual long-wavelength
limit the matrix element for electric 2~-pole gamma
radiation can be expressed in terms of the nuclear charge
density. We shall now show that for suSciently low

photon energies an analogous result can be obtained
for the electron ejection matrix elements which appear
in the Z„of Eq. (50).

In Eq. (50) let S and T be expressed as the appro-
priate ratios of integrals according to Eqs. (45) and

(46). In these integrals the Tz z+~~ can be expressed
in terms of Yz,~ according to Eq. (12) and for each n

the terms from S and T can be combined. It is then

d'x p~Fz~*(x/R) z

(55)

where AZ„ is the part of Z„in which the terms are pro-
portional to b («).

A study of the formulas for c («) and b„(~) LEqs. (81),
(82), (84), and (85) of 117 shows that as kR approaches
zero, b («) approaches zero and hence DZ„approaches
zero. This clearly suggests that for small kR it will be a
good approximation to set AZ„equal to zero in Eq. (55).

For «= L, 1 it can be show—n t—hat bo(«) —=0. For
«=L, bo(«) decreases with decreasing k, increasing Z

Equations (50), (51), and (52), together with Tables
U—XV and the tables" of conversion coefficients, thus
afford a straightforward means of calculating the pre-

Now let b„j~j be defined in such a way that
dieted electric conversion coefficient for any nuclear
model. The conclusions which can be drawn from the
numerical results are discussed in Secs. Vb and Vc. A
low-energy approximation which simplifies Z„ is pre-
sented in Sec. IIId.

TABLE X. —$1{—I.—1). Linear interpolation in k is accurate
to 1% or better. Multiply each entry by 10 to the number in
parentheses.

TABLE XI. c&(—I—1}.Linear interpolation in k is accurate
to 1% or better. Multiply each entry by 10 to the number in
parentheses.

96

30

5.0
0.5
5.0
0.5
5.0
0.5
5.0
1.8

L=1

1.29{-1)
1.16(—1)
8,72(—2)
7.75 (—2)
6.02 (—2)
5.27 (—2)
1.49(—2)
1.29(—2)

L=2

1.19(-1)
1.1O(—1)
8.O3(—2)
7-33(-2)
5.52 (—2)
4.99(—2)
1.34(—2)
1.2O(—2)

1.14(—1)
1.06(—1)
7.64(—2)
7.1o(-2)
5.24(—2)
4.83 (—2)
1.26(—2)
115(-2)

1.08(-1) 96
1.O3(-1)
7.23(—2) 78
6.85 (—2)
4.94(—2) 64
4.65 (—2)
1.17(-2) 30
1.09(—2)

5.0
0.5
5.0
0.5
5.0
0.5
5.0
1.8

9.54(—2)
9.30(—2)
6.38(—2)
6.20(—2)
4.35 (—2)
4.15(—2}
1.O1(—2)
9.8O(—3)

I =2

6.O1(-2)
5.94(—2)
4.O1(—2)
3.96(-2)
2 73(-2)
2.69{-2}
6.27(-3)
6.19(-3)

L=3

4.47 (—2)
4.44(—2)
2.98 (—2)
2.96(—2)
2.O3 (—2)
2.O1(-2)
4.64(-3)
4.60(—3)

L=5

3.oo(-2)
299( 2)
2.oo(-2)
1.99(—2)

1.35{-2)
3.O9(-3)
3.08(—3)
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TABLE XII. bp(L). Linear interpolation in k is exact. Multiply
each entry by 10 to the number in parentheses.

TABLE XIV. —5&(I). Where only two entries are tabulated for
a given Z and L, linear interpolation in k is accurate to better
than 1%.Multiply each entry by 10 to the number in parentheses.

