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The content of the Low-Wick scattering formalism is studied, using the example of a class of exactly
soluble meson theories with fixed-source interaction. The theories in question describe a set of harmonic
oscillators with an arbitrary distribution of frequencies, coupled to a scalar meson field by means of their
total dipole moment. The Low equation for scattering of a meson is shown to possess infinitely many solu-
tions. These are compared with the exact, explicit solution of the same problem, and it is shown that there
is a one-to-one correspondence between a particular choice of theory (number of oscillators and their
frequencies) and a given one of the aforementioned solutions of the Low equation. A similar situation is
shown to obtain for symmetric pseudoscalar theory, and it is made plausible thereby that Chew and Low
have chosen the particular solution appropriate to their Hamiltonian.

I. INTRODUCTION

HE solution of the Low equation! obtained by
Chew and Low? for a fixed-source theory and
with the use of the one-meson approximation has been
shown?® not to be unique but rather only one of an
infinite number of solutions. Since this solution is
distinguished from the others only in that it has the
fewest number of zeros in the scattering amplitude,
there appears a need for justifying its choice. It has
been variously suggested that there may exist a general
principle which would require all the other solutions to
be eliminated on the grounds that they are ‘“non-
physical.” On the other hand, it may be that the Low
equation can not imply a particular solution because
it does not manifest the full physical content of the
system to which it is applied, and, in this case, other
properties of the system would have to be utilized
before a unique solution could be obtained.

There exists one class of theories for which the
correctness of this latter point of view has been demon-
strated.* However, as pointed out by Dyson,* the models
comprising this class do not have the property of
““crossing-invariance,”® and it is conceivable therefore
that the conclusions drawn from a study of these
theories may in some measure be attributable to this
lack. In order to clear up this point and in order to
acquire some further insight into the correct significance
of the solutions of the Low equation, we devote our-
selves in this paper to the study of a class of theories
which do possess ‘““crossing-invariance” and at the same
time ones for which both the Low equation and the
equations of motion can be solved exactly.

In Sec. II the Low equation is derived, and it is
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demonstrated that the same equation describes every
model of the class. The solution for the scattering
amplitudes are then obtained by solving the Low
equation and also, in Sec. ITI, by solving the equations
of motion. In Sec. IV these two results are compared,
and the conclusions drawn from this comparison are
used as the basis for a conjecture concerning the
meaning of the additional solutions of the Low equation
for the symmetrical, pseudoscalar theory.

II. SOLUTION OF THE LOW EQUATION
A typical theory of the class has the Hamiltonian

H=H+Hj, (1)
where

Hozfdk a*(k)w(k)a(k)+ Z —~+zmw§r,2), 2

=1

H1=gfdx ,o(ac)[Vgo(x)-:Z:‘1 ri]—Es, 3)

while the whole class is generated as N is allowed to
assume all integral values from one to infinity. In
addition to the free meson field, the unperturbed
Hamiltonian in Eq. (2) describes a matter system
composed of N particles each of mass m and each
bound harmonically with its own resonant frequency
w;. Equation (3) characterizes the interaction of this
matter system with the scalar meson field ¢. p(x) is the
spherically symmetric form factor common to all the
bound particles, g is the common coupling constant,
a(k)[a*(k)] is the destruction [creatlon] operator for
a single meson of momentum k, and E, is a ¢ number
introduced to fix the ground state of the complete
Hamiltonian at zero energy. For N=1, the model is
similar to that of a harmonically bound electron inter-
acting with the radiation field in the electric dipole
approximation.® The theory considered here, however,
is not burdened with additional computational involve-
ment arising from the boson polarization.

