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A GENERAL THEORY OF ENERGY PARTITION WITH
APPLICATIONS TO QUANTUM THEORY.

BV RICHARD C. TOLMAN.

Introduction. —The principle of the equipartition of energy was one
of the most definite and important results of the older statistical mechan-
ics, and the contradiction between this principle and actual experimental
findings, in particular in the case of the distribution of energy in the
hohlraum, has led many physicists to believe that the underlying struc-
ture of statistical mechanics must itself be false. More specifically, since
statistical mechanics is most conveniently based on the equations of
motion in the Hamiltonian form, many critics of the older statistical
mechanics have come to the conclusion that Hamilton's equations are
themselves incorrect, and indeed some extremists have gone so far as to
believe that any set of equations would be incorrect which, like those of
Hamilton, take time as a continuous variable, since they think that time
has in reality an atomic nature and that all changes in configuration
take place by jumps.

It is well known, however, as shown by the work of Helmholtz,
Maxwell, J. J. Thomson, Planek and others' that for all macroscopic
systems whose behavior is completely known it has been found possible
to throw the equations of motion into the Hamiltonian form, provided
we make suitable choices for the functional relationships between the
generalized coordinates &I&2 ~ ~ p„,the generalized velocities &I&2 ~

' The appended references may be consulted as an evidence of the general applicability
of the principle of least action in all A,nomn fields of dynamics. The methods of transposing
the equations of motion from the form demanded by the principle of least action to the
Hamiltonian form are well known. In carrying out this transformation it should be re-
membered that the system must be taken inclusive enough so as not to be acted on by
external forces.

See Helmholtz, (Vorlesungen uber theoretische Physik); note the development of electro-
magnetic theory from a dynamical basis by Maxwell (Treatise on Electricity and Magnetism)
and by Larmor (Phil. Trans. , A-7x9 (x884), p. 694 (x895)); the treatment of various fields

by Sir J. J. Thomson (Applications of Dynamics to Physics and Chemistry, Macmillan,
x888); the presentation of optical theory on a dynamical basis by Maclaurin (The Theory
of Light, Cambridge, x9o8); and considerable work in newer fields based on the principle
of least action by Planck (Ann. d. Physik, 26, x (x9o8)), Herglotz (Ann. d. Physik, g6, 49$
(x9xx)), de Wisniewski (Ann. d. Physik, yo, 668 (x9x3)), Tolman (Phil, Mag. , 28, S83 (x9x4),
and The Theory of the Relativity of Motion, University of California Press, x9x7).
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the generalized momenta pip~ p„,and the Hamiltonian function II.
For this reason the writer is inclined to believe that in the case of the
ensembles of microscopic systems considered by statistical mechanics it
is very unwise to abandon the Hamiltonian equations of motion unless

we are absolutely forced to it. It should also be noted that the variables
involved in an equation of motion can always be considered as having
ultimately a continuous nature, since apparent jumps in configuration
can always be accounted for by the assumption of immeasurably high
velocities. Such considerations make it necessary to investigate the
whole structure of statistical mechanics and determine if the Hamiltonian
equations of motion actually do necessitate the principle of the equi-
partition of energy.

We shall And that the principle of the equipartition of energy is not
in the least to be regarded as a necessary consequence of Hamilton's

equations, but has been derived from those equations merely because
energy has, quite unnecessarily, always been taken as a homogeneous
quadratic function of the generalized coordinates. We shall be able,
furthermore, to derive a new and very general equipartition law for the
equipartition of a function, which reduces to energy for the special case
that energy does happen to be a quadratic function of the coordinates.
Our methods will further permit us to study the actual partition of
energy with various functional relations between energy and the coordi-
nates, and we shall consider a number of interesting systems where

energy is not equiparted which have hitherto been neglected. Finally,
in the case of the hohlraum, we shall consider a functional relation be-
tween energy and the coordinates which does lead to the partition
of energy actually found experimentally, and also leads to the absorption
and evolution of radiant energy in a relatively discontinuous manner in

amounts hv, thus agreeing with the photoelect, ic and inverse photoelectric
effects.

