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The three-dimensional classical many-body system is approximated by the use of collective coordinates,
through the assumed knowledge of two-body correlation functions. The resulting approximate statistical
state is used to obtain the two-body correlation function. Thus, a self-consistent formulation is available
for determining the correlation function. Then, the self-consistent integral equation is solved in virial
expansion, and the thermodynamic quantities of the system thereby ascertained. The first three virial
coefficients are exactly reproduced, while the fourth is nearly correct, as evidenced by numerical results
for the case of hard spheres.

INTRODUCTION

HE analysis of the state of a physical system for
which an exact description is not feasible is

generally facilitated by isolating predominant quali-
tative characteristics, and then arranging a quanti-
tative formulation which exhibits these characteristics
as directly as possible. In uniform many-body systems,
the omnipresence of freely propagating sound waves is
most striking, and suggests that harmonic fluctuations,
spatially and temporally, of the system density be
incorporated as an integral part of a many-body theory.

Following the above approach, we have, in a sequence
of papers, ' investigated the use of the Fourier compo-
nents of the particle density as fundamental coordinates
for the analysis of the classical many-body problem;
in particular, the approximate validity of the dynamical
independence of these collective coordinates and of
their simple harmonic motion has been established. We
have seen that the two-body correlation function plays
a paramount role in determining the oscillation fre-
quencies which characterize the lowest order approxi-
mation. Further, a method of computing the correlation
function in terms of the approximate solution to the

* Supported by the 0%ce of Naval Research.' G. J. Yevick and J. K. Percus, Phys. Rev. 101, 1186 (1956),
Paper I; J. K. Percus and G. J. Yevick, Phys. Rev. 101, 1192
(1956), Paper II; Nuovo cimento 5, 65 (1957), Paper III; 5,
1057 (1957), Paper IV.

problem has been obtained, thereby a6ording a self-
consistent method for the primitive collective coordi-
nate treatment of the many-body problem.

In this paper, the analysis. of the optimum oscillator
frequencies required for the collective coordinate repre-
sentation of the potential energy is extended to three
dimensions, and is sharpened by explicit use of the
knowledge that the system is to be in a statistical state.
The expression for the correlation function in terms of
the oscillator frequencies is found to be as in Paper IV
and is given further credence by comparison with a
thermodynamic relation of Ornstein and Zernike.

The stage is now set for a self-consistent computation
of the two-body correlation function, a problem which
is set up in the form of a simple nonlinear integral
equation. First, however, the thermodynamic properties
are obtained in terms of the correlation function by
two approaches: via the isothermal compressibility, and
through variation of the free energy. The leading virial
coefFicients are then determined for the approximate
theory and compared with the exact coeKcients; for a
hard sphere gas, coeKcients Bj—5'4 are numerically
reproduced with negligible error. Finally, the complete
cluster expansion for the pressure is obtained in our
approximation, and compared with the exact cluster
expansion.

It seems pertinent to mention at this point that the
methods employed in the present paper may be regarded
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as constituting somewhat of a shift in the philosophy
of our approach. By this we mean that cognizance must
be taken of the fact that whereas one would ideally
want to utilize all of the Fourier components of the
density, only 3N (N= number of particles) coordinates
are available. Rather than increase the allowed number
of coordinates by imposition of a smalP or large'
number of supplementary conditions, with numerous
attendant difficulties, we prefer to use precisely 3T
collective coordinates. There is then a choice of either
selecting one coordinate set as optimal for the system,
and this is what we have previously done, or having
the set used depend upon the particular quantity under
consideration. The latter sampling technique is the one
which we use in the following analysis; clearly, however,
there is not a sharp dividing line between the two
approaches, and indeed, the present approximation is
formulated so as to be independent of the sample
chosen.

Finally, it should be observed that the purpose of the
emphasis laid upon the low-density region in the latter
part of the ensuing analysis is twofold. First, it enables
us to compare our approximate theory with known
exact results. Second, and of greater importance, since
it is in this region that the assumption of the separa-
bility of the collective coordinates is of most question-
able validity, a severe test is thereby made of the
adequacy of the approximate formulation, which is
implicitly based upon such an assumption.

components of the particle density P;5(x—x;). The
vector k is a vector integer multiple of the basic wave
number ko for the periodic cube,

k p= 2s/I, (4)

We shall separately transform the potential and
kinetic energy terms in (1).From (5), we have at once

2mK. E.= P k lgs i7rss-,

+2i Q r1svrgk P/N+P P/1V. (6)

Now our attention is to be restricted to uniform or
translation invariant states of the system; hence all
average values must be unaltered under the substitution
x,—+x,+ps for all j, with q arbitrary. But it then
follows that the average (qs(x, ))= (qs(x+ q)) =(qs(x, ))
&&exp(ik q), from which we conclude that

and the set4 {k) is restricted only by the conditions
that it shall not contain the zero vector but shall
contain the pair k, —k whenever k is a member.

According to the properties of an extended point
transformation, ' new canonical momenta p, ' resulting
from a transformation from x, to x,' may be specified
by p, =g& p&'cix&'/c)x„so that, P and s.& being conju-
gate to X and qs, we obtain the implicit definition

p, =i Q 4.i, exp(ik x;)+P/N

I. COLLECTIVE COORDINATE PICTURE (fir) N~k, p (7)

We now extend (to 3 dimensions) and modify the
formulation developed in Papers III and IV. The
classical X-body problem to be considered is represented
by the Hamiltonian

H=P +-', P P V(x,—x;),
' 2m

If the coeflicients of the momenta in (6) are replaced
by their mean values, we then obtain as an approxi-
mation to (6)

2m K.E.=1V Q k'mi, s i,+P'/N.
I &}

The potential energy remains to be written in terms
of the qk. Observing that

where x; and y; are coordinate and momentum of the
ith particle (s=1, ,N), located in a periodic cube of
side I; U is the periodic potential obtained by allowing
a given particle to interact with all periodic images of
any other particle.