Z k L=i L=2

96 5.0 1.49(—1) 4.62(—1)
1.8 2.97 (—2) 4.08 (—1}
0.5 —1.86(-.2) 3.86(-1)

78 5.0 1.70 (—1) 4.70(—1)
1.8 3.39 (—2) 4.09 (—1)
0.5 —2.12 (—2) 3.84(—1)

64 5.0 1.92 (—1) 4.79(—1)
1.8 3.83 (—2) 4.10(—1)
0.5 —2.40(—2) 3.82(—1)

30 5.0 3.08 (—1) 5.27 (—1)
1.8 6.16(—2) 4.16(—1)

6.O9(-1)
5.75(—1)
5.61(—1)
6.14(—1)
5.75(—1)
s.6o(—1)
6.20(—1)
5.76(—1)
s.s8(—1)
6.49(—1}
5.78(—1)

L=4

6.93(—1)
6.69(—1)
6.59(-1)
6.97(-1)
6.69(—1)
6.57(—1)
7.o1(—1)
6.69(—1)
6.S6(—1}
7 21(-1)
6.70(—1)

7.48(—1)
7.29(-1)
7 21(-1)
7.51(-1)
7.29(—1)
7.2o(-1)
7.s4(-1)
7.29(—1)
7.18 (—1)
7.69(—1)
7.29 (—1)

Z

96 50
1.8
0.5

78 50
1.8
0.5

64 5.0
1.8
0.5

30 50
1.8
0.3

L=1

2.46(—2)
4.65 (—3)—2.84(—3)
1.89(—2)
3.54(—3)—2.15(—3)
1.47(—2)
2 72(-3)—1.6S(—3)
5.69(—3)
1.02(—3)—8.44(—4)

5.95(—2)
5.94(—2)

4.90(—2)
5.04(—2)

4.23 (—2)
3.46(—2)
3.24(—2)

8.69(-2)
7.98(—2)

7.26(—2)
6.90 (—2)

6.35 (—2)
s.o8(—2)
4.92 (—2)

1.12(—1)
9.97(-2)

9.S1(-2)
8.78(—2)

8.43(—2)
6.80{—2)
6.68(—2)

7.31(—2) 9.63(—2) 1.18(—1)

TABLE XIII. —Cp{L). Linear interpolation in k is exact. Multiply
each entry by 10 to the number in parentheses.

Z k L=i L=4

96 50
1.8
0.5

78 50
1.8
0.5

64 5.0
1.8
0.5

30 50
1.8

—1.52(-1)—6,83(-2)—3.42(—2)—1.74(-1)—7.79(-2)—3.09(—2)—1.97(-1)—8.81(—2)—4.41(—2)—3.16(—1)—1.42 (—1)

8.02(-2)
1.14(—1)
1 27(-1)
7.18(—2)
1.1O{—1)
1.25(—1)
6.29(-2)
1.O6(-1)
1 23(-1)
1.61(—2)
8.so(—2)

1 15(-1)
1 33(-1)
1.40(—1)
1.1O(—1)
1.31{—1)
1.39(-1)
1.os(—1)
1.28(—1)
1.38(—1)
8.0o(—2)
1 17(-1)

1.16(—1)
1 27(-1)
131(-1)
1.13(—1)
1.26(—1)
1 31(-1)
1.10(—1)

(-1)
1.30(—1)
9.38(—2)
117(-1)

1.O9(—1)
117(-1)
1.20(—1)
1.o7(-1)
1.16(—1)
1.19(—1)
1.os (—1)
1.15(—1)
1.19(—1)
9.4O(—2}
1.10(-1)

and increasing L. For L=2 and Z&60 we 6nd that
bp(x) is of the order of —0.55 for 0=5, —0.20 for k = 1.8,—0.07 for k=0.5 and —0.04 for k=0.3. For L=4 and
Z)60 we find that bp(x) is of the order of —0.07 for
k=1.8, —0.02 for k=0.5, and —0.01 for k=0.3. For
L= 1, 8p(x) is not very small compared to unity because
the normally dominant terms in aZ happen to cancel
out of the coeKcients b (1) and c (1) with the result
that the dominant term is of the order of R. Compared
to R, kR is not usually negligible even at threshold.

