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IS A MOVING MASS RETARDED BY THE REACTION OF ITS
OWN RADIATION?

By LEiGH PAGE.

INCE the promulgation of the principle of relativity by Einstein in
7 1905, a number of alleged inconsistencies with the classical theory
of electrodynamics have been pointed out. That these apparent incon-
sistencies must be due to failure to analyze correctly the problem under
consideration, and that the electrodynamic equations can in no way
come into contradiction with the principle of relativity—reference here is
to the relativity of constant velocity systems, not to the broader concep-
tion of general relativity recently developed by Einstein—might have
been surmised from the very first, for Lorentz! had already shown that
the electrodynamics of moving systems could be reduced to that of
fixed systems by a group of transformations substantially the same as
those deduced by Einstein from the principle of relativity. Moreover,
looking at the question from the other side, the author? of this paper
has shown that the electrodynamic equations may be obtained in their
entirety and exactly, from nothing more than the kinematical trans-
formations of relativity and the assumption that each and every element
of charge is a center of uniformly diverging tubes of strain. Hence,
although the electrodynamic equations may not cover as broad a ground
as the principle of relativity, they can contain nothing that is in contra-
diction with this principle.

One of the most important supposed inconsistencies of the principle
of relativity with classical electrodynamics has been connected with the
phenomenon of anomalous dispersion. Here we have an index of refrac-
tion less than unity, leading, apparently, to the conclusion that the
velocity of light in the dispersing medium is greater than the velocity of
light in vacuo. Since the essence of the kinematics of relativity lies in
the fact that the velocity of light in vacuo shall be an absolute maximum,
it seemed at first sight that here we had an experimental disproof of the
conception of relativity. Not until the masterly papers of Sommerfeld
and Brillouin® were published in 1914 was the matter finally cleared up.

1 Theory of Electrons, p. 197.
2 “Relativity and the Ether,” Am. Jour. of Sci., 38, p. 169, 1914.
3 Ann. d. Physik, 44, p. 177, 1914.
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These authors showed that the velocity with which the index of refrac-
tion is concerned is a ‘‘phase” velocity, and not a ‘“‘signal” velocity.
By a very ingenious mathematical method they were able to investigate
the propagation of a wave train of limited length through a material
medium, whether in the region of anomalous dispersion or not, and to
show that the velocity of the front of the disturbance, s. e., the ““fore-
runners,” would be always exactly the same as the velocity of light in
vacuo—never greater, never less.

Another criticism of the principle of relativity of the same nature
as the above, although not concerned with electrodynamics, is based on
the alleged possibility of transmitting a signal with a velocity greater
than the velocity of light by means of a gravitational disturbance. More
than one author refers to the “immense . . . speed of propagation of
gravitation,”’ ! although it has repeatedly been pointed out that none
of the facts revealed by astronomical investigation requires for its
explanation a velocity of propagation for gravitation greater than the
velocity of light.?

The object of the present paper is to clear up what is, so far as the
author is aware, the only supposed inconsistency of the principle of
relativity with classical electrodynamics which remains a subject of
serious consideration on the part of contemporaneous physicists. This
is the radiation reaction experienced by a moving mass on account of
its own emission of radiant energy. The problem is treated in some
detail by Professor Sir Joseph Larmor in the Proceedings of the Fifth
International Congress of Mathematicians? held at Cambridge in 1912,
and in a recent number of Nature? he emphasizes the contradiction to
the principle of relativity involved in his solution of this problem.

Consider a radiating mass, such as a star, which is moving in a straight
line with velocity V. The reaction of its radiation is found by Larmor
to constitute a resistance to the velocity equal to

I :
F = _ERV’ (1)

where ¢ is the velocity of light in vacuo, and R the total energy emitted
per unit time,

Now consider an observer 4 at rest, and a star at rest. The star will
remain at rest indefinitely in so far as the reaction of its own radiation
is concerned. However the case is quite different if we consider an

1 Proc. of Fifth International Congress of Math., I., p. 207, 1912.

2 0. Heaviside, Electromagnetic Theory, I., Appendix B; H. A. Lorentz, Amsterdam

Proceedings, 2, p. 573, 1900.
3 Nature, 99, p. 404, 1917.
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observer B who is moving in the Z direction with a constant velocity V.
A star initially at rest relative to him will gradually acquire a velocity
(relative to observer B, of course) in the — Z direction on account of
the reaction of its own radiation. This velocity will increase asymp-
totically until it reaches the final constant value V. Hence the systems
of observers A and B cannot be equivalent, and the principle of relativity
comes into contradiction with classical electrodynamics when applied
to this particular problem.

Such would be the only possible conclusion if the deduction of equation
(1) from the electrodynamic equations were correct. In order to point
out the tacit assumption which invalidates Larmor’s derivation of (1),
we shall reproduce in somewhat more rigorous form what is substantially
the analytical reasoning pursued by him. Then we shall investigate
the problem quite rigorously by a somewhat different method, and show
that the electrodynamic equations do #ot lead to a radiation reaction
which depends upon the velocity, but to a reaction which is exactly in
accord with the principle of relativity. Incidentally we shall develop
the complete dynamical equation of an electron to the fifth order.