This treatment of the hohlraum which we shall present leads to the
expression

for the average energy associated with a mode of vibration of frequency v,

in a hohlraum which has come to thermodynamic equilibrium at tempera-
ture T. This expression is known to agree at least substantially with the
experimental facts and is the expression proposed by most forms of the
so-called quantum theory of radiation. Our treatment of the hohlraum
differs, however, from previous forms of quantum theory in not disturbing
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in the least the fundamental structure of the familiar classical statistical
mechanics. In essence, our development adopts the essentials of the
older statistical mechanics, and merely grafts on to it the new idea,
that energy is not necessarily a quadratic function of the generalized
coordinates and momenta which appear in the equations of motion in the
Hamiltonian form. ' The methods of attack, which are here considered,
are moreover much more general than any hitherto employed by the
quantum theory, since they permit a study of the partition of energy
for an infinite variety of forms of relation between energy and the co-
ordinates. Thus in the present article, we shall consider the energy
partition in a number of systems besides those which can be treated
by the quantum theory, including for example the partition of energy
in a gas subjected to the action of gravity. Indeed it is to be specially
emphasized that we shall find the structure of statistical mechanics quite
big enough to account for any desired number of different modes of energy
distribution besides the particular one proposed by the quantum theory. '

PART I. STATISTICAL MECHANICS.

The Equations of Motion Co.n—sider an isolated system whose state is

defined by the I generalized coordinates (&~@2 ~ P„)and the corre-
sponding momenta (/~$2 ~ ~ P„). Then in accordance with Hamilton's

equations we may write the equations of motion for this system in the
form

BH . BH
~ ~ ~

lp .

gy
2t

BII
l3fl

BH
$27

where H is the Hamiltonian function, and Pr = (der/dt), etc.
Geometrical Representation. —Employing the methods so successfully

used by Jeans, ' we may now think of the state of the system at any
instant as determined by the position of a point plotted in a 2n-dimen-

sional space. Suppose now we have a large number of systems of the
same structure but differing in state, then for each system we should
have at each instant a corresponding point in our 2n-dimensional space,
and as the systems change in state, in accordance with equations (r),
the points will describe stream lines in the generalized space.

' The investigations already referred to show the possibility of a variety of functional
relationships between energy and the generalized coordinates and momenta.

' This fact might assume unexpected importance if more accurate measurements of the
distribution of energy in the hohlraum should lead us to discard Planck's formula as experi-
mentally correct.

3 The Dynamical Theory of Gases, ad edition, Cambridge, rgI6.
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The Maintenance of Uniform Density. —Suppose now that the points
were originally distributed uniformly throughout the space, then it is
a necessary consequence of our equations of motion that the distribution
will remain uniform. To show this, we note that we may write for the
ra ~e at which the density at any point is increasing:

and since our equations of motion (i) evidently lead to the relations

8@y 8gy+ 0
l9$y 8gy

Bpg 8/2+ —0, etc. ,

we see that the original uniform density will not change.
This important result means that there is no tendency for the repre-

sentative points to crowd into any particular part of the generalized

space, and hence if we start some one system going and plot its state in
our generalized space, we may assume, ' that, after an indefinite lapse
of time, its representative point is equally likely to be in any one of the
infinitesimal elements of equal volume (d4ad4id4a dfidPidPa ) into
which we can divide our generalized space, provided of course the co-
ordinates for the location of this element correspond to the actual
energy content o'f our system.

microscopic State.—As a convenient nomenclature, we shall say that a
statement of the particular element of volume (ditidpidpi dipidpidps

) in which the representative point for our given system is found is

a specification of the microscopic state of the system. And the principle,
which we have just obtained, states that all the different microscopic states

possible have the same

probability.

Statistical State.—Let us suppose now that our system is a thermo-
dynamic one composed of a large number of identical elements, such
as atoms, molecules, oscillators, modes of vibration, etc. We may
let N~, N~, Nc, etc. , be the number of elements of each of the different
kinds A, 8, C, etc. , which go to make up the complete system, and

may consider our original 2n coordinates and momenta as divided up
among these different elements.