We have also evaluated bi(x) for both values of x and
shown that

~
5i(ir) j

&0.040 for L &2, k &0.5, and Z) 60.
For L=1, bi(x) is usually not very small compared to
unity.

From what has been said above it is to be expected
that for L & 2 if two terms of the original series (50) are
a good approximation to Z„, two terms of the series in
Eq. (53) will be a good approximation for low energies,
AZ„being set equal to zero. Evidently the argument
given above is not mathematically conclusive since it is
conceivable that the sum in Eq. (45) vanishes, making
AZ„dominant. However, in any doubtful case one can
always check by calculating AZ„explicitly. For many,
perhaps most, transitions of experimental interest the
use of Eq. (55) will be adequate for L&2. Its use in

the case of Ej transitions is harder to justify since, for
L=1, bp(L) is of the order of 0.5 or larger, even at
threshold, for most values of Z which are large enough

to be of practical interest.

TABLE XV. PI(L). Where only two entries are tabulated for a
given Z and L, linear interpolation in k is accurate to better than
1%. Multiply each entry by 10 to the number in parentheses.

L=1 L=3 L=5

96

64

30

5.0
1.8
0.5
5.0
1.8
0,5
5.0
1.8
0.5
5.0
1.8
0.3

—2,67(—2)—1.21(—2)—6.S9(—3)—2.O5 (—2)—9.20{—3)—s.oo(—3}—1.59 (—2)—7.09(—3)—3.84(—3)—6.16(-3)—2.64(—3)—1.23(—3)

2.43(—2) 3.25(—2) 3.12(—2)

3.1O(—2)
2.os (—2)

2.S6(-2)
1.82 (—2)

3.s7(—2)
2.74(—2)

2.99(—2)
2.43 (—2)

3.24(—2)
2.66 (—2)

2 37(-2)

2.22(—2)
1.53 (—2)
1.65 (—2)

2.62 (—2)
1;95(—2)
2.01 (—2)

2.44(—2)
1.91(-2)
1.93(—2)

"For ~(0, G„ is the large function; for ~)0, F„ is the large
function.

~ H. Brysk and M. E. Rose, Oak Ridge National Laboratory
Report ORNL-1830, 1956 (unpublished).

IV. DISCUSSION OF THE POWER SERIES EXPANSIONS
AND THE CORRECTION FACTORS FOR THE

COULOMB RADIAL INTEGRALS

a. Discussion of the Power Series
Expansions

As explained in Sec. IIIa, the information about the
electronic aspects of the conversion process is stored in
the coefficients of the power series expansions of the
electron wave functions for the initial and 6nal states.

In the present application, values of the radial vari-
able, x, which are less than R are of primary interest
and for these values the Dirac equation determines the
coefficients in the power series expansions of F„and 6„
to within a single multiplicative normalization factor.
It is convenient to express this normalization factor in
terms of the value of the "large" radial function at the
nuclear radius R."

For the initial state the determination of the large
radial function at the nuclear radius can be carried out
using the method of Srysk and Rose" which includes
the eGect of electron screening on the normalization.
We departed from this method only in that we deter-
mined the energy eigenvalue by matching inside and
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outside solutions at the nuclear radius instead of using
perturbation theory.

For the final (continuum) state, the value of the
large radial function was determined by the method of
Rose and Holmes. "This method does not allow for the
effect of screening on the normalization factor and for
this reason the normalization-dependent factors co„and
p, may be in error by several percent at low energies.