If we use the units of electric charge and magnetic pole advocated by
Heaviside and Lorentz—a unit 1/v/4r smaller than the electrostatic or
electromagnetic units respectively—classical electrodynamic theory is
contained in the five vector equations!

V-E = p, . (2)
VXE = ~§H, (3)
V-H = o, (4)
V><H=;I(E+pV), . (5)
F=p[E+£—va], (6)

where equations (2) to (5) inclusive describe the effect of the distribution
of matter upon ether, and (6) gives the effect of ether on matter. From
(3), (5), and (6) we obtain at once the familiar energy equation for the
region inside the closed surface =, namely

S/ + HY0 + ¢/ (BXH)-do + [Fovdr=o, (1)

where dr is an element of volume and do a vector element of surface

1 Gibbs’s vector notation is used.



Vor. XI.
You X1] A MOVING MASS. 379

having the direction of the outward drawn normal, the volume integrals
being taken throughout the volume enclosed by the surface £ and the
surface integral over this surface. The first term represents the rate
of increase of electromagnetic energy, the second the rate of escape of
energy through the enclosing surface, and the third the rate at which
work is done by the field on the matter contained in this region.

Now we are interested in the reaction of the ether on the material
oscillators which constitute the radiating body under consideration. To
find this reaction we may proceed by either of two equivalent methods,
which we shall designate as methods 4 and B.

MeTHOD A.
We may eliminate p and pv from (6) by means of the field equations
(2) to (5). This yields for the resultant force on the matter within the
closed surface = the familiar expression

d
K = [Fdr = [ (EE + HH)-do — % [ (E? +H2)d0'—§ =/ (E X H)dr,
where the surface integrals are taken over the surface Z and the Volbume

integral throughout the region enclosed by this surface.
Let us write

K, = / (BE + HH)-do — } J (& + H)do, ®)
K, = — 1 2/ (€ X Hy. ©

Then K, is the stress which Maxwell considered to be exerted by the
ether without the surface £ on the ether within this surface, and K,
has been interpreted as the rate of decrease of electromagnetic momentum
within the enclosing envelope,

I
p (EX H)

being the momentum of the ether per unit volume.

If, now, we imagine a closed surface to surround the matter on which
we wish to find the force K, our problem reduces to the evaluation of the
integral expressions for K; and K,. To determine the values of the
integrands, however, it is necessary to know the distribution of p and pv
in space and time, so as to solve the field equations (2) to (5) for E and H.

MEeTHOD B.

We may solve (2) to (5) for E and H in terms of p and pv, substitute in
(6), and evaluate the integral
K = [Fdr, (10)
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where the volume integral need be taken only over those regions where
p is not zero, 1. e., over the matter on which we wish to find the force K.

The second method is somewhat the more direct, and has the great
advantage that in most cases the integration covers a very small region,
so that if it is necessary to expand E and H in terms of the distance
between the elements of charge considered, there is no difficulty in
developing convergent series. Nevertheless in certain problems, par-
ticularly those in which

J(E X H)dr

does not change as time goes on, the first method is very convenient
and less laborious than the second. Obviously the two methods are
equivalent, and must lead to exactly the same result.

Whichever method is used, it is necessary to solve the field equatlons
(2) to (5) for E and H. Lorentz’s! solution is as follows:

E=—V¢— g A,

H =V XA,
where
_1 [l
¢ = 4.7Tf dTy
ELI@%
4mc 7

the quantities in brackets being retarded, <. e., values of p and pv respec-
tively at a time 7/c earlier.
For a point charge these reduce to the familiar Lienard? potentials

Differentiating these retarded potentials, we obtain the usual expres-
" sions for E and H due to a point charge? at a time 7/c later,

(1)

7
E - e(1 — B7) (r yv>+{fx(r.—;v)}><r
=T NG — 2(1 — (32
4773(1—71?> ¢ o = £

c
1 Theory of Electrons, p. 17 et seq.

2 Eclairage Electrique, 16, p. 5, 1898.
3 M. Abraham, Theorie der Electrizitit, 2, p. 97.
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et — ) 1 fx({fx<r"£")}vxr)

B =4 7'3(1 7;53 B (1 — B2
r U
c

where 8 = v/c and f is the acceleration.
From these it appears that

H = 17 (r X E). (13)

(12)

Consider now a radiating body, such as a star, which is moving with a
velocity V relative to the reference frame to which we apply the electro-
dynamic equations. The total force due to the emitted radiation will
consist of two parts, (¢) the reaction-on each oscillator of the radiation
which it, itself, emits, (b) the force exerted on each oscillator by the radia-
tion proceeding from the neighboring oscillators. Now to compute the
reaction on the aggregate of material oscillators by the rigorous method
we are going to pursue would be exceedingly involved. Fortunately
we can simplify the problem to the extent of dealing with a single oscil-
lator, 4. e., a single vibrating electron, and yet obtain a result that will
be a perfectly general test of Larmor’s expression for the radiation
retardation. For this expression gives the retarding force as a function
of the rate of total radiation and the velocity of the radiating body, and
of these quantities alone. Hence if the ether exerts a reaction on a
group of moving oscillators, it will exert a similar reaction on a single
oscillator; and conversely, if there is no reaction on a single vibrating
electron due to its drift velocity, there can be none on a group of such
vibrators.