The Hamiltonian (1) is to undergo an extended point
transformation in which the new coordinates are those
of the center of mass

P expLik (x,—x;)$=gsq k
—1V,

it follows that

2 P.E.=+i, Vs(ps' i,—N),

where the Fourier coeScient U~ is defined as

(10)

X=+;x;/N,

and 3Ã—3 collective coordinates

q, =P, exp(ik x;),

Vs ——— V(x) exp(ik x)dsx.
Is)

But all k are used in (10) and we have only (31V—3) qz
available; thus we replace (10) by the approximation

the latter being, to within a volume factor, Fourier 2 P.E.= P vs(ps' i
—N),

{k, ol
(12)

2 D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953).
3

¹ Bogoliubov and D. N. Zubarev, J. Kxptl. Theoret. Phys.
U.S.S.R. 28, 129 (1955) Ltranslation: Soviet Physics JETP 1, 71
(19SS)).

4The (3X—3) k's at our disposal will hereafter be denoted
explicitly by the symbol fk).

~ H. C. Corben and P. Stehle, Classical 3Eechanics (John Wiley
and Sons, Inc. , New York, 1950), p. 229.
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where the vi, are determined so as to optimize the
approximation.

The term optimization is a nebulous one. A simple
criterion which has been used is that the squared
difference between exact and approximate potentials be
small, or to be more definite, that the vi, minimize the
expression

({V(x,—x;)—P vk exp) —ik (x,—x;)]}'). (13)
( R, O}

If 0 (x) is the two-body distribution function, defined by

(g(x,—x,))=—~~g(x)0 (x)d'x
L3J

(14)

for arbitrary g, the minimization of (13) readily leads
to the relations

q space as required background, but with approximation
(12) alone employed. Interpretation in terms of the
domain of action of q space will be made when appro-
priate, but further detailed consideration of this aspect
will not be necessary.

II. TWO-BODY CORRELATIONS IN A
STATISTICAL STATE

It has been observed that the solution to our S-body
problem will ultimately be made to depend upon the
two-body correlation or distribution function 0.(x).
Since 0 (x) is certainly determined by the solution, a
self-consistent method is then available. We now
inquire as to the manner in which 0.(x) is obtained from
the solution. As a first step, we note that, from the
defining relation (14),

Q o.k iv)=LV(X)0(X)]k
t1o}

(15)
1

ok= — 0 (x) exp(ik x)d'x=(expik (x,—x,))
L3$

to be solved for the v~. In the event that the density of
wave vectors in {k}is small, only the Op ——1 term con-
tributes to (15) (since ok 1/Ã for kWO) and we have

vk= LV(x)0.(x)]k .. (16)
or

(P expik (x,—x,)),
X(X—1) i~~

the potential V(x,—x,) is replaced by an effective
potential which is weighted according to the probability
of occurrence of the pair of positions x, , x;. For po-
tentials small enough to avoid severe nonlinear eGects,
one expects (16) to be quite generally valid.

Inserting (8) and (12), we have now replaced the
Hamiltonian (1) by the approximate collective coordi-
nate Hamiltonian,

Ãk' vk
s

kyar

k+ (—qkq k+)—
2w 2

P' $($—1)
+ +

2mÃ 2
vp. (17)

For a translation-invariant system, the one-body distribution
is uniform or constant and the two-body distribution a function
of relative coordinates alone.

These particular difficulties may be overcome, others arising,
by a rede6nition of the q&, See D, Pines and D. Bohm, Phys. Rev,
85, 338 (1952).

Thus we appear to have complete separation of the
system into harmonic oscillator pairs (qk, q k), in addi-
tion to the center-of-mass motion. However, as has
been seen in Paper IV, the loss of memory of the
transformation engendered by approximation (8) must
be compensated for by attributing a nonuniform domain
of action to the qi, . This warping of q-space results,
e.g. , in modified oscillation frequencies as well as
modified expressions for phase space integrals which
have been discussed in Paper IV. Fortunately, in the
succeeding analysis, all computations will be done in
x space, with (17) and the implied separability of

0 k (qkq —k +)
2U(N —1)

(18)

f exp( —& P viqiq, )dx'~
(1)0}

(20)

The notation {1)0}refers to any half of the set {I}
which contains just one member of each pair 1, —1; to
employ this notation in (20), we have used the assump-
tion vi=v i, a clear consequence of the fact that
V(x) = U(—x). We shall suppose that k is one of the

R. P. Feynman, Phys. Rev. 94, 262 (1954).

This fundamental relation was similarly employed to
advantage by Feynman' in his work on He II.

To make use of (18), we must know the state of the
system, and this will be taken as a Gibbsian canonical
state: one in which the unnormalized probability
density in phase space is given by

p( x;,p," ) = exp( —OH), 0=—1/ET, (19)

E being the Boltzmann constant, H the system Hamil-
tonian, and T the system temperature. Of course in
principle the problem is now solved, but in practice,
this is no help. What does help is the knowledge that
the potential energy replacement (12) is indicated and
that the approximate separability of q space should
thereupon introduce important simplifications.

Let us then insert (12) into the probability function
(19) and compute the expectation (18); the momentum
integrations drop out and there remains (to within 1/1V)

f exp( —8 P viqiq ()(qkq k 1V)dx'~—
1 (1)0}
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set {1)0};since 0& is a slowly varying function of k,
even a set {1}of very low density will completely
determine the functional form of O.k.

