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achieved at a lower temperature. It is now only neces-
sary that the effect be most pronounced for lower values
of the order parameter and the sort of reversal obtained
in Figs. 5 and 6 is readily explained.

If the results for energy and magnetization as func-
tions of temperature were taken literally, we would
have a first-order phase transition. The situation is
analogous to the usual treatment of a van der Waals
gas, in which a multivalued function [the V(p) rela-
tionship] is replaced using arguments of minimum
Gibbs free energy by a P—V diagram with a straight-
line portion, because of the instability of the multi-
valued part.

However, it is well known that the most difficult
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task of a fundamental statistical mechanics calculation
is the reproduction of the behavior of a system in the
immediate vicinity of a transition. We believe, there-
fore, that the correct solution is a second-order phase
transition and that our solution departs in only a
minor way, over a very small region, from the behavior
expected for a second-order transition. In particular,
we believe that the correct analytic behavior near the
phase transition is described by the hyperelliptic
function K(3/Z) near its singular point 3/Z=1. Our
approximate methods, however, have located the
transition instead at 3/Z=0.995, and hence we do not
obtain the precisely correct analytic behavior near the
transition temperature.
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The magnetic susceptibility of #-type silicon samples with a wide range of donor concentrations
(3X10" to 310" atoms/cm?®) has been measured as a function of temperature from 3°K to 300°K. By
utilizing conduction-electron concentrations obtained from Hall coefficient measurements on comparison
specimens over the range from 50°K to 400°K, the contributions to the susceptibility arising from the con-
duction electrons and electrons trapped on donor atoms have been analyzed. In the upper range of tempera-
ture the diamagnetic contribution of conduction electrons is dominant and is consistent with the model of
six energy minima in the conduction band. However, comparison of the squared reciprocal mass ratio with
that obtained from cyclotron-resonance experiments reveals that the former is appreciably smaller than the
latter (~8 as compared to ~13). As the temperature is lowered, the conduction-electron contribution
becomes successively less as electrons are frozen out on donor atoms. The trapping of electrons by donors
at low temperatures leads to a Curie-law paramagnetism in the specimens of higher purity, whereas in the
more impure samples, deviations from Curie’s law occur which are attributed to interactions between closely

spaced donor centers.

I. INTRODUCTION

ETERMINATION of magnetic properties has
been found to be of great value in the study of

* Present address: U. S. Atomic Energy Commission, Wash-
ington, D. C.

T Oak Ridge National Laboratory is operated by Union Carbide
Corporation for the U. S. Atomic Energy Commission.

the electronic structure of semiconductors. This is in
part because analysis of the magnetic susceptibility is
not beset by the many difficulties inherent in inter-
preting electrical properties. One example is the re-
quirement of a detailed knowledge of charge scattering.

Depending upon the design of the specific experiment
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and the choice of material, information can be obtained
about a number of aspects of the band structure as well
as about the configuration of various trapping levels.
Most of the work to date has been concerned with band
properties. Busch and Mooser,! who were the first to
employ. magnetic techniques in semiconductor investi-
gations, obtained the width of the forbidden gap,
effective masses, and some impurity ionization energies
in gray tin. Similar data have been obtained for indium
antimonide? and germanium,2~7 the analysis having
been carried further in the latter case.? In none of these,
however, was it possible to analyze the magnetism
stemming from un-ionized acceptors or donors. Silicon,
with its somewhat larger impurity ionization energies,
is more favorable for observing the contribution of
filled donor or acceptor centers to the susceptibility.

The present experiment was designed to obtain
information about the conduction band analogous to
that obtained in the work cited above® and, in addition,
to investigate the magnetic behavior of donor levels at
low temperatures. It was expected that at low tempera-
tures, interactions between donors would become
apparent at higher concentractions, and that this
might be of some help in understanding some of the
anomalies* ™ in the electrical properties that are
usually referred to as “impurity banding.”