In the application of the two methods described
above, the many necessary approximations were intro-
duced in such a way that (without the aforementioned
screening error) the product of the initial and final state
normalization factors is accurate to better than &2%.
A detailed discussion of the power series expansions, the
normalization factors, and the errors in the coefFicients
is given in Sec. IV of II. This section also contains for-
mulas for the coe%cients a (i~), ti (~), c (a) and other
quantities of importance in the theory.

b. Dependence of the Results on the
Choice of Nuclear Radius

It may very well turn out that the experimental evi-
dence from electron scattering, etc., will indicate that
the electrostatic potential is better approximated within
the framework of a constant charge density model by
the use of a diferent radius 8 than that used here. For
this reason it is of some importance to study the sensi-
tivity of the parameters of the theory to 5 or 10%
variations in E. The results may be summarized as
follows.

With one exception the coefFicients, a (~), 5„(a), and
c„(~)are very insensitive to changes in R, a 10% change
in E generally leading to changes in the coefficients of
less than 1%. The exception occurs in the case of the
coeKcients 5 (1) and c (1) for E1 transitions. In this
case the normally dominant term in Q,Z disappears
through cancellation and as a result the coefficients are
proportional to E.

The coefficients co„and p, are more sensitive to vari-
ations in E since they involve the electron normalization
factors. It is not hard to show that these coeScients
depend on R primarily through the factor

gy1+y~L
7 (56)

where y„= (n' n'Z'): For—
~

a
~

=L. the exponent in Eq.
(56) is of the order of 0.5 for large Z and small L and of
the order of 1 for small Z and large L. For

~
a

~

=L+1
the exponent varies with I- and Z between about 1.5
and 2.

The above information can be used to correct all the
parameters of Eqs. (43) and (51) except the phase
angles, yL and UL. However, as was previously stated
in Sec. IIIa, these quantities are insensitive to changes
in the nuclear radius.

cosX„= ($„) ' cosX„'. (57)

Since the X„' are known, Eq. (57) determines the x„
in terms of the $.. Thus for the magnetic case there are
two real correction factors $ r, (m) and fz+i(m) which
need to be determined. For the electric case the factors
are $r. (e) and $ r, i(e).

In either case there is one relation between the coef-
ficients from which one of them can be calculated if
the other is known. This relation is obtained from the
expression for the ratio of Sliv's E-shell conversion
coefficients which involve the E„ to the unscreened
E-shell conversion coefficients of Rose et a/. '4 which
involve the E„'.Thus the problem is reduced to evalu-
ating one of the correction factors.

In order to obtain estimates of one of the correction
factors the following technique can be employed. For
each radial integral the interval of integration (0,~) is
divided into the subintervals (O,B) and (B,~), where

10E.. It is then assumed that the integrals over the
region (8,~) are essentially the same for the Coulomb

c. Correction of the Coulomb Radial Integrals

The numerical evaluation of p„co„, yr, , Vz, p„, and
7., require a knowledge of the electron radial integrals
R„(m) and R„(e), calculated for a nucleus of nonzero
extent and including the eBects of electron screening.
However, as was mentioned in Sec. IlIa, the only
available radial integrals are the integrals R;(e) and
R„'(m) which were calculated for a point nucleus and
neglecting electron screening. It is therefore necessary
to apply correction factors to the Coulomb radial
integrals in order to get the ones which are needed for
the present calculation. Briefly, these correction factors
are obtained as follows.

It is first demonstrated that the electron wave
functions for an extended nucleus diGer appreciably
from those for a point nucleus only for values of the
radial variable x less than 5 or 10 nuclear radii. It is
then noted )see Eqs. (19) and (26)7 that the real and
imaginary parts of R„(e) and R.(m) arise from the
spherical Hankel functions, h&i ) =j r,+inr„which mul-
tiply various combinations of electron radial functions.
Since jL vanishes at the origin along with the electron
wave functions it is clear that contributions from near
the origin do add much to the real parts of the radial
integrals unless (as is actually unusual) there is ex-
tensive cancellation over the rest of the region of
integration. For this reason it is a good approximation
to equate the real parts of E„and E„' in both magnetic
and electric cases.