To apply q-space decomposability, we first prove a
simple theorem. Let 2 be a linear functional (linear
transformation onto the complex numbers), normalized
so that Z(1)=1; then we have

where

Q =(q.q-.)', (2S)

1 (Q» 0'&)dx'"= f(Q, v )~~(Q, v )Q'dQd~. (26)

are the oftentimes more convenient polar components
of qk, for then we have

= z II{z(A,)+[A,—z(A,)]}
i=1

= ~ II[~(A,)3+2([A,—&(A,)3II &(A ))
i=1 j iWj

+ P ([A;—z(A;)][A,—z(A, .)] II z(A, ))

It may be remarked that J&(Q,p), being the additional
factor required to perform a q-space integration if one

regards the q&'s as an independent Cartesian system,
is precisely the "domain of action" correction previously
alluded to.

To evaluate (24), we have, on Fourier-representing
the O functions and noting that Qa cosy'=-,'(qa+q v),
Q~ sing~ ———-,'i(qx —

q k),

from which we see that

Z(A, A 1.)
~(IIA,)= 1+ 2

z(A;) z(A, )
II z(A;),

J~(Q, &p)
= (2s) ' t exp[ —i(/Q cosy

+NQ sing)] exp[i(tP; cosk x,

+Ng, sink x,)Jdx'~dtde, (27)

&(1)=1 (») or, shifting to polar coordinates, this becomes

The correspondence between (20) and (21) is
achieved by taking 2( ) as L '~f ( )dx'~, with (2s) '

~
exp[ izQ s—in(q+O)]

A&=exp( —
Ov&q&q &) for 1/k, A&=exp( —Ovkqkq —k) for

the denominator, and A~= (qqq k
—N) exp( —Or hqkq —k)

for the numerator. We are then led to inspect quantities
of the form

-N

expiz sin(k x+O)d'x zdzdO. (28)

ff(q(q ()g(q~q ~)d '~xL'~
1%

lf(q)q g)dx'~fg(q q ) d'~x

But

ex izsinkx O = J z ex ikx Oe], (29)pL ( +)3 Z -() p[( +)
The discussion of Paper IV, extended to three dimen-
sions, informs us that the nonzero contributions to (22) whence
arise from terms of the form (q&q &)'(q q )' where
a I= &mb; these contributions can be arbitrarily di-
minished by making the density of wave vectors in Jz(Q, y)=(2~) 'L'~ "~I exp[ —izQ sin(y+O)]
{1}sufficiently low (so that any two k's are "nearly"
incommensurable) in which case the leading term of
(21) suffices. Substituting into (20), we conclude that
for low enough density of wave vectors,

X [Jo(z)j~zdzdO

IBN

~
Jo(Qz) Jo(z) ~zdz,

2m. ~
(30)

1 f exp( —Ovzqkq z)(qzq z—1V)dx'

A" j exp( —
Ov&qpq z)dx'

(23)

'Grey, Matthews, and Macrobert, Besse/ Functions (Mac-
Millan and Company, Ltd. , London, 1952), p. 32."W. Magnus and F. Oberhettinger, Special Functions of
Mathematica/ Physics (Chelsea Publishing Company, New York,
1949), p. 16.

~' Erdelyi, Magnus, Oberhettinger, and Tricomi, TaMe of
Integral Transforms (McGraw-Hill Book Company, Inc. , New
York, 1954), p. 185,

+k(Q p)= O(Qt cospk Q cosp)O(Qk singe

—
Q sing)dx'-~, (24)

or expanding" Jo(z) and performing the indicated

Several obvious extensions of (21) permit ffner compu- Laplace trans«rm, "
tation of O.k but will not be considered at this time.

Finally, for the evaluation of (23), or indeed more
generally of ff(q&q &) d'~x, it suffices to compute
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LSN

J~(Q, s) = Jo(Qs) (1—Ns'/32+ )
2~~

Xexp (—Ns'/4) sds

the phase space density (19) by v~+ (1/N8), then

(og = (Nk'/m) &(vg+ 1/N8) &.

Thus the sound velocity in the long wave limit, c,
is given by c= 8&ok/Bk

~
q p or

j Jo(2Qy') (1——,'Ny'+ . .) exp( —Ny)dy c= (N/m) I(vp++1/N8) &, (36)

= (I.'~/rr) (N ' exp( —Q'/N) —N 'L1 —2Q'/N

+l(Q'/N)'3 exp( —Q'/N)+ ) (31)

Thus, neglecting terms of relative order 1/N,

J.(Q, v ) = (J-'"/~N) exp( —Q'/N) (32)

We can now evaluate (23) by the use of (26) and
(32). This readily yields, for kWO,

o.g = 8vg/(1+—N8vg),

which is the key result of this section.

(33)

III. INTERPRETATION OF THE CORRELATION-
FREQUENCY RELATION

The function v~ which represents the force constant
for phonon oscillations has occurred in the work of
Ornstein and Zernike in a different aspect. If h(x) is
the Fourier transform of —N8v& (properly normalized,
since (33) does not hold for k=O), we may write, as a
consequence of Np. k+No~N8v~+N8v~=0, which fol-
lows from (33),

Na'(x —xg) —h(x —xy)+ h(x —xo)h(xo xg)d so

h (x x3)h(xo xo) h (xo —x~)d'rod"so+ . (34)

Thus h(x) may be regarded as the "intrinsic" 2-body
correlation: Np(x) is composed of direct correlation,
correlation with intercession of one body, with two

bodies, etc. For further discussion of this intrinsic
correlation, see Goldstein. "