REACTION OF THE RADIATION.
MEeTHOD A.

To find the reaction of the radiation, Larmor uses method 4. The
following reasoning is somewhat more rigorous than his, but is substan-
tially the same and leads to the same result, provided the same approxi-
mations are made.

Draw a fixed sphere of radius 7 (Fig. 1) with center at the point occupied
by the vibrating electron at a time 7/c earlier. Take the X axis in the
direction of the velocity which the electron had at this earlier time.
Let 7 be very great compared to the linear dimensions of the electron.
Then terms involving #—2 will be negligible compared to those in 771,

~and E and H at the surface of this sphere will be at right angles to the
radius vector. Hence
K, = -1/ (E + Hd)do
= - .f udo—,
where # is the energy density of the radiation.
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Hence, in the X direction

K, = — fucos 0 do.
Now consider the part K, of K, due to the fact that the electron’s
Y
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field is moving with it. Since the flow of energy at the surface of the
sphere is along the radius vector

|EXH| =u
and, as is obvious from the figure,
d
E[f(E X H)xdT] = — [uvcos? § do
or
Kéz' = fup cos? 0 dg,
hence

K, = — fu(t — B cosf) cos @ sin 0d0d¢ (14)

is the force due to the stresses over the surface of the sphere plus that
due to the rate of decrease of electromagnetic momentum occasioned by
the translation of its field with the electron. That part of X, due to the
rate of decrease of electromagnetic momentum inside a sphere of radius
7 moving with the electron is zero when averaged over a whole number
of periods, provided the electron’s field at the end of this time is the same
as it was initially.
From (13)

E><H=;{E2r—E-rE}.

I
= — Eer,
7
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Hence, from (11), (14) becomes

K = {f2 cos 0 sin 9d0d¢ ff f» cos 0 sin 8d0d ¢
s 167r204 (1 — B cos 0)3 (1 — B cos 6)*
f+2 cos 0 sin 8d6d¢
— —_ 32 —
(1 B)f (1 — B cos 0)5 !
where, without loss of generality, we can assume f to lie in the XV
plane, so that

Sfo = fcos ¢,
= f(cos ¢ cos § + sin ¢ sin 6 sin ¢).

Performing the integration over the surface of the sphere

e*Bf? .
r— — B2
Similarly
e? sin? @ sin ¢d0d¢ ff,fu sin? 0 sin ¢d0d¢
r— 2
Ky 1672ct {ff (1 — B cos 6)3 + 28 (1 — B cos 6)*
[+ sin? 6 sin ¢d0d¢ }
CRP) f (1 — B cos 6)8 !
which gives on integration
K,/ =o.
From symmetry
K, =o.
Hence, to the first degree of approximation
32f2
/ ——3 —_—
K = eV (15)

Now, to the same degree of approximation, the rate of radiation from
the electron is given by
e’f?

T 6w

Hence
I
K = — - Rv.
c

Consider now an electron which is vibrating and at the same time
moving in the [ direction with a drift velocity V. At any instant

I
Kl' = - ;;Ri)l.
For a whole number of periods, the impulse is

[K/dt = — clje [t
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where R is the mean rate of radiation. But

f?)zdlf = Vt.
Hence, on the average

K/ = — =RV.
4

This is the expression found by Larmor for the resistance due to the
reaction of the radiation. But are we justified in neglecting the part of
K,, which depends upon the decrease in the integral

J (E X H)dr

taken over the region enclosed by a sphere of radius » moving with the
electron? The average impulse due to this part of the total force during
a time ¢ is

JK/dt = —E;{ [f(E X H)ldr]t - [f(Ex H)zdr]o} .

Now the integrals within the brackets are equal, and hence annul each
other, if, and only if, the field within the moving sphere of radius r is the
same at the end of the whole number of periods over which we are averaging
as it was at the beginning, that is to say, if the periodic motion of the electron
is undamped. But the energy of a radiating electron is continually
decreasing, and consequently its motion cannot be truly periodic unless
energy is supplied to it from some outside source. But if energy is to be
supplied it must be shown that no impulse on the electronic vibrator
accompanies the transfer. The author has not succeeded in devising a
method by which a transfer of electromagnetic energy might be effected
in such a way that the impulse imparted could be easily calculated.
Energy from non-electromagnetic sources—such, for example, as the
energy imparted to the radiating electrons on the sun’s surface from its
gravitational potential energy as the whole mass shrinks—must be
excluded from consideration on account of insufficient knowledge of the
laws governing the intricate phenomena concerned. In fact, our problem
is essentially one in electrodynamics, and the connection between gravita-
tion and electrodynamics is unknown. Consequently in our further
treatment of the problem we shall assume that the electron is left to itself
and that its radiation is at the expense of the energy of its vibration.

Moreover, from the standpoint of the electron theory, Lorentz! has
shown that the dynamical equation of an electron contains a damping
force which depends upon the rate of change of acceleration, and which is
independent of any assumptions as to the distribution of the charge.