This result is used as follows. For each case let modu-
lus correction factors $„be introduced in such a way
that

~
R„~ = (.

~

R„'
~
. Also let X„and X„'be the arguments

of E„and R„'. It then follows from the result of the
previous paragraph that

"M. E. Rose and D. K, Holmes, Oak Ridge National Labora-
tory Report ORNL-1022, 1951 (unpublished).

"Rose, Goertzel, Spinrad, Harr, and Strong, Phys. Re&. 8$, 79
(1951).
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wave functions as for the finite-size wave functions.
In the interval (O,R) approximate representations of
the functions can be used to do the Coulomb and finite-
size integrals analytically. In this way estimates of the
p„can be obtained whose accuracy depends mainly on
the accuracy with which the integrations over (O,R)
are carried out.

One important result emerges immediately. It is
readily seen that for !~! =L the integrands of R„'(e)
and R„'(m) are singular at the origin and that those of
R„(e) and R„(m) are not. For this reason the improper
but convergent integrals R„'(e) and R„'(m), which
strongly emphasize the origin, are quite different from
the proper integrals R„(e) and R„(nz) in which the
origin does not play nearly as important a role. Thus
for !a! =L it is not unusual to find correction factors
which differ from unity by as much as 40 or 50% for
very large values of Z. For !~! =L,+1 the situation is
rather diferent because in this case the integrands of
all the integrals tend toward zero near the origin. Thus
the role played by the origin is less marked and the
correction factors differ from unity by a few percent or
less.

The methods described above were used to obtain
the necessary correction factors and except for $z(e)
the factors are accurate to within a few percent. Because
of the vanishing of Rz'(e) at certain energies it turned
out that near these energies very large errors in the
determination of $z were unavoidable. These are
reflected in the large errors in Ul. and cos7-~ which are
given in Tables VII and VIII, respectively.

A much more detailed exposition of the material
presented in this section is given in Sec. V of II.

V. DISCUSSION AND CONCLUDING REMARKS

a. Magnetic Conversion CoeRcients

Although Eq. (43) should be used for quantitative
evaluations of the nuclear structure effect, a simpler
approximate form of this equation will usually provide
reasonably accurate estimates. I.et us consider transi-
tions for which 60&Z&96 and k &0.5. For such transi-
tions it follows from Tables I—IV that yL, &0.02,
cong= 1.000, 0.0084 &p I, &0.045, and for Sliv's
surface current model 0.82 &Z I,'&0.88. Furthermore,
it is readily demonstrated that the matrix element
ratios R(L+2+2e; L) are reaP' so that Z z is a real
number. Hence, provided the nuclear structure effect
is not too large (say 30% or less), Eq. (43) can be
reduced to

P (~)/0 (&P) =1—2p-z(~-z —&- ') (5g)

with an accuracy of 5% or better.
From Eq. (58) and Table I it is readily seen that for

an experimentally observable nuclear structure effect
(i.e., one which is of the order of 10% or larger) it is

5 See, for example, S. P. Lloyd, Phys. Rev. 81, 161 (1951).

necessary that the value of Z I, be in the neighborhood
of 5 or 10. Moreover, from the discussion given in the
introduction, it is clear that sufficiently large values of
Z I, actually can occur. ' ' It is also seen that for a given
value of Z I. large structure effects are usually favored
to a certain extent by large values of Z and k and small
values of L,.

The basic technique employed in our analysis is
essentially identical with that used by Church and
Weneser. 4 A comparison of our results with theirs is
most readily carried out by expressing pz(Z)/pz(&p) in
the form

Pz(&) yzCz'(& z, &-z.')—'
= [1—C,(z,—Z,p)]&+

~.(~ ) (1—Z zPp z, cosp z)
(59)

where
p z cosp z(1 Zz, p

—
z, cosp z)

(1—Z z, p z, cosp z,) +yz
(60)

Equation (59) follows from Eq. (43) if the very small
terms of the order of p z'Z z' sin'p z are neglected.