On the other hand, the interpretation of vi, as a
force constant yields an important verifiable result,
first obtained in a diferent form again by Ornstein and
Zernike. " First we must consider the oscillation fre-

quency of the kth collective harmonic oscillator, which,
since the q space appropriate to (17) is warped, is not
given simply by arj,'=Nk'v&/nz. Observing from (32)
that the spacial distortion may be accounted for by
insertion of the factor exp( —q~q q/N) for each pair

qk, q i„we see that since the result is to replace v~ in

where it is now convenient to restrict ourselves to a
spherically symmetric potential and thus to an isotropic
medium. It must be recalled that since the system is
fixed in temperature, c is an unusual quantity, the
isothermal sound velocity; however, we may at once
obtain the isothermal compressibility Ez '. Ey '
= s(alp/cps)z'=tlc ~

or

Kr '=nN(vp~+1/N8), (37)

where e=N/L' is the particle density. Our relation

(33), in the form (1+N8vp)(1+Noq) =1, will then be
verified for k~o if we can show by standard equilibrium

arguments (since k—4 implies equilibrium) that

1
Er (Ornstein-Zer nike) (38)

8 &1+No.p+)

Z= e '~ expL —8 P U(x;) jdr'~

r~e-'" 8P; U(x,)—e '~+ 8' P—,LU(x.;)]'e-'"

+-,'8' g, ~; U(x;)U(x, )e ' )dr'~

N r N(N —1)=Z,+-'8o— LU (x)7doxZ, +-'8o
L'~

X U(x) p. (x—y) U(y) d'xd'yZp+ . (39)

is valid.
The standard arguments" for relation (38) take place

outside the constant-S body system we are examining;
we shall therefore present an alternative scheme which

seems more suitable.
To obtain the isothermal compressibility of a uniform

system, we apply an infinitesimal external potential

P U(x,), where U is very slowly varying (compared,
e.g. , to intermolecular spacing) and, for convenience,
averages to zero: fU(x)d'x=0. The trick is then to
compute the work done on the system in two different
fashions. For this purpose, we first find the new partition
function (subscript 0 denoting quantities as U—4):

~2 L. Goldstein, Phys. Rev. 100, 981 (1955)."L.S. Ornstein and F. Zernike, Proc. Acad. Sci. Amsterdam
17, 793 (1914).

'4 T. L. Hill, Statistical Mechanics (McGraw-Hill Book Com-
pany, Inc. , New York, 1956), p. 236.
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Next we find the altered density: by the change of free energy, so that here

e(x) =(P 8(x—x;)) W=8 ln(Z/Zp)

= (1/Z) g 8(x—x;)e—'n exp[ —8+U(x,)]d7P" = —,'ep8P(1+1Vap+) U(x)'d'x+

= (1/Z) (Q; 8(x—x;)e 'n
On the other hand, the work done in isothermally
compressing an amount of matter m()v from volume v

to volume v —R and so to density ep(1+8v/v) is clearly

or

—8 +, 5(x—x~)U(x;)e 'n

—8 P,~;8(x—x;)U(x;)e 'n )dv n Q p

[pp+ep(6/v) (Bp/Be)v+ ' ']dA

=ppbv+-,' (ep/v) (Bp/Be) r (bv)'+

=po8 +[l(8 )'( o) '(Bp/B ) +" ] (44)
E Ã

e(x) =——Zp —8U(x)—Zp
Z L3 L"'

gZp—1V(1V—1) a (x—y) U(y) d'y
L6 J

(40) Hence the total work done in application of the external

U(x) to a constant volume is

W = ', (Bp/-Bn) r(e,) '[—8e(x)7'd'x+

Now if a.~, is the asymptotic part of a(x), then
a (x)—o&, is of short range, with area determined by =-',Ez-' [be(x)/ e]'pd'x+

L '[a (x) —a g,]—d'x or according to the preceding Eq. (42),

= lim [a.(x)—a.~,]expzk xd'x =a.p+
t~og

W = ~~ltz
—

&8P (1+1Vg~)P [U(x)]PdPg+ ~ ~ ~ . (46)

Comparing (43) and (46), we conclude that (dropping
(with the additional consequence that 0-&,=1—0-p+j.

Thus
subscript on e)

L ' a(x—y)U(y)d'y

et' 1
!z

8 E1+1Vap+)
(38)

=a.p+U(x)+(1 —o~)L ' U(y)d'y

=a p+U(x) (41)

in our case. The previous expressions then become
simply

as desired.
It is interesting to remark that if we assume simply

that low amplitude low-frequency sound propagation
is the result of harmonic oscillation of the single corre-

sponding pair q& and q &, then relation (38) is very
quickly implied. For if q& and q & oscillate harmonically
at angular frequency &ok, then we must have

Z=Zp 1+-',ep8'(1+1Va.p+) [U(x)7'd'x+
(42) where q~=dqp/dt. But

(47)

e(x) =ep[1 8(1+1Va—p+) U(x)+ . .].
The work done in an isothermal process is given'5

(q~q ~)=(P,, ;k v; k. v; exp[ik (x,—x,)])
=(P;;k'8;;v,"v; exp [ik (x;—x;)])

= 1Vk'(v') =1Vk'/nt8;

"P.S. Epstein, Textbook of Thermodynamics (John Wiley and
Sons, Inc. , New York, 1937), p. 87. inserting (18) as well, (47) then yields precisely (38).
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IV. EFFECTIVE POTENTIAL FOR A STATISTICAL STATE

In Sec. II, Kq. (20), we effectively replaced the two-body potential U(x) in the phase space distribution function

by

V*(x)—= P vt, exp( —ik x), (48)
f R, p)

and computed the correlation coefficients a~ on this basis. The computational method employed increased in
accuracy as the density of wave numbers in {k}decreased. Our problem now is to obtain the optimal coefficients
v& to be inserted into the effective potential V; the vk are expected to occur in a form not radically diGerent
from (16).