II. BACKGROUND AND THEORY

Semiconductors, in contrast to metals, can be pre-
pared with a large range of current carriers, both
electrons and holes. Moreover, the current-carrier
density is strongly temperature-dependent in a pre-
dictable and measurable way. As a result, it is possible
in most cases to separate the magnetic susceptibility
originating from various sources and to obtain the
separate components from experimental data. For our
purposes it will be sufficient to consider the total sus-
ceptibility x to be composed of three major components,
the lattice contribution x;, the contribution of trapped
electrons x;, and that of free or quasi-free current
carriers (i.e., electrons in the conduction band) x..

The lattice term stems chiefly from the diamagnetic®
contribution of the core electrons. However, included

1 G. Busch and E. Mooser, Helv. Phys. Acta 26, 611 (1953).

2;)) K. Stevens and J. H. Crawford, Jr., Phys. Rev. 99, 487
(1955).

3 Stevens, Cleland, Crawford, and Schweinler, Phys. Rev. 100,
1084 (1955).

+A. Van Itterbeek and W. Duchateau, Physica 22, 649 (1956).

("’ Igs;l)‘ Hedgcock, Can. J. Phys. 34, 43 (1956) ; J. Electronics 2,
6 (1 .

5 G. Busch and N. Helfer, Helv. Phys. Acta 27, 201 (1954).

7R. Bowers, Phys. Rev. 108, 683 (1957).

8 H. Fritzche, Phys. Rev. 99, 406 (1955).

9 C. S. Hung and J. R. Gliessman, Phys. Rev. 96, 1226 (1954).

10 R. O. Carlson, Phys. Rev. 100, 1075 (1955).

U E. J. Morin and J. P. Maita, Phys. Rev. 96, 28 (1954).

12 See, for instance, J. H. Van Vleck, Tke Theory of Electric and
Magnetic Susceptibilities (Oxford University Press, New York,
1932), p. 211,
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also is the Van Vleck paramagnetism!® which results
from virtual transitions between the equilibrium and
higher states of the electronic system.* Both these
contributions are to an extremely good approximation
unaffected by small impurity additions. Comparison of
impure samples with a pure one where only x; is present
thus permits consideration of the sum x,+x.. The two
terms in the sum can also be resolved. At low tempera-
tures there are no free current carriers and x. vanishes.
At high temperatures the number of trapped carriers is
negligible so that x; is equal to zero.

A. Carrier Susceptibility

Pauli,’¥ Landau,'® and later Peierls,’” Stoner,!® and
Sondheimer and Wilson® have treated the magnetic
susceptibility of free electrons for a number of cases.
Most of these calculations were designed to apply to
metallic systems and required modification for use in
the present work on semiconductors. It will be useful,
in order to demonstrate explicitly the assumptions
made, to outline a fairly simple derivation of the
paramagnetic contribution.

The paramagnetic portion of the conduction-electron
susceptibility results from the moment of the excess
electrons lined up parallel to the magnetic field. If it is
assumed that the magnetic field does not change the
form of the density-of-states function, then the moment
equals the difference between the product of the Fermi
and density-of-states functions for spin paralle] and
that for spin antiparallel. For a many-valley semi-
conductor, the expression for the magnetic moment due
to the conduction-electron spins is

271280, (m*kT)}
M=—"
h3
® e sinh (BH/kT)de
A ,
o 14e¥eP42e 1 cosh(BH/ET)

where m*= (mm2)} is the effective mass appropriate
for the density of states, 8 is the Bohr magneton, w,, is
the number of energy minima in momentum space,

13 An unexpected temperature variation of the susceptibility of
pure germanium (reference 3) and silicon [D. K. Stevens and
J. H. Crawford, Bull. Am. Phys. Soc. Ser. II, 1, 117 (1956)],
which was discovered during the early phases of this investigation,
has been attributed to a temperature dependence of the Van
Vleck paramagnetism [J. A. Krumhansl and H. Brooks, Bull.
Am. Phys. Soc. Ser. IT, 1, 117 (1956)], the temperature changes
stemming from changes in the band-to-band excitation energies.

