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Recent investigations have shown the presence of velocity-
dependent forces in the two-nucleon interaction, increasing the
number of parameters in the two-nucleon potential, and making
more difficult the determination of these parameters in a unique
way. In view of the successes of the shell model and of the assump-
tions that the same interactions hold between nucleons inside
nuclear matter as between free nucleons, it is of interest to
explore the possible restrictions on the two-nucleon potential that
follow from level arrangements and separations in nuclear shell
theory. In the present paper we carry out this exploration for
velocity-dependent forces, starting with the two-body spin-orbit
force, two forms of which have recently been proposed, and
considering also the simplest velocity-dependent forces that
depend on the second power of the momentum, which include
the velocity-dependent tensor force recently introduced by Breit.
The two-body spin-orbit force of Gammel and Thaler has a very
short range, and, taking advantage of this fact, we show in Sec. 2
that the interaction energy for two nucleons in the same shell is
proportional to the interaction energy for the zero-range velocity-

1. INTRODUCTION

N recent publications it has become clear that
velocity-dependent forces play an important role in
the interactions between nucleons. In particular, the
work of Signell and Marshak! and of Gammel and
Thaler? has shown that the experimental data on the
two-nucleon interaction require for its explanation
potentials that contain, besides ordinary forces (both
central and tensor), a strong spin-orbit coupling force.
The work of Brueckner,® Bethe,* and their collabo-
rators has shown that it is possible to assume for the
interaction between nucleons inside nuclear matter the
same potentials as between free nucleons. It is therefore
of interest to see the effect of velocity-dependent forces
between nucleons on nuclear structure, and particularly
on nuclear shell theory. For the two-particle spin-orbit
coupling force a general discussion has been given by
Hope and Longdon® and by Hope.® The results of Hope

1P, S. Signell and R. E. Marshak, Phys. Rev. 106, 832 (1957).
2 J. L. Gammel and R. M. Thaler, Phys. Rev. 107, 291 (1957).
3 K. A. Brueckner, Phys. Rev. 97, 1353 (1955).

4H. A. Bethe, Phys. Rev. 103, 1353 (1956).

5 J. Hope and L. W. Longdon, Phys. Rev. 102, 1124 (1956).

¢ J. Hope, Phys. Rev. 106, 771 (1957).

dependent central force discussed previously by the author. The
simple expression for the interaction energy allows us to compare
in Sec. 3 the level separation due to the spin-orbit force of Gammel
and Thaler and that due to the spin-orbit force of Signell and
Marshak. We also compare the effects of both types of spin-orbit
forces with the interaction energy due to the central even singlet
force of Gammel, Christian, and Thaler. In Sec. 4 we analyze a
velocity-dependent central force that acts only in the triplet
state. In Sec. 5 we discuss the velocity-dependent tensor potential
in the long-range approximation, and show the restrictions that
follow on the strength of this potential from the assumption that
the separation between levels should be small compared with the
separation between shells. In Sec. 6 we discuss the velocity-
dependent tensor potential in the short-range approximation, and
obtain restrictions on the product of strength and range of this
potential. The interaction energies for all short-range velocity-
dependent potentials show similarities, suggesting the possibility
of finding simple closed expressions for the interaction energies
for all short-range forces.

and Longdon are rather complex, as they wanted them
to apply to a spin-orbit force whose range was arbitrary.
The analysis of Gammel and Thaler? shows, however,
that the spin-orbit force has a very short range. This
property permits a considerable simplification in the
analysis, and we shall show that the effects of a short-
range spin-orbit force in nuclear shell theory, are
similar to those of the short-range velocity-dependent
central force discussed by the author in a previous
paper” (to be referred to as I). The explicit expressions
for the interaction energy could be useful to discriminate
between the different forms!-2 of the spin-orbit coupling
forces being proposed, particularly as it is possible to
take now into account® the repulsive hard core present
in the force introduced by Gammel and Thaler.?

It is well known that the only interaction between
like nucleons that satisfies the invariance requirements®
and depends on the first power of the momentum, is
the spin-orbit coupling force. If a further dependence
on the velocity is found for the interactions between

7IM. Moshinsky, Phys. Rev. 106, 117 (1957), to be referred to
asﬂ M. Bauer and M. Moshinsky, Nuclear Phys. 4, 615 (1957).

9L. Rosenfeld, Nuclear Forces (North-Holland Publishing
Company, Amsterdam, 1948), p. 313.
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like nucleons, it is expected to be a force depending on
the second or higher power of the momentum. The
simplest of these forces have been discussed by the
author?® and they have the forms

$(orto)?[p-V()p'], (1.1)
[(1—3(orto)2][p"- V()] (1.2)
—3Vr()[3(e1-p) (o2 ) — (01-09)p"7], (1.3)

where o1, o2 are the spin matrices of particles 1 and 2,
and

p'=3(pi—p2), 7'=|r|=|t1—1. (1.4)

An interaction of the form (1.1) will act only on the
triplet state where it reduces to p’- V(»')p’, which is
the central velocity-dependent force discussed in I.
An interaction of the form (1.2) will act only on the
singlet state where it again reduces to p’-V(»)p'.
Finally, an interaction of the form (1.3), when properly
made Hermitian, represents a velocity-dependent tensor
force of a form similar to the one recently derived
(together with the spin-orbit coupling force) by Breit,!
from a natural modification of the pseudoscalar theory
of nuclear forces.