For such a thermodynamic system we shall be particularly interested
in the number of elements of any particular kind ci which have co-
ordinates and mo'menta falling in a given infinitesimal range (d~pi d~pi

' It is not within the scope of our present undertaking to enter into the vexed discussions
as to the validity of this assumption.
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date& dzg2 ~ ~ ) and this determines what we shall call the statistical
state of the system.

The microscopic state of the system and the statistical state differ
in that the former determines the coordinates and momenta for each
individual element, while the latter only states the number of elements
of the different kinds which have coordinates and momenta of a given
magnitude, without making any distinction as to which particular ele-

ments are taken to supply a quota. Thus we see that, corresponding
to a given statistical state of the system, there will be a large number
of microscopic states, and, since we have already seen that all micro-
scopic states are equally probable, we obtain the important conclusion
that the probability of occurrence for a given statistical state is pro-
portional to the number of microscopic states to which it corresponds.

Probability of a Given Statistical State Let u.s—now specify a given
statistical state by stating that 1NA 2NA 3NA '' 1NB 2NB 3NB

1Nc 2Nc 3¹,etc. , are the number of elements of each of the kinds,
which have values of coordinates and momenta which fall in the particular
inhnitesimal ranges Nos. l A, 2 A, 3 A, ~ ~, I 8, 2 8, 38, ~, etc.
Then it is evident from the principles of permutation that the number
of microscopic states corresponding to this statistical state will be:

(N, )No No. . .
(2)

and we shall call this the probability of the given statistical state, without
bothering to introduce any proportionality factor.

Let us assume now that each of the numbers 1NA 2NB, etc. , are large
enough so that we may apply the Stirling Formula,

hei
Introducing into (2), taking the logarithm of W for greater convenience,
and omitting negligible terms we obtain:

~ 1NA 1NA 2 NA 2NA 3+A 3NA
Iog W = —N —log +—log ——+—log —+

NA NA

)~ 1NB 1NB 2NB 2NB 3NB 3+B—Ns ]
——log —+—log —+—- log —+ (g)

i 1NC 1NC 2NC 2NC 3NC 3NC—Nc i
—log ——+—log —+ log —+

~& Nc Nc Nc Nc Nc Nc

—etc.

The ratios ~N~/N&, 2N~/N~, etc. , evidently give the probability that
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any particular element of the kind in question shall have values of
the coordinates and mornenta falling within particular infinitesimal

ranges (d&»t&} d~&t&} ~ ~ d~&t} d~P} ) Nos. x A, 2 A, etc. , provided the
system is in the given statistical state. Let us denote these ratios by
the symbols &mA, 2m», etc. ,

;NB
5')i B N )

B

;Ng
izing

———,etc.
C

Then we may rewrite equation (4) in the form

log W = —X~ g &w~ log;w& —X}}
i=1}9& 3}...

i=1}2, 3, ...

}w}}log &w}}

'ivy log 'wt. — (6)

State of 3IIaxi}}}grm Probability Havin. g—obtained this expression for
the probability of a given statistical state, let us determine what par-
ticular state is the most probable with a given energy content. The
condition of maximum probability will evidently be:

&X log W = —E„Z(1og; w~ + x) b,w~ —Z}}Z(log;w}} + x) b w}} ~

(7)
The variation 8, however, cannot be carried out entirely arbitrarily

since the number of elements of any particular kind cannot be varied
and the total amount of energy is to be a constant.