6 N. G. Van Kampen, Kgl. Danske Videnskab. Selskab, Mat.-
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By employing the methods. and notation of Wick,”
one readily obtains for the .S matrix

(6| S| k) =5(k'— k) — 2mis (o' — ) (6| T| ), (4)
where the scattering amplitude (k’| T'| k) is given by

K| T|k) =T (K),7*(k)¥o) (5)
=(‘I’0; 7*(k) . j(kl)‘I’o)
—w—H
1
0y / k, e k 0},
(w0 00— —rwn), ©
and where
- ) igp(k) ¥
k) =—j)=[Hra*(k)]= (2 )%k'ér"' @)

¥, is the ground state of the complete Hamiltonian H,
and the symbol 4-in indicates that the limp—0, is to
be taken after the performance of all integrations.

Noting from the form of Hy in Eq. (3) that only the
partial waves of unit angular momentum can interact,
we take the projection of Eq. (6) onto the states of
!=1 by means of the relation

) wk 1
T(w>=—3~z dQdQ Vi (B V1. (B) (&' | T|k), (8)

m=—1

where £ is a unit vector in the direction of k, and
obtain, after combining the terms,
(f2+h)

The sum in Eq. (9) is over any complete set of eigen-
states of H. However we will assume® that there exist
no bound states, from which it follows that only the
one-meson intermediate states will contribute. The
validity of the one-meson approximation for this theory
can be verified by noting that the Hamiltonian in
Eq. (1) is a quadratic function of the operators for the
meson and harmonic oscillator quanta. Due to this fact
the Hamiltonian can be diagonalized such that the
operators for the physical quanta are /inear combina-
tions of the operators for the free quanta. A similar
situation exists in the case of pair theory.®

With the choice of the incoming-wave eigenstates
¥ (k) for |#), Eq. (9) can be rewritten as

2

47 o?k3 | p(k) |2 Wn
- g*k*[p(k) | o)

W)=

N
2T

=1

n W —wy241n

N 2
ke’ (\1/<—> i), \p)
agBlo B o E).2 v
)= f , (10)
9 wr—w? 19
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which, by virtue of Egs. (5), (7), and (8) becomes

dk'| T() |2
T =2l Ly
(@ —w+im)k?|p(k')|?
If we now define the function %(w),
€@ sing(w) —nT
h(w)= S P
Elo(k)|*  k[p(k)]?
and use it to rewrite Eq. (11), we obtain
2 pdk’E4p(R)|2| k(') |2
M) =—= [ = AT )
T wr—w'?1in

which is the Low scattering equation. We note that
since the parameter “N”’ [see Egs. (1), (2), and (3)]
does not appear, every member of the infinite class of
theories is described by this same Low equation.

Our job now is to obtain the solution of Eq. (13).
We first extend the argument w?4in of Eq. (13) into
the complex z plane and thereby obtain the function

2 rdk’E4| o(R) 2| k(o) |2
k(z =———f | i , (14)
T z—w'?
which obviously satisfies
h(w) =«k(w?) = lim «(w?+1i7). (15)
0+

The additional relevant properties of x(z) are the
following :

(a) () is analytic everywhere in the z plane except
along the real axis between u? and infinity [u is the rest
mass of the mesons and hence the lower limit of ' in
the integral in Eq. (14)].

(b) Between u? and infinity along the positive real
axis, k(z) has a branch line with a discontinuity given by

k(x+in) —x(x—1n)
= 2iCe—u L)@ (16

(c) As z goes to infinity x(2) goes to zero as z7%.
(d) The imaginary part of x(z) satisfies

1, d(W?)E3|p(R)|2| h(w’)[?
Imx(z)=(—f (@)’ p (k") |2 A (") | )Imz, an
T [z—a"[?
and since the coefficient within the parenthesis is
positive definite, x(z) is nonvanishing off the real axis.
More precisely, Imk(z) is positive (negative) definite
in the upper (lower) half-plane.
(e) «(2) is a real function of z; that is «*(2) =« (z*).