It is readily seen that the error made in neglecting
the second term in Eq. (59) is of the order of 0.1% in
most cases and for this reason Church and Weneser drop
this term in their Eq. (7). They use Sliv s conversiori
coefficients for reference and make the good approxi-
mations g i=0 and Z z'=1. They a.iso approximately i
by what is electively the erst term in its power series
expansion, for in the long-wavelength limit their
parameter X is the same as the ratio R(3; 1). The
tabulated parameter C(Z,k) of Church and Weneser
should be equal to Ci of our Eq. (60). Actually, as the
result of some computational errors the values of C(Z, k)
in reference 4 are between 25 and 30% too large.

ui(Z) ~1
~, (zp)

( bp(1) Uspi cos7
S(2; 0)! 1+

1+UiP M 2 )

t ep(1)MiUz cosri)
+op( —2) &(2; o)! 1+ I (61)

cp(—2)&u p )

b. Conversion CoefBcients for E1 Transitions

Equations (51), (52), (50), (45), and (46) provide the
necessary formulas for the analysis of E1 transitions.
Since the exact formulas involve many parameters, it is
convenient for the purpose of discussion to work with
a much simpler approximate formula. In Eq. (51) let
Sliv's conversion coefficients be used for reference but
let the small terms containing 2„' be neglected. Further,
let it be supposed that the nuclear structure effect is
not too large (say less than 30%). Finally, let the Z„
be approximated by the first terms in their expansions
and let cos7=& be approximated by unity. Then, with an
accuracy which shouM be better than 10% in most
cases,
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In Eq. (61) the terms proportional to cosrr are the
contributions from the final electron state for which
re= 1. Numerical evaluation shows that in the coefficient
of S(2; 0) the (positive) contribution for it=1 is less
than 0.40 for k&2; in the coeKcient of T(2;0) the
contribution decreases with increasing k from about
0.70 to —0.50 for k&2. It is fortunate that the state
A:=1 does not play a completely dominant role in Eq.
(61) because it is for precisely this state that the uncer-
tainties in the tabulated quantities are very large.

It is easy to see from Eq. (61) that large matrix
element ratios are required for an observable structure
eA'ect. For a 20% effect it follows from Tables V and
VII that the curly bracket in Eq. (61) needs to be of
the order of 50 for large values of Z and k and of the
order of 100—300 for the more common small values of k.
It appears, according to statements made by Nilsson
in his paper on nuclear structure eGects in internal
conversion, "that in certain greatly hindered E1 transi-
tions matrix element ratios of the necessary magnitude
are theoretically possible.

In the above-mentioned paper Nilsson points out the
distinct possibility that conventional perturbation
theory which uses the same electrostatic potential for
both the initial and final nuclear states may be inade-
quate for the accurate determination of 5„(1) and
c (1). Briefly, the reason is that these coefficients are
of the form V'(0) —V(0)+2 +terms of order k, where
V'(0) and V(0) are the values of the electron's potential
energy ( —3nZ/2E) at the origin in the initial and
final states. In the conventional perturbation theory the
two dominant terms cancel; if even slightly different
values of the potential are used, the values of 5„(1)and

c„(1)are considerably altered. The reader is referred to
Nilsson's paper for a more complete discussion. In view

of the possible inaccuracy of b„(1) and c„(1) it is

fortunate that they do not play a dominant role in Eqs.
(51) and (61).