14 See, for instance, C. Kittel, Iniroduction to Solid State Physics
(John Wiley and Sons, Inc., New York, 1953), Appendix F, p. 211.

15 W. Pauli, Z. Physik 41, 81 (1927).

15 .. Landau, Z. Physik 64, 629 (1930).

17 R. Peierls, Z. Physik 80, 763 (1933).

18 E. C. Stoner, Proc. Roy. Soc. (London) A152, 672 (1935);
A154, 656 (1936).

19 E. H. Sondheimer and A. H. Wilson, Proc. Roy. Soc. (London)
A210, 173 (1951); A. H. Wilson, The Theory of Metals (Cambridge
University Press, New York, 1954), pp. 160ff.
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and 7 and e are the Fermi level and energy, respectively,
both in units of 7.

The magnetic fields used in these experiments are
less than 25000 oersteds. Therefore, for the range of
interest, between 33°K and room temperature, BH<KkT
and the hyperbolic sine and cosine are, to an extremely
close approximation, equal to unity and BH/ET,
respectively. This simplifies the integral so that the
paramagnetic part of the carrier susceptibility can be
written in the form

nB* Fy' (n)

XP=—

pkT Fy(n)’

©)

where the Fermi integral Fy(n)= fe[14e "] de can
be obtained from the density of carriers in the con-
duction band, %, by using the expression

n=2"271w i3 (m*kT) Fy(n), 3)

and where F’(y) is the first derivative of the Fermi
integral, values for which have been tabulated.?

The diamagnetic contribution to the conduction-
electron magnetism results from the fact that the wave
functions in the plane perpendicular to A are quantized
by the field. Sondheimer and Wilson’s treatment for
free electrons is quite general and exact, lending itself
readily to the modification? necessary for taking into
consideration the details of the band structure. The
only assumption necessary is that BH<KET. The ex-
pression that results is very similar in form to that for
the paramagnetic contribution. The condition BHKET
also permits writing of the total conduction-electron
susceptibility as the sum of the paramagnetic and
diamagnetic terms, yielding

n3?

 3pkT

Fy' ()
Fy(n)’

where (f?) is the appropriately averaged effective-mass
correction, which for perfectly free electrons would be
equal to unity. For a many-valley model of the con-
duction band, (f?) is given by

(= QM +My)/3M M,

G=( )

Xe

where M, and M, are the transverse and longitudinal
effective masses, respectively, both in units of the free
electron mass. Use of effective-mass ratios obtained
from cyclotron-resonance experiments,? M;=0.19 and
M,=0.98, yields a value of 12.8 for (f?). It should be
evident from Eq. (4) that an (f?) greater than 3 will

20 J. McDoughall and E. C. Stoner, Trans. Roy. Soc. (London)
A237, 67 (1936).

21 The general method is indicated by H. Frohlich, in Elek-

tronentheorie der Metalle (Verlag Julius Springer, Berlin, 1936),
p. 152. The detailed calculation for ellipsoidal energy surfaces has
been performed by Schweinler. [H. C. Schweinler (unpublished);
see also reference 3.]

(1;25%exter, Lax, Kip, and Dresselhaus, Phys. Rev. 96, 222

1029

cause the total conduction-electron susceptibility to be
negative.

B. Donor Contribution

An electron localized at a-donor can be described to a
reasonably good approximation by a hydrogen-like
wave function. As a result, there is no orbital moment;
and each electron, as long as it does not interact with
electrons from neighboring donors, will contribute only
its spin magnetic moment and some orbital diamag-
netism.