If we now write
 H(2)=1/k(2), (18)

the function H(z) is well defined everywhere that «(z)
is nonvanishing. From the properties (a) and (d) of
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k(z), it follows that” H(z) is a well-defined, analytic
function off the real axis. Furthermore, from (b) and
(e), we obtain that

k(x—1n) — k (x+1n)
| k(x+-1n) |2
= —2i(x—p) p(v/ (x—p?)) |2 (19)

for every value of x which does ot satisfy x(x)=0.
We now have established :

H (x+1in)— H (x—1in) =

() H(z) is an analytic function of 2 off the real axis.

(8) H(z) has a branch line along the real axis from
u? to infinity, and except for possible singular points,
the discontinuity across this branch line is given by
Eq. (19). It should be remarked that we are neglecting
the possibility that x(x) vanishes over finite intervals
because of the nonphysical nature of the resulting
phase shift. For the same reason we also do not consider
the consequence of the zeros of «(x) having a cluster
point.? From the property (c) of «(z) we also have that

(v) H(2) increases linearly with z as z goes to infinity,
while the remaining necessary property of H (3) is that

(8) the singularities of H(z) all lie on the real axis
between u? and infinity, and at each of them H(z) has
only a simple pole. The first part of this statement can
be seen immediately from Eq. (14) by noting that «(x)
is positive definite for — o <x<u? The fact that all
the poles are simple can be proved as follows!:

(i) Let «; be a singularity of H(2) so that, in view of
the discussion under property (8), H(z)~a;(z—x;)™
in the neighborhood of z=x;.

(ii) Letting z—ax;=7re®® and a;=|a;le s, H(2)
~ | a;| "¢~ i+ in the neighborhood of z=w;.

(iii) It now follows that z=1 and ¢=0 since, from
property (d) of «(z), ImH(z)=—TImk(z)|x(z)|~2 is
negative (positive) definite in the upper (lower) half
plane.

From the property () of H(z), we have

de/[H (7)— Az —B]
c

2'—z

=2ri[H(z)—Az—B], (20)

where C is the contour shown in Fig. 1. Furthermore,
by choosing for the constants 4 and B,

A=limH (3)/z,

200

B=1imH (3)— Az,
22—

21

(22)

it follows from property (v) that the integral over the
infinite arc can be neglected. Hence, making use of
Eq. (19) to express the discontinuity in H(z), we can

10 The proof given here is essentially that of E. P. Wigner,
[Ann. Math. 53, 36 (1951)].
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Z-plane

Fi1c. 1. The contour C for the evaluation of the integralin Eq. (20).

rewrite Eq. (20) as

a,

H(z)=Az+B+2

i Z—X;

1 o de(e—u) o[ (x—p?)*]|?
I . (@)

T, x—3z

where a; is the residue of H(z) at its pole located at

z=x;, and the sum is over all the singularities of H (3).

From Egs. (15) and (18), Eq. (23) can be rewritten as

a; 1 20'do’ k3| p (k) |2
f — (29

2_w2_$n

h(w T T R,

and by taking the real part of this expression, we obtain

k3| p(k) |2 cotd
| a; 1 dk'k2|p(R') |2

=Aw?+B+Y —— @ ,

P wi—x; 2m? B2—F2? (29)

by virtue of Eq. (12) for the definition of the phase
shift 6.

Equation (25) is the general solution of the Low
equation, and, as expected, it does contain an infinite
number of arbitrary constants. It is clear that with an
appropriate choice of the constants this general solution
must reduce to the solution for any one member of the
infinite class of theories described in Egs. (1), (2), and
(3). Indeed, in the next section we will see that the
solution obtained by any choice of the constants in
Eq. (25) is the solution for one of the theories of this
type.

III. EXACT CALCULATION OF THE
SCATTERING AMPLITUDES

The equations of motion for the theory described by

Egs. (1), (2), and (3) are

| d_zr_+w,2r,.=—(—i) f ()Vp()dx,  (26)
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and

(O 2)«:<x,t>=—gw-§ w0, @)

where the forms of the expressions on the right are the
result of integrating by parts the interaction Hr in
Eq. 3).