1 Theory of Electrons, p. 49.
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In fact it is easily shown that the energy radiated is accounted for by
the work done against this resisting force. From this point of view as
well, then, an undamped periodic vibration is impossible unless energy is
supplied from some outside source.

It may be urged that by making the mass of the electronic vibrator
sufficiently large, the diminution in energy due to its radiation and
consequently the value of the part of K, which we have neglected may
be made as small as desired. But it must be remembered that increase
in mass involves decrease in the radius of the electron, and hence the
volume integral whose decrease we have neglected has to be extended to
regions where E and H are very large, and where any proportionately
small change in these quantities will account for a relatively large change
in the integral.

Although we are not going to complete the solution of our problem by
the method we are here pursuing—for the analytical difficulties in
evaluating

J(E X H)dr
are far more formidable than those encountered in the equivalent method
B—it may not be superfluous to show the existence of a force which
exactly compensates the resistance found by Larmor. [We are dealing

here with a single vibrating electron which is receiving no energy from
outside sources.] Equation (14) gives K’ for the time o0 in terms of f
and v at a time — (7/c), where 7 is the radius of the sphere over whose
surface the integration is to be performed, 7 being very large compared
to the linear dimensions of the electron. Let P; (Fig. 2) be the position
of the electron at the time — (7/c), P, the position at the time — (v/c)-+d¢,



386 LEIGH PAGE. [Secomn

P; that at the time — (7/c) + 2dt, etc. Let the outer full-line circle be
the trace of a sphere of radius 7 with center P;, and the outer dotted
circle that of a sphere of the same radius but center P;. Let the next
full-line circle have center P, and radius 7 — cdt, and the innermost
center P; and radius » — 2c¢dt, the dotted circles having respectively the
same radii but centers at P; and Py. For the time o then, E and H
over the outer full-line sphere will depend upon the velocity and accelera-
tion which the electron had when at P;, while for the second full-line
sphere the velocity and acceleration of the electron when at P, are the
ones that must be taken into consideration. At a time d¢ later, the full-
line spheres must be replaced by the dotted spheres, and the effective
positions Pj, P;, and P, made use of instead of Py, Py, and P;. Now as
the regions between these spheres are far from the electron, the parts of
E and H having 72 as a factor are negligible compared to those involving
only the inverse first power. Hence the flow of energy is along the radius
vector, and the value of
J(E X H).dr

for the region between the first and second dotted spheres at the time
dt will be the same as the value of this integral for the region between
the second and third full line spheres at the time 0, and so on. Hence
at least part of the decrease in the total integral will be the value of the
integral for the region between the two outer full-line spheres. Since
the distance between these spheres is

cdt(1 — B cos 6)
we find for this part of K, '
K, = fu(x — B cos 6) cos 8 sin 0d0d¢

which exactly annuls the expression (14) previously obtained. This is as
would be expected, since it is not to be supposed that the reaction on the
electron would depend upon the velocity and acceleration which it had
at a time 7/c previous, where 7 may be made indefinitely great, but at
most upon the state of motion at a time a/c earlier, where a is its greatest
linear dimension. The portion of the integral which is conditioned by
the state of motion at this comparatively more recent time is that in the
vicinity of the electron. On account of the difficulty of developing a
convergent series for E and H we will not evaluate this integral directly,
but resort to the equivalent method B.!

1 On the dynamical theory of the ether as developed in particular by the English school of
physicists, the force exerted by radiant energy on matter is conceived to be due to a transfer

of momentum from the ether to the body affected. Let us consider the problem under dis-
cussion from this point of view. The ether inside the large sphere of radius # (this sphere
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METHOD B.

This method consists in obtaining E and H from the equations of the
electrodynamic field, substituting in the expression for the force exerted,
and integrating over the region occupied by the electron. In order to
carry out the solution we are obliged to make certain assumptions
regarding the shape and distribution of charge of the electron. However,
we are at liberty to make any such assumptions we choose, for the
expression found by Larmor for the radiation reaction is independent
of the shape or distribution of charge. As a matter of fact we shall
see that terms of the form of Larmor’s expression are independent of any
such assumptions.

Larmor speaks of the radiation reaction found by him as a first order
effect. As a term in the equation of motion of the electron it must be
considered of the fifth order. For if A is the amplitude of the electron’s
vibration, it is obvious that

A
Jfg is of the order (32,

2/42

B is of the order 85, and

ct

f2a2 f2A2
o B < o B,

where ¢ is the radius of the electron. It is this last quantity which is
involved in his result. Consequently we shall retain in our analysis
all terms of the first five orders. Fortunately a great many complica-
tions, such as variations in the distribution of charge on the electron
due to its state of motion, do not enter until the sixth order is reached.!