In accordance with equations (}&) we may write

NA ——NA Z;wA, NB = NB Z;zvB, etc. ,

and since the total number of elements NA, NB, etc. , of each king cannot
be varied we have

NA Z b,mA ——O, NBZ b,mB ——O, etc. (8)

Furthermore, let us write the total energy of the system equal to the
sum of the energies of the individual elements,

NA ~ )~A i+A + NB ~ i~B i+B +
where;EA, etc. , is the energy of an element of kind A with values of
coordinates and momenta falling in the infinitesimal region No. iA, etc.
Since B is to remain constant during the variation we may write

NA ~ LA~~A + NB ~ i+BO~B + (9)

The simultaneous equations (y) (8) and (9) may now be solved by the
familiar method of undertermined multipliers giving us

etc.

log;wA + I + X;ZA + pA = 0, b = I 2 3

log i~B + I + & ~&B + pB = o) & = & 2 3
(xo)
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The quantities X, pA, pB, etc. , are undetermined multipliers, where it
should be specially noticed that X is the same quantity for all the equa-

tions, while pA, pB, etc. , depend on the particular kind of element in

question.
For our purposes these equations can be more conveniently written

in the form

;mB ——
, O, Be ~'"A

etc. ,

(ii)

where e is the base of the natural system of logarithms and the constants
O.A, nB, etc. , correspond to the earlier pA, p, B, etc. , and p corresponds to p, .
These are the desired equations which describe the state of maximum

probability. Thus, in accordance with the equations of definition (5),
;wA is the probability that any particular element kind A will have values

of coordinates and momenta falling in the particular infinitesimal region,

(&~pi, AQi, ~, d~Pi, d~f&, ~ ), No. t'A, when the system has attained
the state of maximum probability.

Introduction of a Continuous Van able 'The.—quantity, ui~ determines

the number of elements that fall in the specific region Xo. iA. We
have seen, however, in equations (ii) that;ro& is determined by the

energy corresponding to this region, and this in turn is a function of the
coordinates and momenta. This makes it possible to introduce a new

and convenient quantity, a variable, m», which is a function of these
coordinates and momenta, and which gives the probability, per Unit

generalized volunse, that a given element of kind A will have coordinates
and momenta corresponding to the energy ZA, we may then write

~AdA$1dA$2' ' 'dAQldA$2' ' ' +Ae dA$1dA$2' 'dAgldA$2' ' '

&BdBQldB$2' ' dBPldB$2' ' ' +Be dBfldB@2' dBpldB$2' ' '

as expressions for the chance that a particular element of kind A, B,
etc. , will have values for coordinates and momenta falling in the infini-

tesimal ranges indicated.
Final Fxpression for the Distribution of Elements in State of Maximum

Probability. —It will be noticed that the constants aA, cB, etc. , which

occur in equations (12) correspond to the ti~, tie, etc. , in equations (to)
and hence these values will be determined by the particular kind of
element A, 8, etc. , involved. P, on the other hand, corresponds to the
earlier ) and hence its value is independent of the particular kind of
element involved. In case the elements involved are the molecules of a
perfect monatomic gas, it is well known that P has the value of t/h'1,
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where k is the ordinary gas constant divided by Avagadro's number,
and T is the absolute temperature. Hence we may now write as our
final expression for the probability that a given element of any particular
kind will have values of coordinates and momenta falling within a given
infinitesimal range,

ae

where the value of a depends on the particular kind of element A, B,
C, etc. , in which we are interested, and B is the energy of one of the
elements, expressed as a function of its generalized coordinates and

I

momenta (Pi&2 P,Ps ).
Two Functamenta/ Fguatious of Statistical Mecltan~cs Sin.c—e any ele-

ment must have some value for its coordinates and momenta we may
write the important equation,

ff ff ae dy, dy, " dP,dp,
—E/kT

where the limits of the integration are such as to include all possible
values of the p's and Itt's.

Furthermore, it is evident that we may. write for the average value
of any property I' of an element, the equation

where I' is to be taken as a function of the coordinates and momenta,
and the limit of integration is as above.

