Radioactivity of In¹²⁰ and Sb¹²⁰

CARL L. MCGINNIS

National Bureau of Standards, Washington, D. C., and Nuclear Data Group, National Research Council, Washington, D. C.

(Received June 26, 1957)

An investigation of the radiations from the mass-120 isobars has been made using magnetic lens, scintillation pulse-height, and coincidence counting techniques. Sb^{120m} decays with a 5.8-day half-life by electron capture, positron emission if any < 0.03%, to an 11-usec level of Sn¹²⁰ which then decays by the emission of the following gamma rays (energies in Mev): 0.089 (E1), 0.199 (E2), 1.04 (E2), and 1.18 (E2). The 1.18-Mev gamma ray also occurs in the decay of the 16-min Sb¹²⁰, where the number of gamma rays per positron is 0.03. An activity of \sim 55 sec is assigned to In^{120m}. A decay scheme is proposed.

INTRODUCTION

HE radioactivity of the long-lived Sb^{120m} has been investigated previously by Lindner and Perlman.¹ A 6-day half-life found in the Sb fraction from an 18-Mev deuteron bombardment of enriched Sn¹²⁰ was assigned to Sb¹²⁰. By absorption methods the radiations were determined to be Sn K x-rays, 1-Mev gammas, and weak conversion electrons. No positrons were found.

EXPERIMENTAL RESULTS

All the experimental results of the present investigation, a preliminary report of which has been published previously,² are summarized in Tables I to V. Most of the data reported were obtained from the deuteron bombardment of Sn^{119} (enriched to 80%). This material was supplied by the Stable Isotopes Division, Oak Ridge National Laboratory. The conversion electron spectrum was measured with a thin-lens magnetic spectrometer. The photon spectrum was examined with a NaI(Tl) scintillation pulse-height spectrometer with a single channel differential discriminator. All gamma-

gamma coincidences were measured by using pulseheight analyzers in both channels. To measure the delay of the 0.089-Mev gamma ray with respect to the K x-rays an electronic time-delay generator was also used. Measurements were made for delay times from $3 \mu \text{sec}$ to $60 \mu \text{sec}$. With a delay of $3 \mu \text{sec}$, 90 coincidences per min were obtained. The random coincidence rate was 2.5 per minute.

DECAY SCHEME

The gamma-gamma coincidence data (Table IV) establish that all four gamma rays are in series. No crossover transitions were observed. The appearance of the 1.18-Mev gamma ray in the decay of the 16-min Sb¹²⁰ fixes the first excited level of Sn¹²⁰ at 1.18 Mev. The observation of a gamma ray of 1.155-Mev energy and half-life of 0.69 $\mu\mu$ sec by Coulomb excitation³ confirms the location of this level. The second level is placed at 2.22 Mey to agree with the systematics⁴ of the second excited states of even-even medium-weight nuclei. The x- γ and γ - γ delay experiments show that the 2.51-Mev

TABLE I. Summary of all experimental information on 5.8-day Sb¹²⁰. The estimated errors are based on two or more measurements.

$T_{\frac{1}{2}} = 5.8 \pm 0.2$ Total convers	day Method of pro-	duction: $Sn(18$ -Mev $d,n)$ $Sb(\leq 50$ -Mev γ), Sn ¹¹⁹ (18-Mev <i>d</i> , <i>n</i>) chem. ^a , <i>n</i>) no chem.	
electron inten (relative)	sity energy (Mev)	K/(L+M)		Method
$\begin{array}{c} 2740 \pm 340 \\ 1370 \pm 100 \\ 13.5 \pm 1 \\ 10 \\ (0.089 - Ma \\ (1.040 - Ma \\ No \ 0.288 \\ No \ annih \\ Coinciden \\ Gamma \end{array}$) 0.089 ± 0.001) 0.199 ± 0.001 .5 1.040 ± 0.010 1.180 ± 0.010 $2v \gamma)/(0.199-Mev \gamma)=0.9\pm0.$ $2v \gamma)/(1.180-Mev \gamma)=1.0\pm0.$ Mev γ (<0.001 of 0.199-Mev lation radiation; therefore β^+ ce measurements: a rays in fourfold coincidence.	$ \begin{array}{r} $	$\begin{array}{c} M2/E1 = 0.001 \\ E2 = 100\% \\ E2 = 100\% \\ E2 = 100\% \end{array}$	Scintillation and magnetic lens spectrometer Scin. Scin. Scin. Scin.
Each ga No othe Coinc. 1	amma ray is delayed $11\pm 1 \mu scales = 11\pm 11\pm 11\pm 11\pm 11\pm 11\pm 11\pm 11\pm 11\pm 1$	$= 0.85 \pm 0.10$	x-rays.	

^a Precipitate Sb₂S₈ in hot 3N HCl. See Radiochemical Procedures AECD-2738, W. W. Meinke, editor.

¹ M. Lindner and I. Perlman, Phys. Rev. 73, 1124 (1948). ² C. L. McGinnis, Phys. Rev. 98, 1172(A) (1955). ³ P. H. Stelson and F. K. McGowan, Bull. Am. Phys. Soc. Ser. II, 2, 69 (1957), and Nuclear Data Card 57-5-88 (National Research Council, Washington, D. C., 1957). ⁴ G. Scharff-Goldhaber and J. Weneser, Phys. Rev. 98, 212(1955).

 TABLE II. Summary of experimental information on 16-min Sb¹²⁰.