Our first step is to expand the retarded expressions (11) and (12) for
E and H due to a point charge in terms of the actual velocity and its
derivatives. Suppose we have a charge ¢ at a point whose codrdinates
are x, ¥, and z at a time 0, and let v, f, f, etc., be its velocity, acceleration,

must be large compared to the diameter of the electron if terms involving »~2 are to be
neglected as compared to those in 1 but may be very small compared to a millimeter) to-
gether with the electron at its center is losing momentum to the ether outside, and since the
momentum passing out in the direction of motion is greater than that passing out in the
opposite direction, there is a force of exactly the amount found by Larmor. But the ether
inside this sphere is also losing momentum in the direction of motion due to the damping of
the vibration. Now, by the law of conservation of momentum,

Momentum lost by electron = Momentum gained by ether outside sphere—Momentum

lost by ether inside sphere.
Method B will show that the terms on the right-hand side of this equation (the second of which
is overlooked by Larmor) must be equal and hence annul each other.
1 Relativity and the Ether, p. 185.
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rate of change of acceleration, etc., at this instant. Now expressing (11)
in scalar form, we have for the x component of the electric intensity at
the origin at the time o

R o=-° I_I_E'_re - I_v_ﬁ_fe-re _Xe _ Vs
£ qmrd cre c? c 7e c

e

where the quantities with subscript e refer to the effective position of
the charge, . e., its position at a time 7,/c earlier. Hence
I

Ve rE T rd I I oS
KXo = X — Vp— - = - = f,— — fp— - — —_— ..
¢ PRt 6f’”c3 +24f$c4 Izofzc*" ’

£

e I Ll InvS I w vt
e P S B A B Ve Rl
cr,  Turd 1 ord
Jo=fe—fo T ey —cfeg o

and similar expressions for the y and z components. Put

x B8 _ Uz =~&7_’ 5 ='&1’_2 =fx73 =‘fﬂ‘1
7’ 2= 71‘—'621 == "3 €z = & (o = P

My =
Then

e=pfi—obm’ +m ) - Lemtavp
€ p 72 3 73

I . ’
+o(em 48B4 37975 — oo (G m + 5e B+ 108-y) %5 }

Put
k= (I - 62)_%y
="
TR
a = B-mp,
b = y-mg?,

¢ = (8-m + 3y-B)%’,
d = (em+48-B + 377k,
e= ({-m + 5€-B + 108- )RS,

where ¢ is of the first order, b of the second, and so on. Then

1 I I
2 — oy — I SN E . A S S S
T 1 2ar + br 367 -+ Isz 60 er , (117)



‘1\'1%’."5?{1'] A MOVING MASS. 389

I+Ve-re 1 {I—ar+0+ o’ ——d74+——67 } (18)
CTe k2
I
=

vez fe *Te X vez fe,re Ve Ie )
e | B B O R
C C ?e c [4 Cte

—_— —_ ﬂ' 3_i 4 ._6_. 5.0
k3r3{m’(1 2ar+o-|—657 Izdr +4Oer

4+ o0

—-I—l—O—I—O—{—ECT ~—-—d4+——e5--->

I
R 22
2%k 6

+%6zk33("'2+07+0+*57‘ ————-d7'4—l———~e7- ...)
—%exk44(—3+2a7'+0+0——d'r4+—67' )

I I I
R 5.5 —— —_—— 3 — e e
+305“zk7( 4 +3er+o0—cor +0+4067 ) } (19)
- J
=t
Hence
. ,
- —_C .73
E. = — Skl (20)

Returning to (17) and solving for 7 by successive approximations,
we find

T=1 —a(l —ga—}—o—l—%(ﬁ-{—o)
—l—gb(I — 2a +ga2+o>+gb2(l -—2(1)
—éc (1 — 3¢ + 40%) — %bc
4
+24 (1 — 40)

I

e.
120
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Substituting this value of 7 in (20), we obtain after a laborious reduction

.._.____e_k_ _§2 I 92 §2
E,= 4M2{m,(1 2a+8 + b b- - +8b

1 I I I 3 3 4
- J— L Dee - 2 —_— =2 = —— e e
+2ac Sd—I—ISe )—I—z'yzk <I 50 +2b 30 )

_2 _3 oY B i 8, YA s
36zk3<1 2a+2b >+85xk<1 3a )30§,k5 } (21)

We need H to the fourth order only, as it is multiplied by v/c in the
force equation (6). It is obtained most easily from (13), the x component
of which is

Ve Ze
Ha; = - _Ez +_Em
7e Ve

which gives, after considerable reduction

H, = __{(Bymz B.my) (1 —-ga2+§b...)

4y’

+ ak('Yumz - 'Yzmy) - %kz(aymz - 5zmy) + %kg(eumz - szy)
- %kZ('Ysz - ’YzBu) + %ks(‘suﬁw_ 52611) e } . (22)

If now, we wish the electric and magnetic intensities at a point x, ¥,
z due to a charge at the origin, we must change the signs of the codrdinates
in (21) and (22), and have

ek
E. ~¢T;Z{ (I_§01 +"*0'1"' __b1+ (11[71 +':8§b12

I I I I
+3 00 +§d1 —1_561"')—5 ’sz2(1 —2012 —gbl +§61"’)
2 8
+35xk3(1+g‘a1—251"')—%€xk4(1+ga1"'>
A s,
+ 308 } (23)

Hz {(ﬂﬂmz ﬁzmu)(l —2012""261"')