c. Conversion CoeKcients for EL Transitions
with L&~2

As in the case of E1 transitions let Sliv's conversion

coeS.cients be used for reference but let the small terms

containing Z„o be neglected in Eq. (51). Furthermore,

let the discussion be restricted to transitions for which

"S.6. Nilsson, University of California Radiation Laboratory
Report UCRL-3803, i957 (unpublished. ) The basic Eq. (39) of
this paper is incorrect because it was deduced through the use of
a partial integration formula Lhis Eq. (13lg which is not valid
for the integrals to which it is applied. For EL transitions with
L&~2 and low energies this mistake is unimportant because it
merely changes the coeKcients b and C„by amounts of the order
of kR/nZ. However for L=1 it changes the coe%cients b„(1)
and C„(1) appreciably, the relative error incurred being of the
order of k. We wish to acknowledge that it was the study of Nilsson's
Eq. (39) which led to a search for and the establishment of the
theorem stated as Eq. (55) of our Sec. IIId. See also S. G. Nilsson
and J. O. Rasmussen, University of California Radiation Labora-
tory Report UCRL-3889 (unpublished).

Z) 60 and k &0.5 so that the low-energy approximation
of Sec. IIId is a good one. For such transitions it should
be a good approximation to set Zz= bo(L)Z r r.

Finally let Lco z i/bo(L)oiz)' be neglected in com-
parison with unity and let cosv I & be set equal to
unity. (See Tables V, VI, VIII, and XII.) It then
follows that

where

rrr, (&)/rrz(&o) 1+ez,

ez = azx—+bzx'&

(62)

(63)

2 GO L, ]
az=

I Vz, cosrz+,
1+&z' & & (oL)~r.&

(64)

&r.= (1+&r,') ',

x=bo(L)rozZ z i.

lszl & I*I &v'« (67)

The upper limit corresponds to a physical situation for
which Ul. and al, are small, and in this case el. is neces-

sarily positive; the lower limit corresponds to one in

which Ul, is relatively large. It is thus seen that, for a
20% nuclear structure effect, it is necessary that
0.20& Ixl &0.45.

The relation between x and the matrix element ratios
is given by Eq. (66). The value of bo(L)ooz can be

obtained from Tables VI and XII, from which it can
be seen that almost without exception bo(L)ooz, is an

increasing function of Z, k, and I.. Clearly, the larger

the value of 6o(L)roz, the smaller the value of IZ Q—1 I

required for a given value of Ixl.
Most of the presently available data are for low

energies. McGowan and Stelson' find, for example, that
in the case of the 89 kev, E2, transition in Hf"6,
F2=0.20&0.10. Extrapolation indicates that for this

transition a2= —0.46 and b2=0.90. If one assumes that
&2=0.20, it then follows that x=0.28 and Z 3 80. It is

not at all clear how such a value of 2 3 is to be under-

stood from the theoretical point of view, particularly

The values of the constants az and bz, in Eq. (63)
can be determined from Tables V, VI, VII, and VIII
from which it follows that —1.1&ay&1.1 and 0.2&br.
&1.0. It can also be shown that al, attains its extreme
values only when Ul. is relatively large and hence when

bl, is relatively small. When Ul, is relatively small a~
is also small and b& is close to unity. It follows from
this that, for a given value of el, , the smaller of the two
values of Ixl which satisfy Eq. (63) lies to a good
approximation in the range
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since in this case it is known that the gamma-ray
transition rate is enhanced rather than hindered.

In addition to the group of enhanced E2 transitions
to which the Hf"' transition belongs, there is a con-
siderable group of E3 transitions in which shell-
structure effects are apparent. "In this group there are
some strongly hindered transitions in odd-proton nuclei
which are heavy enough to have structure-sensitive
conversion coe%cients.

d. Remarks About the Accuracy of the
Computation

In carrying out the computation, an e6ort was made
to keep the resultant errors due to the many necessary
approximations down to a few percent. This was done
in most instances, as can be seen from the analysis given
in Sec. V of II. In the case of Ul, and cos7 ~ it turned out
that some really large errors were unavoidable. There-
fore, in order to warn the user, the errors were indicated
along with the tabulated values.