The Gemera1 Eguipartition I.am.—Ke may now derive a very general
equipartition law. Let us integrate the left-hand side of equation (i4)
by parts with respect to p&, we obtain

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
pi = upper limit

pi = lower limit

—Ej'k Tae Qi dpid$2 dg&dlt2 ~ ——IikT i Dpi

(i6)

Let us confine ourselves now to cases in which pi becomes either zero
or infinity at the two limits, and in which 8 becomes infinite if p& does.
Then the first term of (i6) vanishes and we may write

~ ~ ~ ~ ~ ~ ae p ——dp dp ~ ~ ~ dg dg ~ ~ ~ = kT Ip
—EJ1GT

Dpi

In accordance with (r5), however, this gives us the average value of

[pi(BZ/8&i)] and hence, applying similar consideration to the other co-
ordinates and momenta, we may now write as our general equipartition
law:
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d2
— = 6 = A = =hT (&8)

~$1- av - ~F5'2- av - ~Itt'1- av - ~$2- uv

and this law will apply in all cases in which the above condition as to
the limits of integration is fulfilled.

The General Equation for the Partition of Energy In.—the particular
case that the energy is a homogeneous quadratic function of the co-
ordinates and momenta the above equation (z8) will evidently reduce
to the value ~AT for the energy associated with . each coordinate or
momentum, which is the familiar principle of the equipartition of energy.

Whatever may be the relation, however, between energy and the
coordinates and momenta, we may obtain its average value for a given
kind of element with the help of equation (i5), which permits us to write

E = ff f"f a'
e "Ed-y,dg "dP,dy, "—X//e T

In order to eliminate the constant a we may divide (r9) by (i4) and
obtain,

J ~ ff ~ ~ ~ e ~ Ed),d)2 ~ ~ dpgdfg ~ ~ ~
—X/k T

—X(kT~ ~ ~ ~ ~ 0 g d@]de ~ ~ 0 dpgjf)2 ~ ~ ~

(~9a)

We may now apply equations (t8) and (l9a) to obtain information
as to the partition of energy in a number of interesting cases. '

PART II. MISCELLANEOUS APPLICATIONS.

Gas Subjected to Grav&y. —For the 6rst application of our equations
let us consider a monatomic gas subjected to the action at gravity, in a
tube of inftnite length Consider. ing the Z axis as vertical we can write
for the energy of any given molecule,

mx my ms
Z = mgs+ + +2 2 2

where s is the height of the molecule above the surface of the earth. In
terms of the components of momentum, our expression for energy may
be rewritten:

I I I8 = mgs+ P'+ —Py'+ —lIt,',
2m 2m 2m

I In applying these equations it is to be noticed that we do not need to make the elements
into which we divide our statistical system agree with what are ordinarily thought of as the
physical elements of the system. Thus if our system is a quantity of a monatomic gas, instead
of taking each atom with its three positional coordinates and its three momenta as an element
we may take these variables as belonging to six different elements. Indeed it is obvious,
from our methods of deduction, that we shall need to class coordinates and momenta together
as belonging to the same element only in groups large enough so that any given coordinate
momentum will not appear in the expression for the energy of more than one of our elements.
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where the components of inomentum are given by the equations

P, = mx, Py=my, P, =ms.

Applying our equipartition equation (I8) we obtain

I I[mgs]„=
-av m -av

I = kT,
m gv

or, introducing the equations defining momenta, we obtain

[mgz]„=kT,
mx2

OV

my' -m'2-

CV

= 1kT.

(2o)
then by (i8) we shall have

kT
-EaV

'g

And we see that according to our equipartition law, the average potential
energy per molecule is twice as great as the average kinetic energy in

any direction.
This is a particularly simple case of a deviation from the principle

of the equipartition of energy, and of course it could have been shown

by methods which have long been familiar, that the average potential
energy per molecule is twice as great as the average component of kinetic
energy. It should be specially noticed that this is a deviation from the
principle of the equipartition of energy which bears no relation to those
which have more recently been discovered and studied by the quantum
theory.

The Energy Any SimPle Power of the Coordinates. The abov—e devia-

tion from the equipartition of energy was due to the fact that the poten-
tial energy of these molecules was proportional to the first power instead
of to the square of the coordinate involved. We may point out with
the help of equation (?8) what the general relation will be. If the energy
for a given elementary coordinate or momentum is proportional to the
nth power of that invariable,

Z=cyn

Thus, for example, if we had in our system oscillating elements in which

the restoring force, instead of following Hook's law, was proportional
to the square of the displacement, then the average potential energy
of these oscillators would be -', kT instead of the familiar —,'kT.