Besides the spin-orbit coupling force, we shall discuss
in this paper the effect on the level arrangement in
nuclear shell theory of velocity-dependent forces of the
above form. Since perturbation methods are used in the
determination of these level arrangements, the effects
of the different types of forces are additive, and,
comparing with the experimental level arrangement,
one could obtain restrictions on the strength and range
of the velocity-dependent forces.

As the addition of (1.1) and (1.2) gives the interaction
potential discussed in I, we can restrict ourselves to the
potentials (1.1) and (1.3). As in I, we shall discuss the
interaction in the limits of very long and very short
ranges, compared with the radius R, of the nucleus.
We shall see that in the short-range approximation, the
spin-orbit coupling force, and the central and tensor
velocity-dependent forces, give rise to very similar
expressions for the interaction energy.

2. SPIN-ORBIT COUPLING FORCE IN THE
SHORT-RANGE APPROXIMATION

In this section we shall discuss the effect in nuclear
shell theory of a two-particle spin-orbit force of the form

#E(r)l -8, (2.1)
where
I'=r'Xp’, S=3(o1t0y), (2.2)

and 1/, p’ are defined in (1.4). The radial part £(+) of
the force will be assumed of short range, and we shall
give below a specific definition of what we mean by

10 M. Moshinsky, J. phys. radium 15, 264 (1954).
11 G, Breit (private communication).
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short range. We do not intend £(+’) to be a & function,
as in this case I’ would give zero.

We shall take for the common potential of the
nucleons in the nucleus a harmonic oscillator potential
of frequency w. It is well known!?® that this potential
has definite advantages from the standpoint of calcu-
lation, while it does not represent a too strong idealiza-
tion of the physical situation.

The wave function associated with a given nucleon,
will be designated by the bracket notation of Dirac as

lnlm>=9?'ﬂl(yar) Ylm(07 ‘p); (23)

where the ¥, are the spherical harmonics, and ... (»,7)
are the radial functions!?*® of the harmonic oscillator

Rni(v,7) =N 1 exp(— 31770, (vr?). (2.4)

In (2.4), N, is a normalization constant, v= (mw/%)
where m is the mass of the nucleon, and v,;(»?) is a
polynomial of order # in »7? that starts with 1, ie.,
7)”1(0) = 1

For nucleons 1 and 2, the corresponding wave
functions will be designated by |niimi) and |nalams).
Introducing the total orbital angular momentum L
=1;+1;, we can construct an eigenfunction of L2, L, in
the form

lnlll,nzlz,LM>
= Z { [n1l1m1>|n2l2m2>(l1l2m1m2|LM>},

mim2

(2.5)

where {lJlomims| LM) is a Clebsch-Gordan coefficient.
Combining these wave functions with those of the total
spin S, we see that the general matrix element for the
spin-orbit force, in the two particle configuration with
LS coupling, is

<%1l1,%2l2,L,S,] [ ﬁ_lé (7’,) I-S I nlllll,nzllgl,L/,S,,J>
=t (= 1) TP by naols, LI £ ()Y ||l ms'T L)

X(1||S|[1)d 5851 W (LL'11;17), (2.6)

where W indicates a Racah coefficient, and the §’s show
that the interaction takes place only in the triplet state.

The matrix element of £(#")I' that appears in (2.6),
could also be considered in terms of the wave functions
for the relative coordinate r'=r;—r», and the center-of-
mass coordinate t''=3(r;+rs). We shall designate these
wave functions by the ket |#'l'm’), which has the form
(2.3) when r is replaced by r’ and » by »'=(»/2), and
by the ket |#''0’m'’), which also has the form (2.3)
with r replaced by r”” and » by »'=2». As the corre-
sponding angular momenta I, I add up to the total
angular momentum L given before, i.e.,

V'+1"=L=L+1, 2.7

12 1, Talmi, Helv. Phys. Acta 25, 185 (1952).

13 R, Thieberger, Nuclear Phys. 2, 533 (1956).



VELOCITY-DEPENDENT FORCES

we can construct the wave function
In'l’,n”l”,LM)
— Z { |n/llml> !nlllllmll><lllllmlmll lLM‘>} .

m’m’’

(2.8)

Because of (2.7), the transformation bracket taking
us from (2.5) to (2.8) would contain the same L, and
we could write

‘ 7%111,'”2l2,LM> = Z

n’l n 1

X'V "V L naly,nale, L)},

{ [n’l’,n”l”,LM)

(2.9)

where the fact that the wave functions must correspond
to the same energy eigenvalues restricts »'l/, »”I"” to
non-negative integers that satisfy