The basic fact which we shall utilize is that the v~ may be determined not merely as optimal but indeed as
exact. A brief explanation is in order. Suppose that the "sample" of (3E—3) {k}has been chosen; using the
continuity of 0-&, it suKces to evaluate 0-k at each of the 3E—3 wave numbers. Now the v& are introduced so
that the expression (20) when evaluated yields the correct 0)„ i.e., that which would be obtained by using the
true V(x) in (20) rather than V*(x). But 3X—3 relations thereby result:

f exp[ —8 P V*(x;—x;)7(q),q ),—1V)dx' f exp[ —8 P V(x;—x )](q),q ),—1V)dx))

f exp[ —8 P V*(x,—x;)]dx'" f exp[ —8 P V(x,—x,)]dx'"
(49)

just enough to determine the vt, uniquely (since vo does not appear in the ratio).
If we now define vp by the condition

exp[—8 P,» V*(x,—x;)]dx' = exp[—8 P,». V(x;—x;)]dx (50)

then (49) and (50) may be combined into 31V—2 relations:

f
{exp[—8 P;&; V*(x,—x,)]—exp[ —8 P,&, V(x,—x~)]}(q),q ),—$)dx'~=0, (51)

for the full set {k,0}.Since the integrand is symmetric, q),q ),—X may be replaced by X(X—1) exp[ik (x,—x,)];
we may thus rewrite (51) as

exp[ik (x2—xi)]{+exp[8(V(x, —x,)—V*(x,—x;))]—1}exp[ —8 P V(x,—x;)]dx'~=0,
i&j i&j

(52)

or simply as

i&2

exp[ik (x —x&)+8V(x —xi) —8V"(xs—x&))((exp(8(V(x;—x)—V"(x;—x;)))—exp()k (x,—x,)))=0 (53)
i& j'

To solve (53) for the vt„some approximation must be made, and it would be too much to expect this to be
similar to the approximation used in (33), i.e., that the density of {k}be suKciently low. In fact, we shall suppose
that the wave number density be high enough that the deviations, for different pairs i,, J, of the exp[8(V(x, —x,)—V*(x.;—x,))] from their means be suKciently small and random to be deemed independent. It then follows
from the theorem of (21), with 2=( ), that (53) may be written as

i&2

(exp[ik (x2—xi)+8(V(x2 —xi) —V*(x2—xi))])g(exp[8(V(x;—x;)—V*(x;—x;))])—(expik (x2—xi)) =0, (54)

or dividing by the k=0 case, and using the definition (14) of (r,

[0.(x) g() v(x) g-()v" (x)] . —0.

A computation similar to that of (54) has been used by Butler and Friedman" in their work on He II.

"S.Butler and M. Friedman, Phys. Rev. 98, 287 (1955).

(55)
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Let us examine (55) in two limiting situations: those
of long-range and of short-range forces. If V(x) is of
long range compared to interparticle spacing and is not
singular at short distances, then V(x) may be repre-
sented by a finite Fourier series of type (10); thus
V(x) = V*(x) and (55) is satisfied identically. Devi-
ations of V~ from V can then be treated iteratively.
A first approximation is available at once if 8V(x)))1
for most of its range; in such a case, a (x) will consist
of (N —1) 8-like functions corresponding to the equi-
librium positions (if stable) of all particles with respect
to one. Thus, we require V(x)=V*(x) at the equi-
librium positions, which determines the constants vJ, .
Of course, our collective method is almost guaranteed
to be valid in such high-density systems. More crucial
is the short-range potential or low- to moderate-density
region in which a collective description might be
inappropriate for the individual encounters which pre-
dominate. Such a region o6'ers a severe test for our
approximate formulation, and so we henceforth restrict
our attention to systems in which short-range potentials
are effective.

In order to reduce (55) to tractable form, we now
revert to the assumption that {k}be sufFiciently diffuse
that any two members are virtually incommensurable. "
It readily follows that the Fourier component
[exp( —8U*(x)]i exists only if I is a member of {k},
and further that for 1WO,

[e t&v*&']i——{exp[—8vi(exp(il x)+exp( —il x))]}i
+{exp[8v&(exp(il x)+exp( —il x))a 'v*&']}p. (56)

Since 8vx is of order 1/N for all k (i.e., ratio of molecular
volume to total volume), (56) may be reduced, to
within terms of order 1/N', to

(5&)

so that (55) becomes

if 8V(x) is small, this coincides as expected with
V(x)a(x) of (16).

8vx ——[(e'v&*& —1)a (x)]x,
a &,

= —8vx/(1+N8vx), kWO, (61)

representing (59), (33) and normalization of a.
Eliminating OvJ, and reversing the Fourier transform

in (61), we then have

a(x)+(e'v~*& —1)a (x)

+(V/L') I (e'v'x& —1)a (y)a. (x—y)d'y=c,
(62)

for some constant c.
Integrating the first equation of (62) and using the

second, the constant is then determined by

1+(N+1)L ' "(a'v~*&—1)a(x)d'x=c. (63)

Again dropping the 1 in,V+1, we obtain the integral
equation for a.(x):

V. INTEGRAL EQUATION FOR a'(xl

We now construct a coordinate-space integral equa-
tion from which the correlation function, and conse-
quently the thermodynamic quantities, may be deter-
mined. It has been shown that in our "zeroth order"
approximation to (20) and (53), a. (x) is specified
(except perhaps for a~,—1, which alone may be in
error due to neglect of terms of order 1/N) by the
relations