The paramagnetic spin term can be treated similarly
to the free-electron spin contribution. However, it must
be taken into consideration that because of electrostatic
repulsion only one of the two donor spin states can be
occupied. Mooser® has derived the expression

8N4 sinh (BH/%T)
X:P= s (Sa')
oH % exp(eg—n)+cosh(BH/ET)

where x.? refers to the paramagnetic contribution to

the impurity susceptibility, V4 is the number of donors,

and e is the donor ionization energy in units of 7.
The expression can be simplified for BHKkT, yielding

xi?=na3"/okT, (Sb)

where in the absence of compensating acceptor levels
the number of filled donors, 74, is equal to the difference
between the total number of donors and the number of
electrons in the conduction band.

In order to ascertain the range of validity of the
simple expression, x was calculated from Egs. (5a) and
(5b) for a number of temperatures using the maximum
value for H (25 000 oersteds) that is used in the meas-
urements. It was found that less than 197, error is made
at 3.3°K and that the expression (Sb) is no less valid
than (5a) above 3.5°K.

The orbital diamagnetism of the trapped electrons
is given by the Larmor-Langevin? formula,

eng
d= — 1’2> )

X =
6pmi*c?

(6a)

where m;* is an effective mass for an electron in an
impurity state, ¢ is the velocity of light, and (#*) is the
mean square radius of this state. The constants m;*
and (7% are difficult to evaluate directly. However, the
similarity between a donor state and a hydrogen atom
can be used to evaluate x.¢ in terms of the ionization
energies of the donor and hydrogenic states, and the
dielectric constant, K, of silicon.?® This is most easily
done by using the classical theory of the hydrogen
atoms,?® from which it can be shown that the ionization

2 F,. Mooser, Phys. Rev. 100, 1589 (1955).

2¢ J. H. Van Vleck, reference 12, pp. 206 ff.

25 H. C. Schweinler (private communication).

26 See for instance G. Hertzberg, Afomic Spectra and Atomic
Structure (Dover Publications, New York, 1944), pp. 15 ff.
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F1c. 1. Diagram of cryostat used for susceptibility measure-
ments at low temperatures. T»-T'; indicate the three radiation
shields that are near liquid helium, liquid nitrogen, and room
temperature, respectively. C is a thermal contact which permits
adjusting of T, the temperature of the innermost shell. P;—P4
indicate the points where vacuum pumps are connected.

energy of such a state is proportional to (m;*/K?) and
that the radius is proportional to K/m*. These pro-
portionalities are then used to eliminate (#?) and m*
by substituting for them the respective values for
hydrogen and the ratios of the dielectric constants and
the ionization energies. The resulting expression takes
the form

nax(H) 713.5ev\? 7 1 \*
xit= ( ) (——) =—1.7X10"%"n4, (6b)
Nop Ei K

where N, is Avogadro’s number; the molar suscepti-
bility of atomic hydrogen, x(H), is —2.4X107¢; the
ionization energy of the donor state, E;, is 0.05 ev; and
the density of silicon, p, is 2.33 and K=11.9.
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Evidently, since the paramagnetic susceptibility of
the donors is given by

XP=naB/ pkT=2.6TX 10T 1,

the diamagnetic term will be a six percent correction
at 10°K.

III. EXPERIMENTAL

The technique used to measure the magnetic sus-
ceptibility has been described in the past.>2?” The
method yields the absolute value of the susceptibility
of a sample and the ratios of the susceptibility at
various temperatures to that at room temperature.
The accuracies after correcting for a small (~ <19)
contribution of the suspension are 0.5%, and 0.19,
respectively. The cryostat shown in Fig. 1 permits
making susceptibility determinations over the tempera-
ture range 3—-350°K. For obtaining temperatures up to
38°K the lower reservoir is filled with liquid helium;
for temperatures between 51 and 350°K liquid nitrogen
is used. Readings between 38 and 51°K can be taken
while the cryostat slowly warms. Two copper-con-
stantan thermocouples mounted on the wall of the
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Fic. 2. The Hall coefficient of #-type silicon as a function
of reciprocal temperature.