These considerations will be of value in case we find it convenient to
express the energy of an element by an empirical formula of the form

Z = a+bQ+ cqP+dp'+
Relativity 3IIechars~cs. —As another example of a deviation from the
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principle of the equipartition of energy, we may consider a monatomic
gas whose molecules are considered as particles, obeying the new "rela-
tivity" laws of motion instead of Newton's laws of motion, which we
now know are only the approximate form assumed by the correct laws
of motion at low velocities.

According to these new laws of motion we must write for the com-
ponents of momentum of a particle:

SZpX

x +y +z
c2

fpspy

g2 + y2 +
c2

fV pS

g2 + y2 + Q2

I
c2

where mp is the mass of the particle at rest and c is the velocity of light.
For the kinetic energy of the particle we may write

B=
~I

1Rpc

~2+y2+ g2

c2

a quantity which except for a constant reduces to —,mo(x' + j' + s') at
low velocities. In terms of the momenta we may rewrite this expression
for the kinetic energy in the form

Z = C&C2m2p + P 2 + P 2 + P,2.

Applying equation (I8) we obtain

(23)

cP,
+C2~ 2 + P 2 + P 2 + P 2

c
"+C2mo2 + P ' + P ' +

= etc. = kT,

and introducing our previous equations, this may be written

I

g I

SSpX

X2+ y'+ i2

C2

mpy2

~2 + y2 +
c2

SPY pS = -'kT.2

(~4)
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We thus see that in relativity mechanics we have the equipartition of a
function which reduces to the kinetic energy —,nzox, etc. , at low velocities,
but at high velocities is not even the same as the relativity expression
for energy. '

These few examples are sufficient to illustrate the application of our
methods, in fields other than those treated by the quantum theory.
Let us now turn our attention to the partition of energy between the
different modes of vibration of a hohlraum.

PART III. APPLICATION TO THE HOHLRAUM.

The Idea of Quanta In .d—eveloping a theory of the hohlraum, we may
. base our considerations on the fact that radiant energy is known to be
absorbed and evolved substantially in quanta of the amount hv, where
h is Planck's new constant and v is the frequency of the radiation in-

volved. This is an experimental fact, illustrated most simply by the
photo-electric effect and the inverse photo-electric effect, and is cer-
tainly the expression of a fundamental characteristic of radiant energy.

This important fact can be incorporated in our new system of statistical
mechanics by assuming that the energy associated with a given mode of
vibration in the hohlraum increases with the amplitude of the vibrations
in a relatively discontinuous fashion by amounts of the magnitude hv.

If @ is a generalized coordinate which determines the displacement for
a given mode of vibration and P is the corresponding generalized momen-
tum, then in the older dynamics the energy associated with the mode
would have been given by the formula

Z = kgb + lP, (25)
where k and l are constants. According to this formula the potential
energy kqP increases continuously with the square of the displacement
and the kinetic energy tP with the square of the momentum.

In our new dynamics let us assume that the energy is practically
zero until kp'+ lI{t2 reaches the value hv and that it then increases
with great suddenness to the value Av, remaining again practically con-
stant until it increases to the amount 2hv, when kqP + lP itself reaches
the value 2hv, and so on, for following intervals, the energy attaining
successively the values 3hv, 4hv, etc.

Expression for Energy. Such a relation—between energy and the co-
ordinates can be expressed algebraically by the equation

{
—[Av/())$'+lp~)]" + [2ltv)(kg~+)—p~)]" y —[slav)(kg~+gr~)]" ~ . . ] ( 6))t

I This new equipartition law for the special case of relativity mechanics was first derived
by the author, Phil. Mag. , z8, 583 (Igz4). The same article or an earlier one by Juttner,
Ann. d. Physik, 34, 8S6 (rgII), may be consulted for an investigation of the actual energy
partition in this case.
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where n is some number large enough so that the exponents of e change
suddenly from minus infinity to zero when kgb + lP assumes the suc-
cessive values hv, 2hz, 3&v, etc. If e were itself given the value infinity,
the energy would increase in absolutely abrupt steps of the magnitude hv.