Treo 20/ 1+ 20"+ 1"+ 3)
=t 2Lk 2maH1p+3). (2.10)
With the help of (2.9) we could express the matrix
element for £(')I' in (2.6) in terms of matrix elements
involving the wave functions of the coordinates t’ and
r”’. We shall restrict ourselves to the case of identical
nucleons in the same shell. We have then n;=#ns=n,'
=ny'=n, h=Il=l'=1l'=1 and J takes only even
values as the wave function is antisymmetric. As L+.S,
L'+’ are also even,* and S=.5"=1, we see that L, L’
are odd. Furthermore, from the Racah coefficient in
(2.6) we see that L'= L1, L, which together with the
previous remark, implies that L’=L. Under these
restrictions, the general matrix element for £(+")I’ takes
the form?!s:8

(L[ g || (n)*L)
= 2 [Vw'V,Linlnl,L)}
a1
X (=D)r = =Lp 1 (1 4-1) (21 +1)

X QL+DW W VLL 1N vy, (2.11)

where 7,1 stands for the integral

@

Top= f PTRe (A PECYD . (2.12)
0

So far we have made no use of the fact that £(»') is
of short range. From (2.12) and (2.4) we see that if the
range of £(r) tends to zero, I,» diminishes rapidly as
I’ increases. If, for example, we take for &(v/) the
Gaussian form

E(r)=Voexp[— (+'/b)"],

4 G. Racah, Phys. Rev. 63, 367 (1943).
15 G. Racah, Phys. Rev. 62, 438 (1942).

(2.13)
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then, as shown by Talmi,!? Io; becomes

b’

U+3%
Ioz'E[z"—‘Vo( ) .
14+-0%'

If we understand now by a short-range potential, a
potential for which

b(¥)i=b(mw/20)*K1,

then from (2.14) we see that the predominating terms
in (2.11) are those for which /' is as small as possible.
We cannot take /=0, because from (2.8) !”=L and
W(00LL; 1L)=0. If we take =1, then I’/ =L=+1, L,
but because of parity’? considerations (—1)¥+¥’
= (—1)%} so that /" is odd, and as L is odd, /"= L. As'®

W(1LL; 1L)=[6L(L+1) 2L+1)T*£0, (2.16)

we could restrict the summation in (2.11) to /=1,
I"=L, if £(') is of short range according to the defi-
nition (2.15). Furthermore, we can see from (2.12)
and the form (2.4) of the radial function, that I,/ can
be expressed as a linear combination of Iy, Iy,
«+Ipyon. Again we should only keep I, if the potential
is of short range, and taking into account that v,.;(0)
=1, the coefficient of I becomes

Twv/Tv)os0= (Nn:®/Nor?). (2.17)

Substituting (2.16) and (2.17) in (2.11), we obtain
for a short-range potential the matrix element

() L|| ()Y || (n)L)
=h[(2L+1)/L(L+1) 1 (I,/No?)
X > {1, 0" L,L\nlnl, LY BN .12},

n'n’!

(2.14)

(2.15)

(2.18)

where I, is given by (2.12) with #'=0, //=1, and from
(2.10), #’ and %'’ are restricted to non-negative integers
that satisfy the relation

WAn"=2m+1—3(L+1).

It would seem at first sight that we need to determine
the transformation brackets involved in (2.18). Fortu-
nately, we shall be able to show that the velocity
dependent central force discussed in I, gives in the short
range approximation just the summation that appears
in (2.18). We have seen in I that the interaction
p’-6(r")p’ gives rise to the matrix element

(2.19)

(mD)2Ll[p’ -6 (") p'|| (nd)*L)y= (W*/4m) AmiH (I,L), (2.20)
where A4 ,;is the radial integral
Anz=f [Rauilo,r)14dr, (2.21)
0

16 Biedenharn, Blatt, and Rose, Revs. Modern Phys. 24, 249
(1952).
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and’
H(,L)=1(1+1)(214+1)?
X [@00 | L0y LW (LL ; 11) T

= (14-1) (214-3) (214-1)*[ I+ 1100 | LO) J?

X[WU+1LL; 1) . (2.22)

The last form for H(J,L) could be obtained from the
first, with the help of the explicit expression!® for the
Clebsch-Gordan and Racah coefficients.

We now express the matrix element (2.20) in a
representation employing the wave functions of the
relative and center-of-mass coordinates r’ and r”’. From
(2.9) we see immediately that

((nh)L||p"-6(x")p’|| (nd)*L)
= X [V a"l" Linlnl, L)

T s, (2.23)
where because of the 6 function we have
('] p"-3(x")p'||n'T)
={[pRuvYvm I [P Rt Y L} 0. (2.24)
Writing p’ as
p'= () (@) ]— () 2('XY),  (2.25)

we obtain by an analysis similar to the one given in
the appendix of I, that
@V p" 6" )p' |0y = {#2(0Rn1/ 7" )| ¥ 11 | 2
+22 (V1) (Rarw /)2
X md W gm |[U'm') | Vi g|?) om0 (2.26)

Using the explicit form of the radial wave function
given in (2.4), we have

(mn'l’/r’)r’=0= (6mn’l’/6r,)r’=0=Nn’lal’l- (227)