Finally, we make direct use of the low density of
{k},so that, as in (16), only the 1=k term in (58)
contributes. Further, then, [exp —8U*(x)]a—+1 and we
know that in general [a(x) exp8V(x)]I&=1 to order
1/N. Thus for kWO, (58) contracts to

1
v(x) =—(e'v&*& —1)a (x);

8
(60)

Iv The prescription of Paper II appears a likely candidate to
best satisfy our apparently incompatible restrictions on fk).
An explicit density of k's may be determined to annihilate the
second order corrections in theorem (21), but we shall defer such
considerations.

which is our desired relation. We may say that the
effective potential is now given by

e'v&*&a(x) = 1—I,~(e' &» 1)a(y) [a—(x—y) —1]d'y. (64)

The family resemblance of (64) to the Born-Green-
Yvon" and Kirk wood" integral equations is pro-
nounced, with the very welcome distinction that (64)
is quadratic in a.(x) and not transcendental. It will
develop that other than merely computational ad-
vantages thereby result.

For the sake of convenience in general and of neces-
sity when dealing with singular potentials, it is prefer-
able to regard

r (x) —=e'v&*&a(x) (65)

as the basic unknown quantity; the corresponding

"H. S. Green, 3IIolecular Theory of Fluids (Interscience Pub-
lishers, Inc. , New York, 1952), p. 77.

"Hirschfelder, Curtiss, and Bird, 3folecular Theory of Gases
arjd Liquids (John Wiley and Sons, Inc. , New York, 1954), p. 330.
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integral equation is then from (60) that r is a function of x, I, and 8 alonej we
have

Xr(y)[e 'r&* »r(x y)—1]d'y. (66)

1(
P=—

l
e— (e '~&*&—1) e'r(x, n')de' d'g l. (71)

8& J J, ' )'

(BA l n' t'BAq

l BL') p N (Be ) p

The Helmholtz free energy A may then be determined
A crude picture of the new function r(x) is obtained if
we note that r(x) reduces to o (x) for small V(x) and
to the effective potential 8r (x) for large V(x); actually
of course, (65) and (60) tell us that (72)

r (x) =o (x)+8r (x).

VI. THERMODYNAMIC QUANTITIES

(67)
we reduce the double integral obtained from the
integration of (72) by the general observation that

fBpl 1
(1+E8v p+). —

(Be) p 8
(68)

Having in principle solved for the two-body distri-
bution function, we are now prepared to obtain the
various thermodynamic properties of the system. One
can imagine a number of methods, all equivalent, of
utilizing exact knowledge of o.(x) to construct these
quantities. However, if o(x) is known only approxi-
mately, these methods yield diGerent results, and one
must choose the one which is most suitable for the
particular approximation employed. Since the char-
acteristic relation for the isothermal compressibility is
demanded by our theory, it seems clear that it will be
particularly appropriate to obtain the thermodynamic
properties from Ey '. To oGer some measure of com-
parison, we shall carry along in parallel a more usual

method, elegant in form, based upon the variation of
the (Helmholtz) free energy.

First, then, we recall from our expression (38) for
isothermal compressibility that

( )« lg'(s)l ' ( )« l

( I" ) , ( t"

( )«,g(s) (»)
0

for any integrand vanishing strongly enough at s=o.
If we take g(s) =1/s in (73), then (72) integrates at
once to

E
A =—ap+$ In8+lnn

8

n''l
(e

—'~&*&—1) ~

l
1——lr(x, e')dn'd'x, (74)

Jp ( 8)
where ao is a normalization constant and the 0 depend-
ence results from the known zero-interaction limit. The
internal energy and specific heat are of course now
computed from

Further, from (59) and (65), we have for kWO

8»= —[(~ '"*'—1)r(x)3~; (69)

8 82
E= (8A), Cp= —E8' —(8A).

80 802
(75)

but if V(x) vanishes for large x, so does e 'r'*' —1,
whence

The second method of determining the thermo-
dynamic quantities hinges on computing the variation
of A, which may rigorously be divided into kinetic and
potential portions":

= —L ' (e p &xl —1)r(x)d g.
aJ

A =AK.z.+Ap. z, ,

A z.z.= (E/8) (&p+-,s in8+1ne),

Thus, (68) yields

(Bp'l 1 f'

(.— &*&—1).(x)d ~ .
(Bn& p 8

(70)

Ap, z. = —(1/8) ln I exp[ —8 P,» V(x,—x;)j
aJ

Xdx'~ L'~ . (76)

It is now an easy matter to generate all pertinent
thermodynamic quantities from relation (70). Inte- ~' J. E. Mayer and M. G. Mayer, Statistica/ Mechanics (John
grating over rr, observing that p=O when e=O [and Wiley and Sons, Inc. , New York, 1940), p. 235.
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For a change not involving volume, clearly

b(HAp, g )=, [Q,);HHV(x, —x,))

against precisely known results, is in a virial (power
series in density) expansion. For the leading terms,
this is most readily done by iteration, for which purpose
we write Eq. (66) as

Xexp[ —H P,);V(x,—x;))dx'" r12 ——1+m
t'

fsarsa(r13 —1)d'xa+e it fssfsarsar13d'xa) (82)

or

exp[ —H P,);V(x,—x,))dx'",

H(HA . .) =-',N(N —1)L ' I'H(HV(x)) (x)dx'. (77)

f,,=exp[—HU(x; —x,))—1, r j=r(x,'—x,).
Commencing at v.~2 = 1, we readily iterate out a power
series, obtaining

On the other hand, for a change in the length

I'-p[-H Z V(, ))d" /L'"-—

exp[ —
H P,); V(x, ' —x ))( dx) ~a/(L+dL)3~,

1

exp( —
H P V[(x, x,) (1+—dL/L))) dxa "/Ls~,

J

as if the potential had changed:

H(H V(x)) =H V[(1+dL/L) x)—H V(x)
= (dL/L)x VHV(x). (78)

which, under the substitution x'= (1+dL/L)x, becomes

r12 1+23 f23f13d xa+43 [f23f34f14J

pH= Q 8 ra'
s=1

(84)

let us compute the 8, from (83), using both (71) and
(81). Substituting in (71), we have at once the "com-
pressibility-derived" coefficients:

+2fsafa4 f14f24)d'xad'x4+ . (83)

In order to compare (83) with standard virial
expansions, it is convenient to have numbers, rather
than functions. In particular, defining the virial coe%-
cients 8, by the series for the equation of state,

Hence under a change of 8, V, or I, we have

E p bL
H(HAp E)=—n o(x) MV(x)+—x V'HV(x) dx'. (79)

L

Applying (79) to the special cases (75) and (72), we

obtain

f12d *2,f
2J

f
&3'"= —

3 f12f23f13d x2d xay
(85)

lf'3 1
E=Ni ——+—23 V(x)0-(x)dx' i,

&20 2 ) (80)
[f12fsafsa f14+2f12fsa fsa f14f24)d'xsdaxsdax4,

~ ~ ~

e( m

p= —
~

1+— r(x)x We ar&"'dx' ~.

HE 6~ )

Correspondingly, the virial form (81) yields on

(81) substitution

6a,«) =6,
The fact that the equation of state in virial form

(81) involves differentiation, whereas that in com-

pressibility form (71) requires integration, suggests
that the latter may rather generally be a superior
approach when approximations are involved, aside
from the specific indications for the suitability of (71)
in our particular approach.

6~2 (x12' ~12)f12d xs)

f
6~3 f23f13(x12'res)f lsd x2d x13) (86)

VII. VIRIAL COEFFICIENTS

A useful form in which to solve our fundamental
integral equation (66), which provides as well a check

[f23f34f14+2f23f34f14f24)

X (x]2' 7 12)f12d'xsd'xad'x4, ~ . ~
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which requires further elucidation. We first write (86) as

682' '= (xl Vl+x2'V2) f»d'x]d'x2/L') 82 =
2 f12d x2)

683& &= (xl Vl+x2 V2+x8 V3) 83 3 f12f23f13d x2d x3& (90)

X (fl2f23f18)d'»d'x2d'x8/3L8) (8/)
84= ——', (3f12f23f34f14+6f12f23f34fl4f24

684 = L(xl ' Vl+X2 V2+X3' V3+X4' V4)

X (f12f23f34f14+2f12f23f34f14f24)

2f»f2—3f34f14X24 V24f24 jd'»d'x2d'x8d'x4/4L'.

But, in general,

(Xl'Vl+' ' X V )F(f12 f» )d gl' ' 'd x

+f12f23f34f14f24f13)d x2d x3d x4) ' ' '
~

Thus, comparing (85), (89), and (90), we find that
8$ 82 83 are reproduced exactly by either compres-
sional or virial form of our approximation. Further,
the difference between 84'v' and 84 occurs in a term
of small coefficient, indicating that the deviation may
not be large. On the other hand, we see that

|.+)84 84 8 f12f23f34f41(1+f24)

F(f12 f13 . )d'x, x "dS" d'x

F(f12,f», )Q V; x;d'xl d'x, .

Since J'x; dS, =3L', and the remaining integrand is
independent of x;, we then have

(xl V,+ +x, V,)F(f„,f13) )d g, d x,

X (1+f13)d'x2d'x3d'x4, (91)

since the integrand is small unless, crudely, the pairs
of positions 12, 13, 34, and 14 are close, but the pairs
13 and 24 distant, the difference 84& & —84 is expected
to be very small indeed. Although we shall show that
the higher 8,&~' are characterized as containing only
plane convex irreducible clusters, accurate estimate of
the validity of further 8,& ' is fraught with difhculty.

VIII. GAS OF HARD SPHERES

To further investigate our approximate virial coeS.-

3(3 1) F(f» f». . .)d3x, . . .d8x, . (88) cients, let us consider a gas of hard spheres of diameter
8:

Substituting into (87), we conclude that

(v) —1

V(x)= ~ for ~x~ (a,
V(x)=0 for ixi)a. (92)

The leading virial coeKcients have been computed":

82&~& = —
12 f12d'x2,

88 3 f12f23f13d x2d x3) (89)

8] 1) 83——88 (-282ra8) 2,

82= 88ra8, 84=0.2869-(288ra8)8,

and the approximate values of 84 as welP':

84&~' =0.2969 (28ra3) 8

84&v' =0.2500 (-'8ra3) 8

(93)

(94)

84'~'= —-', (3f12f23f84f14+6fl2f23f84fl4f24

+3f12f23f34f14X24' V24f24)d'*2d'*3d'*4,

Now by the exact cluster expansion of Ursell, " one
finds

2' J. K. .Mayer and M. G. Mayer, reference 20, p. 287.

Thus the fourth virial coefficient 84' ' is in error by
only 3%, while 84~~' is off by 13%, even this being an
improvement over the results of current approximate
theories.

It is of interest to observe that our expressions for

~ R. H. Fowler and K. A. Guggenheim, Statisticu/ Thermo-
dynamics (Cambridge University Press, New York, 1952), p. 289.

23 B.R. A. Nijboer and I,. Van Hove, Phys. Rev. 85, 777 (1952).
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must be unique, the graph is not duplicated. If 1 and
2 are not connected to a common vertex, let i be the
vertex nearest 2 to which 1 is connected; the preceding
argument applies verbatim.