4r2

— ask(yym, — yamy) — 3R (8,m, — 8.m,) -+ 3k (eym, — esmy)

+ %kz(')’uﬁz - 'Yzﬁ:u) - %k3(6y62 - 6::814) o } ’ (24)
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where
a; = Bmkr

by = Y-mk?,
cr= (8-m — 3y-B)&%,
di = (em — 48§ — 31))H,
e = ({-m — 5¢-B — 108 y)F5.
Before we can find the reaction of its field on the electron from these
expressions for E and H we must make some assumption as to the dis-

tribution of charge on the electron, just as we should have had to do in
method 4, if we had attempted to evaluate

J(E X H)dr

in the vicinity of the electron. As already noted, the radiation reaction
obtained by Larmor is independent of this distribution, and hence, if
existent, must hold irrespective of the assumption we make here.

We might assume the electron to be a rigid conducting sphere—
Abraham’s electron. The determination of the dynamical equation for
such an electron is comparatively simple, and the actual carrying through
of the analysis shows the existence of no such resistance as that found
by Larmor. However, such an electron is of little interest today, so we
shall not burden our readers with the algebra involved. Instead we
shall confine ourselves to the deformable electron first proposed by
Lorentz, the formula for the mass of which has been abundantly verified
experimentally by Bucherer,! Neumann,? and others. . This electron, it
will be remembered, contracts when moving, so that its dimensions in
the direction of motion are diminished in the ratio of V1 — 82 :1.
Parenthetically it may be remarked that the Lorentz electron is the only
one whose field outside the surface is exactly that of a point charge.
We shall take the distribution of charge to be such that the electron,
when at rest, is a uniformly charged spherical shell.

At first we shall restrict ourselves to motion in a straight line. Take
the X axis as the direction of the velocity. Then since the electron
contracts as its velocity increases, the velocity and its derivatives at a
time o will be less for a point P than for a point O, if P is a distance x
farther along the X axis than 0. In fact we easily see that after a time
dt has elapsed

1of

rof ., f . )
dt—|—6axdt .

v
x,—x<1 +%dt+2ax

1 Phys. Zeitschr., 9, p. 755, 1908.
2 Ann. d. Physik, 45, p. 529, 1014.
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But
xtk; = xk,
where

Vo= v+ fdt + 2 fdP + 2 fd .

Equating coefficients of like powers of d¢ in these equivalent expressions
for x;, we find

a !

o=~ EB o (25)

(%: —k4]§—k26{, (26)

gf; = - 3k66§ — 3kt g — k8 { (27)
and by carrying out the analysis to the second orc.ler of ‘x,

B sl e+ e 9)

Now let x” be the X coordinate of a point Q on the electron relative to
O when the electron is at rest, and x this distance when it is in motion.
Then

¥ = [kd:.
But .
_ 9o, o 1
B=Bo+g o+ o5a .

Substituting and integrating
r 132@22 I 3%' 5 %32 3. ..
x_k0x+2k?606xx +6 kﬁoaxg +k(1+260).ax X . (29)
Equations (25) and (28) show that the coefficient of %3 is of the sixth
order and hence negligible. So we have

f

I
’
x' = kx — - BB25 %2 - -
. 2 662

Hence
’
x 1
& =3+ Ry,
’
y=y,
= Z’,
» 2 I + a12b1
I + aq
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and we find from (23) for the electric intensity at a point x, y, z due to
an element of charge de at the origin

_de I 3 I 1 I
dE, ,2{7”%'(1“5171+§b12+50161+§d1—;’5‘€1"')

47rr

E’)’zk(l—Qal —“b1+’“61 )

+§63}’k4(1 +ga]_—'2b1"')

8 ’ |
—gex'kf’(l+gal"')+;—0§x'k6"'}; ‘ (30)
where
x’ for’ f,r’z fzf’g };7’4
mi =—, v = R 8, =— PR € = PR $ = &

To obtain the force exerted on an element of charge de’ by the charge
de at the origin, in so far as it is due to the electric intensity, we must
multiply (30) by d¢/. Then integrating with respect to de’ we find the
force exerted on the rest of the electron by de. Finally, integrating with
respect to de we obtain the total force in the X direction due to the re-
action on the electron of its own field. The magnetic intensity does not
come into the problem in the case of linear motion which we are here
discussing, since the force due to the magnetic field is always at right
angles to the direction of motion.

Hence neglecting terms which must give rise on integration to equal
and opposite pairs of forces, (30) reduces to

/2 ’ 2
o 2025 )

4w’ 2 ¢ 3
I f,r’3 % 1 fa %
() e (e-en) (50

and the total reaction

om b fose |-+ )

1 x) (L x_)
_8c4k( +3065k4 27”2'.’

where we do not take into account the variation of f and f from point to
point on the electron, since reference to (26) and (27) shows that the only
term of less than sixth order vanishes upon integration.
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n x'2 m 2m+1
r'""dede’ = 3 —5 1'"dede’ = ame?
. g7 m 4+ 2

we get on integration »
e"’f; e’f-Bf. ezjx'
T 6rac(t — B} T 2xci(i — B T 6rd(z — @)
e*f.0 ef.a? ‘
T ordi(x — B8 T 8o — gy 82

for the x component of the reaction exerted on the electron by its own
field, all terms to and including the fifth order having been retained.
The coefficient of f, is the usual expression for the longitudinal mass,
and the third term is the damping effect of the radiation. It is obvious
from symmetry that the vy and 2z components of the reaction are zero.