In order to solve these equations we first introduce
the Fourier transforms!

1
ri(ko) =

etk (1)dt,
(2m)

(28)
' 1
sa(k,kg):m f githatn o(x dxdt,  (29)

1
(2 >%feik'xp(ac)dx.

Next, we write w? in place of k?4-u? and use these
transforms to re-express the equations of motion (26)
and (27) in the form

(08 —ko)1i(ko) = (g/m)(Vp, ¢(ko)),

p(k)= (30)

31)

and

(w?—ke?) (ko) =gVp- 2 ti(ko),

i=1

(32)

where the three spatial coordinates have been sup-
pressed in favor of matrix notation. Inverting Egs.

(31) and (32), we have )
Vo, 0
ri(ko) =1( )i(ko)‘{“"g‘ (—pq’—z

m wf-—- k02

(33)
and therefore

o(ko)= o y(ko)+

4
2__ ZVP
N V; (ko
~z(r< Mk@ﬁ—u), (34)

i=1 m wi—ke

where the subscript () on the homogeneous solutions
indicate either the “in”’ or the “out” operators of Yang
and Feldman!? depending upon whether singularities
in the nonhomogeneous parts of the solutions are
avoided by giving k¢ an infinitesimal positive or nega-
tive imaginary part, respectively. The separable integral
equation (34) can now be solved with the result that

@(ko) =0 (ko) o ) (ko), (35)
2/ ~ 1
s Vo-2_

w'— k02 =1 wf— k02

g/m L
X 1—{ Vp, VP)Z - Vp, (36)
w?— k02 =1 (.0j2— k02
11 The methods which are used here are those of A. Klein and

B. McCormick, [Phys. Rev. 98, 1428 (1955)7].
2 C. N. Yang and D. Feldman, Phys. Rev. 79, 972 (1950).

where

Oy (ko)=1+
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and where the correspondence between the subscript
and the means of avoiding the singularities is the same
as above. Note also that the factor in the middle is a
dyadic.

Now it is clear that we can write

ey (K ko) = ac ) (kko)d (ko?—w?), (37)

so that the positive (4) and negative (—) frequency
parts of ¢¢ y(ko) take the form

ac y(kko)
——0(kyFw).
2! ( )

o ) (ko) = (38)

Consequently, if we use Eq. (38) to obtain the positive-
frequency part of Egs. (35) and (36), and if we write
out explicitly the subscripts and the integration pre-
scriptions, the result can be expressed in the form

d(ko—w)
o (kko) = f dk'(k19<+)|k')'(—2,)—,*a<in> (K',k0),
w 2
(39)
5(ko—o)
o ) = [ (100 (K)o (1),
(20)?
where
¢ kK p(k)p*E)
(k|Qw | K)=6(k—K)+— - , (40)
m k?din—k D,y (k'?)
and where
1 N 1
= ) (41)
Dy(B) =t Digyi(R?)
and
g X 1
D) = (wz:!:in~wa2)[1——(z —)
3m \i=l w’in—w;?
dK'E2| p(R) |2
X f ——I——I] (42)
kd-in— k"

As previously mentioned in Sec. I, we are assuming
that there are no bound states. In terms of this formal-
ism, this assumption means that we are considering the
class of problems for which g, m, and the w; have such
magnitudes that D¢ y(k?) is nonvanishing for 22<0. It
can be easily verified that values which satisfy this
requirement do indeed exist. On the basis of the fact
that there are no bound states, it can be shown®® that
the matrices Q¢ and Q(, are both unitary. Therefore,
equating the two alternative expressions for Eq. (39),
we obtain

8 (ko—w)aour) (K, %o)
=f dk’ (k| Q™ Qe [ K6 (ko— ) aany (K ko). (43)