Upon inserting (95) into (70), which we write as

FIG. 1. Recurrence relation for v (».
Bp t'

e = 1—I fisrisd gs
Bn

(97)

84, and for its sire in r(x), were postulated by Nijboer
and Van Hove" solely on the basis of their numerical
computations on hard spheres, as being a simple
approximation which would give results far superior
(for virial expansions) to those obtained by application
of the Kirkwood superposition principle. "Ke have now
found that the relevant principle which appears to
replace superposition, for the gaseous state, is that of
independence of collective oscillations. Since the col-
lective approach was set up with a dense rather than a
rare medium in mind, we may then have derived a
fairly broad spectrum approximation.

r(x) = P ss'~" (x)
s 0

(95)

One simply substitutes (95) into the defining relation
(82) and equates coefficients of ss~'. I'or p&~0, the
result is that

IX. COMPLETE CLUSTER EXPANSION

It is not difficult to obtain, in form, the full set of
coefficients in the expansion of our approximation to

this yields at once the prescription that in our approxi-
mation,

gp m

0—= 1—P ss'XLsum of pictorially distinct plane
Bm s=l

convex irreducible (s+1)-particle clustersj. (98)

Here, pictorially distinct refers to the fact that since
the distinguished pair 1—2 has disappeared, then with
the vertices undesignated, rotation may produce a
distinct diagram. Expression (98) is to be compared
with the "exact" (with the usual stipulations) Mayer-
UrselP'

Bp ~ rs'
0—=1—Z X!sum of irreducible

pl+ s=l g—1 t

(s+1)-particle clusters'. (99)

The first five virial coeflicients, defined by (84), and

Ss2

Tis Q fssflsrss rls +s
s=o &

'Is

+ Q fssrss" ris'" 'd'sos (96).= J

We represent the recurrence relation (96) symbolically
in the accompanying Fig. 1, the straight lines denoting

f factors, the curved lines r factors, and particle i
being integrated over each case.

The claim is now made that r'~' consists of all
geometrically distinct (unaltered by a cyclic rotation)
(p+2)-particle plane convex irreducible diagrams with
a single peripheral link missing. That is, set up a
polygon of P+2 ordered vertices, connect all adjacent
positions but 1—2, and make any set of internal con-
nections such that no two intersect inside the polygon.
Since the statement is true for p=1 Lsee (83)$, we may
proceed inductively, assuming that all r'"~ are as
described for r~&p Consider t.hen res '&; if 1 and 2 are
connected to the same vertex i, then they will be
represented by the center graph of Fig. 1, but since i

'4 J. G. Kirkwood and E. M. Boggs, J. Chem. Phys, 10, 394
(1942).

A
60 30

30 l$

,r ~~ ~ ~ e ~ ~~ J

FIG. 2. Exact virial coeKcients compared to those in
collective coor'dinate approximation.

~5 J. E. Mayer and M. G. Mayer, reference 20, p. 293.
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from which, employing (97),

8(Bp/Be) = (1—eL') ',

Hp= L' ln(1 ——nL'),

B,&c& = (I.')' '/s.

(101)

On the other hand, the cluster expansion virial coeS.-
cients are precisely those obtained" from the grand
canonical partition function:

where
Hp=L 'in[2 "(Z /El)z~j (102)

ZN —— exp[ ——',8 P;» V(x,—x;)]de'",

n=Hz(Bp/Bz)

For the special case f~ —1, (102) reduces easily to

Hp= I. ' In(1+L'z), n =z/(1+L'z), (103)

so that again
Hp = L' ln(1 —nL'), — (104)

'6 D. ter Haar, Statistical Mechanics (Rinehart and Company,
New York, 1954), p. 175.

their di6erences are shown pictorially in Fig. 2. The
dotted line in the third row of Fig. 2 denotes the factor
1+f It. is observed that the difference Bs~o&—Bq is
small in the same sense as 84&~~ —84, which was
discussed following (91).

It is not hard to see that the deviation 8,&+—8, can
always be pictured so as to contain at least one factor
of 1+f, for this requires only that I3.&o' 8, —vanish
formally when f= —1. Now when f= —1, (82) may
be solved trivially and yields

r(x) = (1—eL') ', (100)

showing, as desired, that B,& '=8, for all s, and
establishing that in general B,&~' —8, has the factor
1+j. However, the 1+f factors will certainly not in
general reduce the difference of B,&~& and 8, as severely
as in the case s=4.

X. CONCLUDING REMARKS

We have shown that a careful self-consistent formu-
lation of the classical statistical mechanics of the many-
body problem, based upon the approximation of inde-
pendent dynamical behavior of the Fourier components
of the matter density, yields exceptionally accurate
results not only in the high-density region" for which
it appears most appropriate, but for low density as
well. The approximation thus appears to have a wide
range of validity.

It is worth noting that the combination o.(e'~—1)/8,
which does not arise in our previous work' on the
subject and which characterizes the form of the sta-
tistical state, is necessary for quantitative accuracy,
but very often not for qualitative accuracy. This follows
from the fact that the replacement of 0(e'v —1)/8 by
OV itself results in the replacement of f=e'~ —1by-
f'= —8V/(—1+8V); f and f' differ by at most 30+o for
V)0 and coincide for V=O or ~ (as in the hard-sphere
case, for which our approximation is nearly optimal).
Of course, the equality between f and f' fails dismally
for large negative OV, a region in which the metastable
two-particle "bound states" become important. We
see, however, that the crude and tentative approach
to the determination of the oscillation frequency,
reviewed in Sec. I, is justified over a considerable
domain.

~'A more detailed analysis of this region will appear in a
succeeding paper.