Let us now treat the general case of any type of motion. Consider
the axes so oriented that the velocity of the point O on the electron is in
the X direction and its acceleration in the XY plane at the instant
considered. Let P be another point whose coérdinates relative to O
are x, ¥, 0. Designate by « the angle which the velocity of O makes with
the X axis at the end of the time d¢. Then

Since

K, =

dt
sin a = ny_B cos a = I. (33)
Moreover
9, 0V,
Xe =x+(£x+5&- )dt,
c (2 s )
yz—y+(axx+ayy dt. (34)
But

(x¢cos e + yesin @)% + (s sin @ — y;cos @) = %% + 97, (35)
where
Vs, = Uy + faudt,
vy, = Uy + fidi.
Substituting in (35) the values of sin @ and cos & from (33) and those
of %, and y, from (34), we get on equating to zero the coefficients of x?
xy, and y?

I

0V, fa

7% pepl®

ox k‘Bc’

v,

dy =0

Pz ¥ gy

ay ox c
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Now, if there is to be no rotation of the electron as a whole

0. _
dy
Hence
W pagle e
dx c ay
oy oo Ju 00y )
T = KB, 3 = (36)

Now consider a point Q near P. Let dx’, dy’, o be the codrdinates of
Q relative to P when the electron is at rest, and dx, dy, o these codrdinates
when it is in motion. Let d7’ and dr respectively denote the distance
PQ under the same conditions, let @ be the angle which 7 makes with the
X axis, and let 0 be the angle which the instantaneous velocity of P
makes with this axis. Then

dr”® = Edr? cos? 0 + dr? sin? 6.

But

gy U el
tan (o — §) = 0= k 2%
Hence
dr' = kdrv'1 — Bsin2 0 — kf’de?J;—:x cos 0 — k%xﬁ%—%'x sin 6.
Ife=o0

dx’ = kdx — k%{—; xdx,

I fe
' = kx — - kB &%
If 6 = 90° ’ ’
dy = dy — k3,82];—’; xdx,
I ofy
y’ =y — ._kaﬁz_zxz_
2 c
Hence
x I
& =3+ kalvs
4 I 2
y=yy +5a1 Yus
72 = 1/21_'1___”’12[71
. 1+ a? !
mk  m, 3 3 3 1 Baly.,
—7;2—= 7/2 (1+5a12+§a14—5a12bx-" 5 7,2"_' s
mp  mk 3 3 3 1 ka.’y
¢%=‘ﬁr(‘+5“f+§“f—5“%f"'+5"ir”-~ (37)
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Therefore we obtain from (23) for the x component of the electric
intensity exactly the same expression (30) as in the case of linear motion.
So far as the part of the x component of the force which depends upon
the magnetic field is concerned, the first term which does not vanish on
integration is of the sixth order and hence negligible. Remembering that

’ ’
Xy

f — = ¢'""dede’ = o
7y

and integrating, we get for the x component of the reaction exerted on
the electron by its field the same expression (32) as in the case of linear
motion.

For the Y direction we obtain from (23) and (37)

de I 3 I I I
dE, = ;rﬁ{mylk(l - 5171 +§b12 +5(1161 +§d1 - 1_5‘81‘ : )
I 3 4
E'Yy'k3<l — 20— 25, +gcl---)

+§5y'k4(1 +2a, - 2b1---)

3 .8 4
—§Eylk5(l +ga1"'>+3_0§ylk6"' }

Neglecting terms which give rise to equal and opposite pairs of forces,
this reduces to

’2

d I ’ 2 I/
dE, = i,z{ —-&ZH(I +%,—2—262x~——46f6—2k3-~>

4 2 ¢? 7"
NI
T3 Feto—grak(a -5
1t v
+30 c5k<4_2r’2 e (5%
Also, from (24) and (37)
%(v X dH), = — BdH,
kde
=— {— Bmy,(1 — %61 co) A aiBk(yamy — yymy)
4wy

+ 1BK% (8.my — Sym.) — $BE(eamy, — e,my)
+ $v.,8%k — §6,8%% -+ -},

which reduces, when we neglect terms which give rise to equal and oppo-
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site pairs of forces, to

I de Ifr y? x’2

2 fr'?
_S'Z%:Tﬂzkfi...}. (39)
Hence
1 de 1S, y'* for'
dEy+E(VXdH)y=;;772{_—5%{k‘(I +1’—'2—4B7k3.”
1" Ifr’s &
+ R+ )—glcr”( ”,a)
1}7'4 ¥
+35—1’C5—k4<4—27—,2 (40)
and the total reaction
=-ffdde{~f—2 k(: +y—)+ 5f"f”
2 ¢’ 7

2fy e LI (Y, LI, ¥
+303 T8 (3_7’2 +30 c5k 4_27’2 T

Integrating we find

- efy e - Bf, 62jy B
B = = Grac(c =9 T omal = T T ora( - )
&0 of a?
omct(n — )} T 1875(1 — g2 (41)

where the coefficient of f, is the usual transverse mass. We obtain a
similar expression for K,. It is to be noted that the coefficient of f-pf
as well as that of f is 'mdependent of the assumption as to the distribution
of the charge.!