27D, K. Stevens, Oak Ridge National Laboratory Report
ORNL-1599 (unpublished).
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specimen thimble were calibrated with a standardized
platinum resistance thermometer and were used to
measure temperatures above 10°K. For temperatures
below ten degrees, a number of 1-mm germanium cubes
were used as resistance thermometers. Unfortunately,
the reproducibility of these was poor, making it neces-
sary to calibrate the germanium elements immediately
after each run. This was done by condensing helium in
the specimen thimble and measuring the vapor pres-
sure. The temperatures obtained are judged to be
accurate to a few tenths of a degree.

Resistivity and Hall coefficients were measured on
plates cut from susceptibility specimens or from
portions of the various ingots adjacent to the suscepti-
bility samples. In the case of two ingots where a
concentration gradient was expected (1262 and 329),
two Hall plates, one from the high and the other from
the low concentration side of the susceptibility speci-
men, were measured.

IV. RESULTS

The results of the Hall coefficient measurements are
shown as a function of reciprocal temperature in Fig. 2.
The density of conduction electrons, #, was calculated
from these data using the expression

n="1/Rec, (7

where R is the Hall coefficient and v is a numerical
constant of the order of unity which depends upon the
degeneracy of the sample and the details of the electron
scattering processes in the crystal. It has been usual in
the past to use 3w/8 for y. However, more careful
analyses of transport properties using a many-valley
model yield values for v that are perhaps more ac-
curate.?®® In the analysis of the present results y=0.865
was used for degenerate samples. For nondegenerate
silicon the constants used were 1.08 when scattering
was due to thermal vibrations and 1.67 when it was due
to charged impurity centers.

In silicon, essentially all of the donors are ionized
above 400°K. Consequently, the high-temperature Hall

TasLE I. Composition of samples.

Net donor

density

Room- (obtained from

temperature 400°K
resistivity Hall data)

Sample Doping agent (ohm cm) (cm™3)
26-76-7 Arsenic 0.002 2.9X10
743 Arsenic 0.008 5 X101
RR174 Phosphorous 0.013 4 X108
1407B Arsenic 0.017 1.2X108
1262 Arsenic 0.026 5.7X1017
329 Arsenic 0.046 2.5X 1017
0.059 1.6 1017
1400 Arsenic 0.17 3.5X 1016
26-76-6 Boron (335) (—3X10%)

28 B. Abeles and S. Meiboom, Phys. Rev. 95, 31 (1954).
# C. Herring, Bell System Tech. J. 34, 237 (1955).
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F16. 3. The magnetic susceptibility of arsenic-doped silicon
as a function of temperature.

coefficient gives a good estimate of the net number of
donors in a given sample. Table I lists the samples
together with their room-temperature resistivity, and
the donor density.

The results of measurements of the magnetic sus-
ceptibility of silicon doped with from 3106 to 3X 10%
donor atoms/cc are shown in Fig. 3. Also shown
plotted is the measured susceptibility of a “pure”
sample. Since the presence of less than 10 carriers
cannot be detected by this method, any sample con-
taining fewer magnetic centers than this is considered
“pure.” In this instance, sample 26-76-6 was a p-type
sample containing 3X10* boron atoms/cc. It should be
pointed out that the curve (shown dashed) below 70°K
is an extrapolation based on theoretical grounds and
on the expected similarity between pure silicon and
germanium, the latter having been measured by
Bowers! and Van Itterbeck and Duchateau.?