Furthermore, | ¥1,(0,0) |2 vanishes unless ¢=0, in which
case it becomes (3/4w). We see then that the matrix
element (2.26) is independent of ' [as it should be,
p’-8(r")p’ being a scalar], and substituting it in (2.23)
we obtain

((n)*L|p" -6 (") p'[| (nl)L)
= 3r*/4r) X {[(W'1,n" L, L|nlnl, L) PN 2}, (2.28)

where again because of parity, I’ is restricted to odd
values so that I"’=L.
Comparing (2.28) and (2.18), we obtain finally

(LY || (nd)?Ly=A[ (2L+1)/L(L+1) T
X[ (r/2)W 4, LHGL), (2.29)

where we already introduced the explicit expression!?
for A7()12, i.e., Nolz'—‘%(Z/ﬂ')éVg.
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For identical nucleons in a given shell, the matrix
element for a short-range spin-orbit force takes a very
simple form. In the next section we shall discuss the
effects of the different types of spin-orbit forces that
have been proposed.

3. TWO-PARTICLE SPIN-ORBIT COUPLING
AND NUCLEAR SHELL THEORY

From (2.6) and (2.29), the interaction energy due
to a short-range spin-orbit force, for two identical
nucleons in the same shell and in LS coupling, becomes

(b L1, T [ FE(r)V -S| (nd)*L1, )
=L[(r/2)}(mw/h) " A ]
(L+1)"'H(l,L)
—LH(I,L)

if J=L+1

(3.1)
if J=L—-1.

In (3.1), 4,; stands for the radial integral (2.21) and
H(l,L) is given by (2.22). From the explicit expressions'®
for the Clebsch-Gordan and Racah coefficients appear-
ing in (2.22), it can be easily seen that H(,L) satisfies
the recurrence relation

H(l,L+2)

H(,L
1) L(LA4-2)  4l(+1)— (L+1)(L+3)

T (LADIA3) Al L(L+2)

, (3.2)

where L is restricted to odd values, and that for L=1,
we have

H(,1)=31(+1) (21+1).

The values of H(l,L) for the first shells are given in
Table I of reference 7.

The I, appearing in (3.1), stands for the radial
integral (2.12) where #»'=0, I’=1. Introducing the
explicit form (2.4) of the wave function, and the
change of variable x= (v/2)%’, we obtain

(3.3)

11=(8/3)7r'%f xtexp(—a) [ (v/2) i dx. (3.4)

In both!? of the proposed forms for the spin-orbit
force the £(r') is negative, and therefore I; is also
negative. From (3.1) and (3.2) we see then that the
level ordering induced by the spin-orbit force, would
go in order of increasing L when J=L-1 and in order
of decreasing L when J=L—1. For two-particle con-
figurations in j7j coupling, and also for configurations
involving more than two particles, the level ordering
due to the spin-orbit force could be obtained from (3.1),
with the help” of the 97 coefficients,!” or of the fractional
parentage coefficients.!

17 H. Matsunobu and H. Takebe, Progr. Theoret. Phys. (Japan)
14, 589 (1955). ‘
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Let us discuss first the effect in nuclear shell theory
of the spin-orbit force introduced by Gammel and
Thaler.? To explain the polarization data in proton-
proton scattering, they make use of a spin-orbit force
whose radial part is a Yukawa potential with a repulsive
core. The parameters of this potential are

Vo=7112 Mev, a=0.4125X10"% cm,

(3.5)
b=0.27X 10~ cm,

where — V is the depth and b the range of the Yukawa
potential, and a is the range of the repulsive core. It
has been shown by Bauer and Moshinsky,? that the
effect in nuclear shell theory of a repulsive core in the
interaction potential, can be taken into account by
simply translating the potential by the range of the
core. This implies that £ for the potential of Gammel
and Thaler? should have the form

g=—Vi[B/(x+a) ] exp[ — (v4a)/B],
x= /2, a=@/D, B=(v/2)%,

and 7’ extends to the interval 0<7'< .

As in (2.15), we define a short-range potential by
the condition 8<1. When we substitute (3.6) in (3.4),
we notice that the integrand contributes mainly for
values x of the order of 8, and if <1 the exp(—x?) in
(3.4) could be approximated by 1. In the short-range

- approximation, /; can then be written as

(3.6)

where

(3.7)

L (8/3m Vo [ 28/ () expl— (a-+e)/B i

=—@mﬁ%mw&{—mbwﬂ

texp(—9) 3 [(=)mle—}, (3.8)

where

—Ei(——c)Efwac‘1 exp(—x)dx; c=(a/b). (3.9)

To obtain the value of 8 for the potential of Gammel
and Thaler,? we need to give the separation between
the levels of the harmonic oscillator. Taking Aw~10
Mev as suggested in reference 8, we obtain

8=0.0938. (3.10)

The condition of short range is reasonably satisfied in
this case, and as from (3.5), c=1.53 we obtain for (3.8)
the value!®

I,~—0.068 Mev. (3.11)

18 The value (3.11) of 7, was calculated on the assumption that
exp(—«?) in (3.4) could be approximated by 1. A more correct
calculation could be made if we expand exp(—«?) in a power
series, in which case we would have a series of integrals of the
type (3.8) containing higher powers of x. Keeping the first four
terms in the expansion of exp(—«?), the integral (3.4) takes the
value |I1|=0.058 Mev with an error of less than 0.001 Mev.
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TaBLe I. Interaction energy for the short-range spin-orbit
force (3.1) in units of 71, when #=0, J=L+1. The interaction
energy for J=L—1 is obtained multiplying each column by
[~ (L+1)/L],

NI

NG 1 3 5
1 1/2

2 7/8 1/8

3 99/80 33/160 1/16

The radial integral 4., that appears in (3.1) is
easily evaluated. In particular for =0, we see from
(2.4) and (2.21) that?