The data in our possession did not permit us to carry
out calculations below k=0.3, and as a result it is
necessary to perform some extrapolation in order to
treat many cases of importance. Examples of such
extrapolation are given in Figs. 2—8 of II. It will be
seen that near threshold the extrapolated values may
be quite inaccurate. The extrapolated values of Ul, are
best obtained from the graphical extrapolation of the
monotonic increasing function of k, UL, cosTI..

e. Remark About the Nuclear Models to which the
Results of the Present Paper Apply

Evidently any nuclear model will involve some kind
of radial wave functions which will, among other things,
determine the size of the nucleus. It is of some im-

portance that these wave functions be chosen in such

a way that in the nuclear matrix elements the main
contribution to the nuclear radial integrals comes from
the interval 0&@&8=1.23:&&10 " cm. The reason
is that the power series which were used for the electron
wave functions converge to these functions only for
0 &x &E. Thus, strictly speaking, one should use the
power series expansion only for that part of the radial

integrals for which x &E.. If it is necessary to integrate
far beyond E, a diferent representation of the electron
wave functions is required in principle. However, we

expect that at present it should be consistent with

most nuclear models to use radial functions which are
so small for r&E that integration from zero to E. is a
good approximation.

"See, for example, M. Goldhaber and A. W. Sunyar, in Beta-
and Gamma-Ray Spectroscopy, edited by Kai Siegbahn (North
Holland Publishing Company, Amsterdam, 1955), p. 465.
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APPENDIX A. PROOF OF A THEOREM
USED IN SECTION II

~b b

dy F„G„h (') and J= d'y G„F„h~ (').
4a

We first transform I and J by replacing hl.+&(') by

&0)—
L+1

2L+1 1 dkr, &'&

L+1 k dy

We then integrate by parts, an operation which is per-
missible since F, G, and their first derivatives are con-
tinuous. We thus obtain

1.
dy F„G„h»(')

L+1 ",
2L+1 r

' kr, o& d
dy (I'„G,)—

(L+1) ~, k dy

I pb

J— dg F,Q h (1)

L+1 ~.

2L+ 1
h ()FG,

(L+1)k

(A1)

2L+1 t
b hr, &'& d

+ dy — (F„G„)—
(L+1) ~, k dy

2L+1
h~(&)F,G

(L+1)k

Next we carry out the differentiations in the second

term of I and J using the radial equations on page 66
of I. Finally we replace L(2L+1)/ky]kl, o& by kz &"&

+$z+,&'&. There results the equations
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—(2L+1) I dy G„G.(W —1—V)
Q k

J(L+1 »'+»)—

2L+1
h ()J"„6„,

k -a
(A2)

= (L+»' ») dy F—„G„hz &o&

a

f b h (1)

+ (2L+1) dy F„F, (W—+1—V)
u

I
5 Jg~(&)—(2L+1) dy —G„G,(W' -—1—V)

2I+1
h ")Z„C„

I(L+1 »+—»')

~b
= (L+» »')—) dy F„G„h»~"

a

fb hz(
+ (2L+1) I' dy F„F„,(W'+1 V)—

k

Now according to Kq. (27) qL,
+ is given by

gl,+= [(»' «+—L+1)F„G„+(»' » —L —1)F—„.G„]51,, '

+ (L+1)(F„F„+G„G;)hr. o'. (A3)

Consequently it follows from Eq. (A2) that

b ~b

J dy gr,+= —
J

dye(»' » —L)—F„G„.h
tX a

+ (»' »+L—)F„G„hr,&'~

+L(F.F"+G.G")hz, &")

2L+1 -b

(F.G" F"G,)—hr, "'(&y) . (A4)
k

However, from Eq. (26) it is seen that the term in the
square brackets is just pl, . Hence

~b
dp' 'gl,

J
2L+1 b

(F„G„. F„G„)hr, &—" . (A5)
k

The theorem can be extended to $1+ and gz, by replac-
ing hl, "' by j& on the right-hand side of Kq. (A5).