Figure 3 exhibits the following aspects of the mag-
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TaBLE II. Values of the square of the freedom number calculated from results of Hall and susceptibility measurements on silicon.#

Square of freedom number f2
For

Donor Temperature Fermi level For thermal For impurity degenerate
density ¢ —Eo) scattering scattering statistics

Sample cm™3 (°K) ev) n=1.02/Rec n=1.67/Rec 7 =0.865/Rec
26-76-7 2.9X10® 300 0.009 6.2 5.0 6.8
200 0.021 6.9 5.4 .0
100 0.029 7.2 5.6 7.9
50 0.030 7.3 5.6 8.0
20 0.031 7.2 5.6 8.0
743 5.0X10 300 —0.047 10.6 7.7 12.0
200 —0.021 9.8 7.1 11.0
150 —0.010 9.3 6.8 10.4
RR174 4.0X108 300 —0.060 10.8 7.8 12.2
200 —0.030 11.3 8.1 12.7
150 —0.016 10.7 7.7 12.0
' 100 —0.005 9.5 7.0 10.7
1407B 1.2X10 300 —0.085 8.0 6.0 8.9
200 —0.052 10.1 7.3 114
140 —0.035 10.1 7.3 11.4

1262 5.0X10v7 300 —0.103 545
200 —0.063 1043

a Values of f2 calculated for conditions. for which the constant in the Hall effect is fairly certain are shown in italics.

netic behavior. Except for specimen 329, all of these
n-type samples®® are more diamagnetic than pure
silicon at room temperature, the difference increasing
with donor concentration. (In view of the experimental
error inherent in the determination of the absolute
value of the susceptibility [3% ], the position of the
curve for sample 329 is probably not a departure from
the trend shown by the other samples.) As the tempera-
ture drops below room temperature, the specimens
become increasingly diamagnetic relative to the pure
material. In the liquid nitrogen range and below, a
marked difference appears between degenerate and
nondegenerate silicon. Specimen 26-76-7 which, as
shown by its temperature-independent Hall coefficient,
is highly degenerate, remains diamagnetic down to
3.5°K. Specimens 1400, 329, 1262, and 1407B become
strongly paramagnetic relative to pure silicon at tem-
peratures below S50°K. In these specimens, as their
Hall data in Fig. 2 show, there is a rapid decrease in
carrier density with temperature. Hence the two con-
tributions, i.e., diamagnetism of conduction electrons
and the paramagnetism of un-ionized donors, are
clearly evident.

Departures from a simple relationship between the
Hall effect and the magnetic properties are exhibited
by specimens whose donor density puts them into the
transition range between degenerate and nondegenerate
material. Specimen 743, which contains 5X10'® net
donors, -exhibits a reversal in sign of the net electron
magnetism, but has an almost temperature-independent
Hall coefficient. This would seem to indicate that even
though the electrons carry current, at least some of

% Tt should be emphasized that this behavior of the magnetic
susceptibility is for #-type silicon. Some preliminary measurements
on p-type material [Stevens, Sturm, Sonder, Cleland, and Craw-
ford, Bull. Am. Phys. Soc. Ser. II, 2, 134 (1957)7] shows that in
these materials the carrier contribution to the susceptibility is
paramagnetic throughout the temperature range 75°K-300°K.

them exhibit characteristics of localized magnetic
centers. Specimen RR174, which contains phosphorous
donors rather than arsenic, does not exhibit evidence of
the reversal of sign of the donor magnetism down to
75°K. This might be explained by the fact that a phos-
phorous trap is more shallow than an arsenic trap
(0.39 ev vs 0.49 ev according to the American Institute
of Physics Handbook) and that, therefore, overlap be-
tween the conduction band and the donor levels might
set in at lower concentrations in the case of phosphorous.
In any case, these data make it appear that the mag-
netic properties of silicon with donor impurities in the
range near 5X10® cm™ may be complicated by the
nature of the donor centers and effects associated with
impurity banding and impurity level-conduction band
overlap.