(/2 = {[2+1) 112221 [ (4—1) 1], (3.12)

where (20+1) 1=1X3X5- - - X (2l+1). From (3.12) and
Table I of reference 7, we can give in Table I of the
present work the interaction energy (3.1), in units of I,
for a short-range spin-orbit force, where /=1, 2, 3 and
n=0.

To compare the interaction energy due to the spin-
orbit force, with the interaction energy due to the
singlet even potential of Gammel, Christian, and
Thaler,”® we have to pass to the jj coupling scheme.
This is accomplished with the help of the 97 coefficients
as shown in I. We shall only indicate here that for the
two neutrons outside the closed shell in Ca*?, the
interaction energy due to the spin-orbit force of Gammel
and Thaler,? gives a separation between the levels /=0
and J=2 of only 0.1 Mev, for Zw~10 Meyv, i.e., for I,
having the value (3.11). For the same #%w, the even
singlet potential of Gammel, Christian, and Thaler,*
would give? the experimentally observed separation of
1.5 Mev. It is clear therefore, that if the form of the
spin orbit force of Gammel and Thaler is accepted, its
effect would be small in nuclear shell theory as com-
pared with the effect of the central force.

Let us discuss now the effect of the spin-orbit force
introduced by Signell and Marshak.! The radial part
of their force is given by the derivative of a Yukawa
potential with a straight cutoff, so that £(r) takes the
form

£(r)=—Vo(b/a)’[14 (a/b)] exp(—a/d)

if 0<r<aq, (3.13)
£(r)=—Vo(b/r)[1+ (r/b)] exp(—7/b) '
i e<r<{ oo,
where
= P —13
V=30 Mev, a=0.21X10"% cm, (3.14)

5b=1.07X10"8 cm.

If we take as before w~10 Mev, we have for «,
defined in (3.7), and for ¢= (a/b), the values

«=0.073, $=0.3715, ¢=0.196. (3.15)

Taking into account though the approximations involved in
Sec. 2, it is sufficient for the following analysis to consider |/:]
given by the upper bound (3.11).

19 Gammel, Christian, and Thaler, Phys. Rev. 105, 311 (1957).
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Comparing the 8 in (3.15) with the value (3.10), we
see that the short-range approximation would not be
as good for the potential of Signell and Marshak! as it
is for the potential of Gammel and Thaler.? Neverthe-
less, it is interesting to consider the order of magnitude
of its effect in nuclear shell theory in the short-range
approximation. We need then to calculate I; of (3.4)
with the £ of (3.13). We divide the integral into two
parts, one for x between 0 and «, and the other from
a to ». In view of the small value of « in (3.15), we
can replace exp(—«? in the first integral by 1, and
with this assumption we obtain straightforwardly

I,=—(8/3)x  Vo{c*(14c) exp(—c) (@¥/5)
+52 exp(1/469[ (4677 (x*/2) erfc(y)
+1(8—B"+7v) exp(—y?)]}, (3.16)
where

erfc(y)= 21r'%‘f exp(—x)dx, y=a+(26)L. (3.17)

Y

For the values of a, 8, ¢ given in (3.15) we obtain
for I,

I1=—0.48 Mev. (3.18)

Comparing this value with (3.11), we see that the effect
of the potential of Signell and Marshak in nuclear shell
theory is considerably larger than the effect of the
potential of Gammel and Thaler. In fact, assuming the
validity of the short-range approximation, the sepa-
ration between the levels /=0 and J=2 in Ca*? due
to the force of Signell and Marshak would be 0.7 Meyv,
which is an appreciable fraction of the experimental
value of 1.5 Mev.

4. VELOCITY-DEPENDENT TRIPLET POTENTIAL

We now turn to the potentials that depend on the
second power of momentum, the simplest of which
were given in the introduction. As the potential (1.1)
acts only in the triplet state, we shall designate it as
the velocity-dependent triplet potential. Introducing
the total spin S of (2.2), the triplet potential becomes

§(o1Fe)’p"- V()
=p" V() +GES=Dp V(i )p'. (4.1)

The interaction energy for a two-particle configur-
ation in jj coupling can again be written in terms of
the interaction energy in LS coupling with the help of
the transformation bracket? (3.2 I). As $82—1is 0 in
the triplet state, and —1 in the singlet state, we obtain
from the form (3.8 I) of the transformation bracket
for S=0, that the interaction energy becomes

() TM 382" -V ()9’ | (nlf)*T M)
=((l)TM |p'-V (' )p'| (nlf)* T M)
=3 Q1) LQ2+1) 25+ 1)—~J (J+1)]
Xl TM |0’ -V (")’ | (nd)2TM).  (4.2)

% Equations of reference 7 will be indicated by I following the
number of the equation.
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From (4.2) we see that the interaction energy
associated with the potential (4.1), can be expressed as
a linear combination of the matrix element in jj
coupling and in the singlet state of LS coupling of the
velocity-dependent central potential discussed in I.