It is not our belief, however, that the energy changes absolutely abruptly
at the points in question, since if this were the case the whole application
of our statistical mechanics would be fallacious, since it is based on the
Hamiltonian equations which presuppose a motion which is at least con-
tinuous when regarded from a fine-grained enough point of view. Fur-
thermore it is not to be supposed that the precise relation between

energy and the coordinates is necessarily given by equation (26). The
expression presented or any other which makes the energy increase in

the way described, substantially in quanta, is quite suitable for the
purposes of integration which we have in view, but might not be suitable,
if we should desire to differentiate (26) for the purpose of 'determining

the equations of motion in the Hamiltonian form.
Before leaving the discussion of equation (26), we should point

out that v is the frequency of the particular mode of vibration in-

volved and IE is Planck's new universal constant which has the magnitude

I2.83 )& zo " erg p seconds, so that even with a frequency of many

billions per second, the energy would apparently increase with the

amplitude of vibration in a perfectly continuous fashion in accordance

with the simple equation Z = k&P + lP, which has been made familiar

by experimentation with those everyday vibrating systems whose fre-

quencies are low.
Partition of Energy in the Hohlranrn. Ha~ing des—cribed the relation

between energy and the coordinates which we believe to exist, let us

proceed to determine the partition of energy in the hohlraum, by the

methods which we have developed in the earlier part of the article.

In accordance with equation (t9a) we may write for the average energy

associated with a given mode of vibration,

ff x/k T Ed~dP—
ff ~II rd&d~

In order to evaluate these integrals for our particular case, we may note
in accordance with equation (26), that the energy E will have the value

zero for all values of @ and ltt which lie inside the ellipse kqP + lp = kp,

the value hv for all values of p and P falling in the space between this

ellipse and the concentric one kgb + lllt2 = 2hv, and so on for successive

concentric ellipses. This permits us to rewrite the above equation in

the form
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Since the area enclosed by the successive ellipses increases by equal

steps of the amount (sf/v/~Pl), the above expression can be reduced to

b (e Av/kT + z
—"liv/kr + 3

— slav/kT +—
)zav I+8—hv/kT i —2hvlkT / —'ohv/k T+e +e" ~ ~ 0

which upon division is seen to be

hv
hv/kTe"

which is the well-known expression, assumed by the quantum theory
upon empirical grounds, as the average energy for a mode of vibration
of frequency v. The r'esult is of significance in showing that our general-
ized dynamics, in which the energy can be any function of the coordinates
and momenta, leads to a statistical mechanics broad enough to account
for the actual partition of energy found in the hohlraum.

En/fssfor/ oj' Energy by Quanta. —Before leaving this discussion we
should point out that the relation (z6) between energy and the generalized

coordinates which we have chosen, not only accounts, as we have just
seen, for the partition of energy in the hohlraum, but also explains the
photo-electric and the inverse photo-electric eAects. This arises from
the fact that in accordance with the fundamental structure of our system
of statistical mechanics all microscopic states for a given mode of vibra-
tion are equally probable, and since the vast majority of these microscopic
states correspond to an energy content, which is an exact multiple of hv,

we shall expect generally to find radiant energy absorbed and emitted
in amounts hv or some multiple thereof.

Nature of the Electromagnetic Field It is, furt.h—er, to be pointed out,
if we are permitted to trespass for a moment in a field of uncertain
speculation, that our relation (z6) between energy and the coordinates
indicates a somewhat fibrous structure for the electromagnetic field
when viewed from a fine-grained enough, and not too fine-grained, point
of view. It seems to the writer, that this conclusion might furnish

support to those theories of the atom' which assign very definite positions,
' See, for example, Lewis, J. Amer. Chem. Soc., g8, 762 (I.gx6).
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with reference to the positive nucleus, to those electrons which determine
the chemical properties of the atom, since the fibrous structure of the
electromagnetic field surrounding the positive nucleus might easily pro-
vide rather definite pockets where these electrons would find their
positions of equilibrium.