V. DISCUSSION AND COMPARISON WITH THEORY

In this section, two components of the magnetic
susceptibility will be analyzed in more detail. First,
by use of the results of measurements made in the
vicinity of room temperature, the free-carrier contri-
bution will be compared with Eq. (4). Second, it will
be of interest to compare the low-temperature data
with Eq. (5) and to look for a-source of the large
deviations from it that occur for the specimens with
larger donor concentrations.,

In the vicinity of room temperature most of the
donors in silicon are ionized. This is particularly true in
the case of heavily doped samples, in which the impurity
energy gap has been narrowed by broadening of the
impurity levels. When, as is the case under the above
conditions, there are no bound donor electrons, the
difference between the susceptibility of a given doped
sample and that of pure silicon should be in good
agreement with Eq. (4); as a consequence, {f%) may be
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Fi1c. 4. Comparison of the carrier susceptibility of specimen
26-76-7 with curves derived for various assumptions about the
freedom number, f, and the number of energy minima, wp. ~

calculated by using Hall data to determine the carrier
concentration.

It should be pointed out that although the value for
x.=x (doped) —x (pure) is accurate to about 39, in the
case of the most highly doped sample, 26-76-7, the
accuracy is less for the purer samples, where the
susceptibility approaches that of pure silicon. x. for
sample 1262 is probably accurate only within a factor
of two. Values for (f?) calculated from Eq. (4) are
shown in Table II. Since there may be some question
as to the choice of constant in the Hall-effect expression
[Eq. (7)1, values of (f?) are listed for the three possible
choices. The results calculated for conditions for which
the constant in the Hall expression is fairly certain are
shown in italics. It is evident from the results that (/%
is much closer to 8 than to the 13 expected from the
cyclotron-resonance values of the effective masses.

The ratio [Fy'(n)/Fs(n)] is obtained from the Hall
data by use of Egs. (3) and (7) and published tables.20
The ratio is not appreciably affected by the choice of «.
However, the constant w,, in Eq. (3) which refers to the
number of energy minima in % space could, if incorrect,
have a large effect on the ratio. Cyclotron-resonance
measurements have shown that the minima are along
the [1007] axes. Also, it is generally agreed now that
the minima do not lie at the Brillion zone boundaries.
This would make w. equal to 6, which is the number
that has been used in the calculations yielding (f?) in
Table II. However, it was felt worthwhile to check the
validity of this assumption for at least one sample.
Sample 26-76-7, for which there is the smallest un-
certainty in x—x(pure) and for which there is little
question about the choice of constant v, seemed to be
the best choice. The susceptibility for that sample was
calculated from Egs. (3), (4), and (7) for a number of
temperatures and for two choices of each of the con-
stants w., and (f?). Figure 4 shows the results compared
with the experimental data. Evidently agreement is
best when one assumes six minima in k space and a
value near 8 for (f?).
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Fic. 5. The paramagnetic component of the trapped-donor
susceptibility as a function of reciprocal temperature.

For nondegenerate arsenic-doped silicon below 20°K,
it is safe to assume that all donors have been trapped at
donor sites. This is borne out by the Hall data which
show that even as high as 50°K less than 29, of the
extrinsic electrons remain in the conduction band. As a
result, the conduction-electron contribution to the total
susceptibility vanishes, leaving only the trapped-donor
contribution. This is given by Eq. (5) and Eq. (6) and
will be equal to the difference between the suscepti-
bility of the experimental samples and that of pure
silicon, i.e., x—x(pure). In the range of interest (that
is, below 20°K) the trapped-donor diamagnetism [Eq.
(6)] is appreciably smaller than the paramagnetism
and can therefore be estimated and treated as a cor-
rection term. The experimental results with the
correction made are shown in Fig. 5 where the para-
magnetic component of the trapped-donor suscepti-
bility, - x:#, is plotted versus reciprocal temperature.
The arrows pointing to the lowest temperature point
of each curve indicate the magnitude of the diamagnetic
correction made. It can be seen that except for sample
743 the corrections are minor. For all the samples,
including 743, the corrections are not the source of the
deviations to be discussed below but only increase them
by a small amount.