As in I, we express the V(') in (4.1) in terms of
the Gaussian potential,

V(") =Mit exp[—b2(t1—12)%]. (4.3)

For the long-range approximation we have, from the
last term in (4.2), that the interaction energy will
depend on the total angular momentum J, even in the
limit s—eo. Taking into account that the matrix
element of p; - p. is zero because of parity, and extending
the analysis to A\ identical particles in the shell by a
procedure similar to that outlined in I, we obtain in
the long-range approximation :

((nPTM |38 -V (") p'| (nij)*T M)
= QM) (P {EA(A—1)
—AA=D) QDL 274+1)—-27G+D)]
+AUFD)TTUHD-NGHDT, (44

where as in (2.21 I), () stands for the single-particle
expectation value of the square of the momentum.

From (4.4) we see that the velocity-dependent triplet
potential will give, in the long-range approximation, a
level arrangement that goes in the order of increasing
(decreasing) values of the total angular momentum J
if M, is positive (negative).

In the short-range approximation we must distinguish
in the interaction energy (4.2) between states of isotopic
spin 1 and 0. In the first case, J is restricted to even
values as the wave function is antisymmetric, and as
shown in the appendix of I, the last matrix element in
(4.2) is zero. For isotopic spin T'=1, the interaction
energy in the short-range approximation for a velocity
dependent triplet potential is then identical to the one
given by (3.5 I) and Table IT of I. For isotopic spin
T=0, J is restricted to odd values as the wave function
is symmetric, and the first matrix element in (4.2) is
given by (3.7 I), so from (4.2) we see that the inter-
action energy is zero.

For the case of identical particles in a given shell in
the short-range approximation, the same restrictions on
strength and range that were obtained for the velocity-
dependent central potential, hold for the wvelocity-
dependent triplet potential (4.1).

S. VELOCITY-DEPENDENT TENSOR POTENTIAL
IN THE LONG-RANGE APPROXIMATION

The V(") in (1.3) will also be taken in the form
(4.3), replacing only M, by Mr. In the long-range limit
b—o0, Vr(r') reduces to M7 and replacing p’ by its
value (1.4), we see that because of parity considerations,
the terms containing double products pi;ps; give no
contribution to the interaction energy. Because of the
symmetry of the matrix element under the interchange
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of the two particles, we obtain for the interaction energy
in the long-range approximation:

EQ2mlj,J)
=((nlf)> M| —5Vr(r)[3(o1 ') (2 D)
— (01-02)p"]| (nlf)>TM)
=((nlf)TM | — (&M 1) [3(o1-P1) P2
—e1pi]-os| (nlf) I M)
=— (4M 1)~ (= 12 (ndj]|3 (o1 pr) Pr—e1p:¥|nlj)
Xnljllolnlf)W (7745 T1). (5.1)

The interaction energy E is given as a function of
the number of particles (2 in this case), the shell
quantum numbers, and the quantum numbers necessary
to specify the state, in this case only the total angular
momentum J. The matrix element of e can be evalu-
ated by the standard methods of Racah.!® For the first
matrix element in (5.1), we express the spherical
components of the vector in the form:

Borp)pi—oip’Jn= 2 Qlum [ 1m)Q 01w, (5.2)
uym!
where the u=0 component of the second-order Racah
tensor!® 0,2 is given by
Qo= (5/2)'[3p1" = ps*]. (5:3)

Using the methods of Jahn and Hope* for the evalu-
ation of tensor products of Racah tensors, we obtain:

(nl57|3 (a1 pr) pr—opi?||nls )

o~
o~

2
1,
!

where U is the 95 symbol of Wigner in the notation of

Matsunobu and Takebe.l
For the matrix element of Q? we have:

(ol (5/2) 03 pu— pT
=<p2>(10>%[

= 27+ 1) (B)ul| Qa1 HU (5.4)

NS,

N,

1(I+1) 2+ 1)
(2l—1)(2l+3)] ’

where (p?) is the single-particle expectation value of p?
as in (2.21 I). This result can be obtained straight-
forwardly if we consider the expectation value of (5.3)
in momentum space.