13 The proof of the unitarity of the ¢ ) matrices can be accom-
plished by a procedure identical to that used for a slightly different
problem in Appendix A of reference 11.
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If we now express the @ ) matrices defined by Eq.
(40) in a representation in which the angular momen-
tum is given, and restrict our attention to the only
subspace of interest, that of /=1, we obtain

drg®  p(R)p*(R)RR*

(%|Qp | ) =8(k—F)+ - (44)
* " 3m (R2tin—E) Dy ()
This expression, in turn, can be rewritten as
, Do (B
(klﬂ(ﬁlk):(klﬂ(lﬂk) (45)

NCOY

where the subscript “(1)” indicates the real part of the
quantity to which it is attached. We can now make
use of Eq. (45), and our knowledge of the unitarity of
the Q¢ , matrices, to obtain

D, (¥
Dy, ()

(k|2 Qp | F) = o(k—F'), (46)

as an expression for the matrix element appearing in
Eq. (43). However, since the S matrix is defined to be
the matrix which connects the “in” and the ‘“out”
operators in the form

aous (o) = f aK (k|S|K)am K k), (47)

it follows from Eqs. (43), (46), and (47) that
Do,y (F)
Dy, ()

Finally, with the help of Egs. (41) and (42) which
define the D¢ y functions, we obtain from (48) that

3m [ N 1 -1
#10(8) |2 cotd=— (z )
21r2g2l_ =1 ?—w?
g dk'k?|p(R)[?
(P O

3m E—R

(k| S|k)=e% (k— ') = S(k—F). (48)

]. (49)

Equation (49) is the exact solution for coté and should
be compared to Eq. (25) which is the general solution
of the Low equation for this same quantity.

IV. CONCLUSIONS

First we note that for each value of NV, the solution
given by Eq. (49) is a special case of the general solution
illustrated by Eq. (25). This fact can be seen by
expanding

N —1
[Z (wz—w,-z)“lJ —Aw*—B

=1
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into partial fractions and noting the denominator, as a
function of w? has only single roots. One can therefore
set up a ‘“one-to-one” correspondence between the
particular solutions of Eq. (25) and the models of the
infinite class which they describe. We conclude, as was
done in reference 4, that every solution of the Low
equation is equally physical and, in fact, that the
physical model corresponding to any one of the solutions
differs from the model corresponding to any other
solution only by an alteration or extension of those
properties of the system which do not manifest them-
selves in the Low equation.

We observe that for the class of theories considered
here, as well as for those studied in reference 4, the
significance of the additional solutions of the Low equa-
tion is well understood. The solution having the fewest
number of arbitrary constants is the analog of the
Chew-Low solution and describes that theory of the
infinite class which is distinguished by a target system
with a minimum of internal structure. All the other
solutions correspond to models for which the target
has excited states which lead to additional resonances
when the interaction with the meson field is included.

It seems reasonable to suggest that there is a similar
origin to the many solutions of the Low equation for
the symmetrical, pseudoscalar theory." For example,
suppose we consider the infinite class of Hamiltonians
having a typical member of the form

H=H+Hj, (50)
where
N
Ho= [[ ke W (Balo+ vM o, (51)
=0
N
Hr=(g/2) X Wisbo: [ Vo@o()ix
’ +Herm. conj. (52)

For N=0 this Hamiltonian describes the usual fixed-
source theory for the pion-nucleon interaction, while
for N>0 the Hamiltonian represents the interaction
of a meson field with a “nucleon” capable of existing
in NV excited states. If the M;— M, for 1>0, are suffi-
ciently large compared to u, the excited states of the
unperturbed “nucleon” do not introduce any additional
bound states in the spectrum of the complete Hamil-
tonian. The existence of these excited states manifests
itself only as resonances in the transition amplitudes.
In this case, the same Low equation describes each
member of the infinite class of theories, and by analogy
with the examples discussed previously, the Chew-Low
solution would be expected to correspond to the theory
with N=0.

14 This suggestion is also immediately attendant upon the

considerations of R. Norton and A. Klein, [Phys. Rev. 109, 584
(1958)].