It is readily observable that the plots of the data for
specimens 1400 and 329 are straight lines, as one would
expect from Eq. (5b). However, the curves for the other
three samples bend over, having lower slopes as the
temperature decreases. It would seem that for samples
having more than 5X10Y donors/cm?® the number of
magnetic centers relative to the number of donors,
na/Na, decreases with temperature below 10°K. More-
over, in the case of highly doped specimen 743 (51018
donors), the difference between the number of magnetic
centers and the number of donors is apparent even
above 20°K. This can be seen from Table III where
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TaBLE ITI. Comparison of the number of donors with the
number of magnetic centers at low temperatures.

Number of
magnetic centers

Donor obtained from

density x(1/T) plot

Specimen Na (cm™3) #na (cm™3)
743 5 X108 1.2X108
1407B 1.2X 1018 1.1 108
1262 5.7X10v 6.6X10v7
329 2.5X10v7

1.6X 107 2.1X107
1400 3.5X 1016 (51)X 1016

values of 74 obtained from the high-temperature
limiting slopes of the curves shown in Fig. 5 are com-
pared with the number of donors. These results indicate
that Eq. (Sb) is applicable down to liquid helium
temperatures for samples having less than 2X10v7
donors per cubic centimeter, but that deviations appear
below ten degrees for samples having donor densities
between that figure and 2X10'8. For even higher donor
concentrations, where degeneracy and impurity banding
start to occur, deviations appear even above 20°K.

It is not difficult to account for the apparent decrease
in number of magnetic centers in highly doped silicon
at low temperatures. It must only be recalled that the
wave function of a hydrogenic state will extend much
further in material of high dielectric constant than in
an isolated atom and that therefore even at a moderate
concentration of filled donor states there will be enough
overlap of pairs of electrons to form ‘“hydrogen-like
molecules,” i.e., systems in which the spins are paired
in opposite directions, causing them to be magnetically
inactive. This pairing will, as the concentration of
donors increases, cause more and more of them to be
nonmagnetic until there remains but a small tempera-
ture-independent Pauli paramagnetism in the limit of
a completely degenerate impurity band. Moreover, as
the temperature is lowered the fraction of paired to
unpaired centers will increase as k7 approaches the
energies of interaction between closely situated donors.

The more usual approach to interacting donors in
solids is in terms of band theory. However, it is by no
means clear that the usual assumptions made for
periodic structures can be carried over to a situation
where the location of the “lattice” sites is random. It
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is for that reason that we feel that, for nondegenerate
silicon, approaching the problem from the point of view
of interactions of systems of two, three, or four electrons
is more realistic. This is borne out by some spin-reso-
nance experiments® which have demonstrated inter-
actions between 2- and 3-electron groups in silicon
containing 10'” phorphorus donors.

Mooser® has attempted to derive expressions that
would apply to a “donor band.” Agreement between
his expression for the susceptibility of weakly banded
donors and our data is poor. However, this may be due
to the fact that electrostatic forces which repel a second
electron from a singly filled donor site are neglected in
the derivation, rather than any lack of applicability of
band theory.

VI. SUMMARY

1. Analysis of the carrier contribution to the mag-
netic susceptibility of #-type silicon yields a value of
8 for the square of the freedom number rather than the
13 one would expect from the effective mass ratios.
Aside from that, the data agree well with theory and
with the assumption that there are six energy minima
in & space for n-type silicon.

2. For donor concentrations of less than 3X10v
cm™2 the behavior of the trapped-donor magnetism can
be accounted for by assuming that the trapped electrons
are independent centers, each with a magnetic moment
equal to the Bohr magneton.

3. The trapped-donor susceptibility of silicon doped
with more than 5X 10" arsenic atoms/cc does not follow
a simple Curie law. The deviations can be explained
qualitatively by interactions of closely neighboring
donor centers.
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