From (5.4), (5.5), and the well-known relation

(lloliE) =6, (5.6)

we can obtain the energy E for the two-particle con-
figuration. As the dependence of this energy on J takes
place only through the Racah coefficient in (5.1) given
bylﬁ

W(jjjj; 17)=(—=1)*77[(25) (G+1) 25+ 1) ]
o X2+ 1) —TJ(+1)],
21 H. A. Jahn and J. Hope, Phys. Rev. 93, 318 (1954).
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we can immediately generalize (5.1) to the A particle
configuration as done in Sec. 2 of I, and in the long-
range approximation we obtain, after some simplifi-
cation,

E\nlj,J)= &M 7)p1[(27) (G+1) T [1=£ 2i+1)7]
X[JJ+1)=Aj(j+1)], for I=j+i (5.8)

As in the previous sections, we take for the common
potential of the nucleons in the nucleus a harmonic
oscillator of frequency w. In this case, the first term in
(5.8) becomes

(M 1)~ p*) =1 (m/ M )b (2n+143),  (5.9)

where m is the mass of the nucleon.

From (5.8) and (5.9) we see that the ordering of the
levels due to a long-range velocity-dependent tensor
potential, goes with increasing (decreasing) J if My is
positive (negative), and that the separation between .
successive levels is of the order of (m/Mr)hw. As the
energy differences between levels in a given shell should
be smaller than the separation #%w between shells, we
obtain for a long-range velocity-dependent tensor
potential the restriction (m/Mr)<<1.

The long-range approximation for velocity-dependent
tensor forces, will be valid if the range b of the potential
(4.3) is small compared with the radius of the nucleus.
Therefore, the long-range approximation will hold at
most for light nuclei. For the medium and heavy nuclei
we shall use rather the short-range approximation
developed in the following section.

6. VELOCITY-DEPENDENT TENSOR POTENTIAL
IN THE SHORT-RANGE APPROXIMATION

We first rewrite the tensor potential (1.3) by a
procedure similar to the one discussed in Sec. 2 of I,
so as to obtain

—=Vr()[3(S-p)2—Sp?]=—V,()T2-X2, (6.1)

where the =0 component of the Racah tensors T2, X2
is given by

Tot=(1/V2)Bp."—p™), Xo=(1/V2)(35.2=SY). (6.2)

In the short-range approximation, V(') could be
represented by the §-function potential

Ve(r') = Mr73% (r1—13), (6.3)

so that — V(") To? when properly made Hermitian,©
becomes

—Vr (1") Ti=— (\/ZMT)*lr%b?'[Sp,’é (1'1 - r2)Pz,

—p'-8(ri—ry)p]. (6.4)

Because of the & function appearing in (6.4), it is
convenient to write the two-particle interaction energy
in jj coupling in terms of the matrix elements in LS
coupling, and from (6.1) and the discussion in Sec. 3 of
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TaBLE II. The two-particle interaction energy (6.8) for the
short-range velocity-dependent tensor potential. The unit is
[— (m/M7)#sB%] and the radial quantum number 7 =0.

MARCOS MOSHINSKY

TaBLE III. The three-particle interaction energy (6.10) for
the short-range velocity-dependent tensor potential. The unit is
[— (m/Mr)hep?] and the radial quantum number #=0.

\\]
N 0 2 4 6

N\J

7 N\ 3/2 5/2 9/2

P2 5/3 ds/2 3/4 7/4 3/4

Pare 5/6 1/6 Tre 1485/784 99/28 2673/1960

ds/e 21/8 21/40

ds/2 7/4 1/4 1/4

i) 99/28 2871/3920 297/784

Ju 207/112 297/784 255/784 21112 For the three-particle configurations, the interaction
energy E(3,nl7,J) could be obtained from (6.8) with

I we obtain the help of the fractional parentage coefficients, in the

)

EQ@umulj,J)=3Q2+17 2 [QL+1) 2L+ P

[l ! L [l 1 I

XUlj § JlUlj § T |(=1)F-

b b

X{(mh)*Ll| = Vo (") T*| (nh):L'X1]| X?(| 1)
XW(L1L'1; J2).

R S,
N,

1
2

(6.5)

For the matrix element of Vz(')T¢% the analysis is
carried out in the Appendix, where it is shown that the
matrix is diagonal in L and different from zero only for
odd L, becoming

(D)2L|| =V ()T (nd)>L)
=— (V2ZM 1)~ (#*/4m)x [ (2L— 1) (2L+1) 2L+3) ]}
X[LIL+1) T 4uH(L); Lodd, (6.6)

where A,; is the radial integral (2.21), and H(l,L) is
given either by (2.22) or by the recurrence relations
(3.2) and (3.3).
Using the methods of Racah,'® we have from (6.2)
that
(1] x2[1)= (15)% (6.7)

Substituting (6.6) and (6.7) into (6.5), and making use
of the explicit expressions for the Racah'® and U
coefficients,!” we obtain, after simple reductions

EQ2,nlj,J)=— (m/Mr) (ho)B[ (w/2) v 4 0]
X{L(2J+3)/(2J+2)JH (1,5,7)— L T+1) (21+1)*]
XLQj+H1FT) QAH1FNIHE, T-1)}.  (6.8)

In (6.8) the minus sign is used if /= j-43 and the plus
sign, if /= j—3%, and J is restricted to even values. The
coefficient H(l,7,J) is defined by (3.6 I), and, as in
Sec. 3, 8 is

B= (v/2)%= (mw/2%)*. (6.9)

The coefficients H (!, J—1) and H(l,7,J) are given in
Tables I and II, respectively, of reference 7. For n=0
the first square bracket in (6.8) has the explicit form
(3.12). We can then give in Table IT the values of the
interaction energy for the two particle configuration in
units of [— (m/Mr) (7w)B*].

form7

E(3,nlf,]) =}J:, 3LT,5, T WG T) FEQ2,mif,J"). (6.10)

From Table IV of reference 7, we obtain in Table IIT
of this paper the interaction energy for a three-particle
configuration in the j=$ shells, in the same units as
in Table II.