It may be of interest to give, in passing, the equation of motion of
the deformable electron to all orders—neglecting products of derivatives
of the velocity—for the instant when the electron is at rest relative to
the observer. The analysis is omitted. We find for the reaction of the
electron’s field :

11t is to be noted that in (32) and (41) are obtained for the first time general expressions
for the longitudinal and transverse masses respectively which are not limited to a quasi-
stationary state of motion.
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_ of of e_""fi efa? ¢fa’ efat
T T 6rac® ' 6mc® omct | 18mc®  45mc® | 1357

e & (— 1) 2a\"dv
- 2 h! < >EZ}7

127wa%c 7 c
e -2
12wa’c

o8
SIEN

I

e v

2
=y . (42)

12wa% t=—7

The force exerted on an electron by its own field is equal to a constant
multiplied by the velocity which it had at a time earlier equal to the time
taken by light to travel across the electron’s diameter. Now, if we choose
the proper point inside the electron to take as the one to which the
derivatives of v in the equation above apply, we can make the product
terms which we have neglected vanish exactly. So there is a point inside
the electron for which (42) is the exact equation of motion.

To return to our problem. Inspection of expressions (32) and (41)
shows that the reaction on the electron due to its own field contains
terms having the directions (except for the aberration due to the differing
powers of T — B2 in the denominators of the components) of f, f and
higher derivatives of the acceleration. There is no term representing a
force opposed to the velocity, as Larmor’s result would imply. Hence
the reaction constitutes a resistance to the acceleration, etc., and #ot¢
to the velocity of the vibrating electron. Iz fact we shall now show that
in every term—mass reaction as well as radiation reaction—ithe form of
equations (32) and (41) is precisely that demanded by the principle of
relativity.

Let symbols without primes refer to a system K (0), which we may
for convenience call the rest system, and let symbols with primes refer
to a system K (v) which has a velocity v in the X direction relative to
K (0). Consider a moving point. Its velocity, acceleration, and higher
derivatives relative to an observer in K (v) are found in terms of these
quantities relative to an observer in K (0) by differentiating the Lorentz-
Einstein transformations. Suppose now that the point is, at the instant
considered, at rest in K (v). Then the transformations obtained reduce to

f:cl = kaifx:
I = Efy,
7= R atpL,

Ji = ot B,
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fx’ = k"’f, + terms of sixth and higher orders,

j:y,:k%}:ﬁ—'_“',
J = ket e,
Bk

If now, our point represents an electron, its equation of motion relative
to an observer in K (v) is obtained by putting 8 = o in (32) and (41),

efs &ef,)  éfla éfa?

eE,; = - — ——— - higher orders
e 6mac? 6w omct  18wcd + hig !
v Y . -
ol efg efy ef/a  &f/a
eE, e il anris a ey i S

= 6rac 61 omct  18mcd
But the relativity theory gives the familiar relations
E,) = E,,

1
w2 -{m o xm,).
Hence we have

A A
%2 = bracr(1 — B 2mct( — BT (1 — B)°
| ezfxa e“’f;ﬁ
T onct(t — B T 18ra(r — B
.I_ — ezfﬂ egf'pfy
¢ {E” + c (v X H)”} T 6rack(t — B 2mct(1 — B
32f y 32.); y@ e%}:;;az

T 6wt (1 — BY) t orct(t — B} 18mci(1 — B2 T
which agree exactly with (32) and (41), showing that 8 enters into the
equation of motion of a moving electron in exactly the same way whether
we obtain that equation directly from electrodynamics, or obtain it by
applying the electrodynamic equations to an electron at rest and then
using the kinematical transformations of relativity to find it relative
to an observer with respect to whom the electron is in motion. So we
conclude that the equation of motion of an electron as determined from
the electrodynamic equations s completely in accord with the principle
of relativity, at least as far as the fifth order. Hence a moving vibrator
experiences no retardation on account of its radiation. Aund since the
retardation in question depends only upon the drift velocity and rate of
radiation, this conclusion is equally true of any moving body, however
complex.
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SUMMARY.

(a) Professor Larmor’s deduction from the electrodynamic equations
of a radiation reaction on a moving mass has been shown to rest upon a
tacit assumption which utterly invalidates his conclusion.

() It has been shown rigorously that classical electrodynamics leads
to no retardation on a moving and radiating mass, but is completely in
accord with the principle of relativity.

(¢) The equation of motion of the Lorentz deformable electron has been
computed from the electrodynamic equations as far as and including terms
of the fifth order, and found to be in exact agreement with the principle
of relativity. The result obtained is more general than any previously
published in that it is limited to no particular type of motion, such as
quasi-stationary motion in a straight line,

SLOANE PHYSICS LABORATORY,
YALE UNIVERSITY,
December 19, 1917.