Looking at the interaction energies for short-range
velocity-dependent tensor forces given in Table II,
we notice that for Mr positive (negative) the level
ordering for a two-particle configuration goes with
increasing (decreasing) J, just as in the case of the
long-range approximation discussed in the previous
section. For the three-particle configuration in the
j=14% shells, we see from Table III that, for M >0 the
lowest state in the short-range approximation is J=3%,
while for the long-range approximation, it would be
J=3.

From Tables II and III, we also see that the inter-
action energy due to a short-range velocity-dependent
force increases with J. This is also observed for the
interaction energy of the short-range spin-orbit force
given in Table I. This characteristic is reasonable for
velocity-dependent forces, as we expect a stronger
interaction for states of higher angular momentum and
kinetic energy. In contrast, for ordinary short-range
forces, the interaction energy decreases?? with increasing
A

From Tables II and III we obtain restrictions on the
magnitude of the product (m/Mr)B?, as the velocity-
dependent tensor force should not be strong enough to
give by itself the observed separation between levels,
in case M7>0, or to invert the normal level ordering,
in case M r<0. For example, for two identical nucleons
in the #=0, f7/2 shell, we see from Table II that the
separation between levels J=0 and J=2 due to the

velocity-dependent tensor force is
2.27 (m/ M 1)B% (hw). (6.11)

Considering the case of Ca*?, where the separation
between the levels?? is 1.51 Mev, and taking as before

22 N. Zeldes, Nuclear Phys. 2, 1 (1956).
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fw~10 Mev, we obtain the restriction
(m/M1)B°<0.066. (6.12)

Any values for M7 and 4 in (6.3) that would be con-
sistent with the two-body data, would also have to be
tested in connection with inequalities like the above.
It is of interest to notice from (3.1), (6.6), as well as
from (3.3 I), that in the short-range approximation the
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spin-orbit, velocity-dependent tensor, and velocity-
dependent central forces contain the same factor
H(l,L), which is given by the recurrence relation (3.2)
and (3.3). For ordinary short-range forces, we have a
similar factor” H’(4,J) given by the recurrence relation
(5.4 I). This suggests the possibility that for all types
of short-range forces, we could express the interaction
energy in terms of simple closed expressions.

APPENDIX

The matrix element (6.6) could be obtained from the expectation value of the operator (6.4) since

((d)2LM | = V()T | (nd)2L' M) ={(nl)2L|| — V('Y T2 (nd)2L’)(2L+1)"XL'2M0 | LM)

=— (WMT)'IT%baf{3(i’z¢)*l=2(ﬁz\l/’)1=2“ () *1=2" (W) 12}dr, (A1)

where (py)i1-2 is given, as in the Appendix of I, by

(p¥) 1=2= 2 {Hmams| LMY PR ar(r) Vim1 (0,0) L Rni(r) Y ima(6,0) ],

mimg

and L is restricted to odd values.
The z component of p has the form

p.= (%/1)[cosf(8/dr)—r' sind(9/96) ],

(A.2)

(A3)

and because L is odd, only the second term in (A.3) contributes to (A.2), so that we can write

(lep)1=2=’iﬁf—1[§nnz(1’)]2{ Z (llmlmz|LM)[smﬁ(aYlml/aﬁ)]Yng}

mimg

(A.4)

The expression inside the curly brackets can be developed in spherical harmonics by the standard methods of

Racah,'s and we obtain

(p ) 1=2= T [ R (1) P (4m) L 21 1P (1) (243) I X - { (2L+1)H(2L"+ 1) ¥+ 1100] L"0)

XW (U+1LL" ; 1(1LOM | LMY 13 (8,0)}.  (A.5)

In the sum appearing in (A.5), L is restricted to odd values because the first Clebsch-Gordan coefficient
requires 2/-+1+L" to be even. Furthermore, from the Racah coefficient L is restricted to L”"=L, L41. As L
is odd, we can have only L”=L and the summation reduces to one term. Clearly then, the matrix element in

(A.1) will be zero if L's~L.

Taking (A.5), and the results in the Appendix of I, we obtain from (A.1) that

((n)2L|| = Vo (") T2 (nh)’L) = — VZM r) 7} (B2/4m) w30 A i (2L—1) (2L+-1) (2L+3) PLL(L+1) ]
X (141) (214-3) (214 1)*[(4+1100| LOY LW (U+1LL; 1), (A.6)

where 4., is the radial integral given in (2.21).