Method of production:	Sb (\leq 50-Mev γ , n) no chem.
1.18-Mev γ /total $\beta^+=0.03$	scin.
1.04-Mev γ /total $\beta^+<0.004$	scin.

level has the 11-µsec half-life. From the coincidence ratio $(K \text{ x-ray})(0.089\gamma)/(K \text{ x-ray})(0.199\gamma)=0.85$ it is concluded that electron capture to a level at either 2.42 or 2.31 Mev is less than 10% of that to the 2.51-Mev level. Based on the agreement between the experimental and theoretical internal conversion coefficients (see Table VI) the 0.089- and 0.199-Mev gamma rays are given the assignments E1 and E2, respectively, but the order of emission has not been determined.

However, from the following considerations the $11-\mu$ sec half-life is associated with the 0.089-Mev E1 gamma ray. With this assignment the half-life is

TABLE III. Summary of experimental information on 55-sec In^{120m}. This work was done in collaboration with D. N. Kundu.

Method of production:	Sn(20-Mev	<i>n,p</i>) no	chem
$T_{\frac{1}{2}} \approx 55$ sec from the decay of ~ 1 -M	ev γ's	scin.	

 4×10^7 times longer than the single proton estimate.⁵ In the medium-weight nuclei the *E*1 transitions in Ag¹⁰⁷ and Ag¹⁰⁹ are the only others available for comparison. In these nuclei the 0.32-Mev cascade transition from the 0.41-Mev 5/2⁻ level to the 40-sec 7/2⁺ level has a half-life of 9×10^{-9} sec based on 45 $\mu\mu$ sec⁶ for the halflife of the 0.41-Mev level and a branching of 0.5%.⁷ These *E*1 transitions are 10⁶ times slower than the single-proton estimate. If the 11- μ sec half-life were assigned to the 0.199-Mev *E*2 gamma ray, the transition would be 300 times slower than the single-proton estimate. The only other slow *E*2 gamma rays occur in Ni⁶¹, Zn⁶⁷, Cd¹¹¹, and Pr¹⁴¹. These are about 4 times

TABLE IV. Summary of coincidences found in the decay of 5.8-day Sb¹²⁰. Circuit resolving time: $2\tau = 1.2 \mu \text{sec. NaI scintillation counters were used}$. Y = coincidences observed; N = coincidences not observed. Gamma-ray energies in Mev.

Gating		Coincident radiation			
radiation	K x-ray	0.089γ	0.199γ	1.04γ	1.187
K x-ray	Y	Y	Y	Y	Y
0.089γ	\overline{Y}	N	\tilde{Y}	\bar{Y}	\tilde{Y}
0.199γ	Y	Y	Ň	Y	\bar{Y}
1.04γ	Y .	Y	Y		
1.18γ	Y	Y		Y	N

⁵ V. F. Weisskopf, Phys. Rev. 83, 1073 (1951).

TABLE V. Summary of results on γ - γ angular correlations. Circuit resolving time: $2\tau = 1.2 \mu$ sec. NaI scintillation counters were used. Gamma-ray energies in Mev.

889

	$\left(\frac{W(\pi)-W(\pi/2)}{W(\pi/2)}\right)$	Interpretation
$ \begin{array}{c} \hline (1.04\gamma)(1.18\gamma)(\theta) \\ (0.20\gamma)(\sim\!$	$^{+0.16\pm0.02}_{+0.16\pm0.02}_{-0.12\pm0.02}$	$J=4, 2, 0 \Delta J=2(Q), 2(Q) \Delta J=1(D), 2(Q)$

slower, whereas the other 90 E2 transitions in mediumnuclei are about 25 times faster⁸ than the single-proton estimate. Hence, it seems reasonable to associate the 11-µsec half-life with the 0.089-Mev E1 gamma ray. The third level in Sn¹²⁰ is placed at 2.42-Mev.

From the internal conversion coefficient data E2/M1>3 for the 1.04-Mev gamma ray. Thus for the 1.04-, 1.18-Mev cascade the spin sequence could be 2^+ , 2^+ , 0^+ . For three other even-even medium-weight nuclei the E2/M1 ratio for the first transition in this type of spin sequence has been determined⁹⁻¹¹ by γ - γ angular correlation measurements, i.e., Se⁷⁶ 5.5, Sn¹¹⁶ 9, and Te¹²² 10 (references 9, 10, and 11 respectively). However, the angular correlation data (see Table V) limit the E2/M1ratio for the 1.04-Mev gamma ray to less than 0.04. It turns out that a 2^+ , 2^+ , 0^+ sequence with E2/M1=0.0376 is indistinguishable from the 4⁺, 2⁺, 0⁺ pure quadrupole-quadrupole sequence. As this limit is incompatible with the above measurement and the expected ratio of ~ 9 for a 2⁺, 2⁺, 0⁺ cascade, the 1.04-Mev gamma ray is designated pure E2. For similar reasons the 0.199-Mev gamma ray is also pure E2. Hence the spin sequence for the first three Sn¹²⁰ levels is 2⁺, 4⁺, and 6⁺.

TABLE VI. Multipolarity assignments to 5.8-day Sb¹²⁰ γ 's. The experimental internal conversion coefficients are derived from the relative intensities of the conversion electrons assuming $\alpha(E2) = 0.000872$ for the 1.18-Mev transition. The theoretical values are taken from the privately circulated tables of Rose *et al.* (1956). To take account of screening, only one-half of the value of the *M* conversion coefficients was used.

and the second se		the second s					
Eγ (Mev)	Expt. α	E1	Theor convers E2	etical int sion coefi M1	ernal ficients M2		Assign- ment
0.089	0.29 ± 0.05	0.24	2.30	0.80	8.9	$\times 10^{-3}$	<i>E</i> 1
0.199	0.13 ± 0.01	0.025	0.12	0.093	0.52	$\times 10^{-3}$	E2
1.040	1.2 ± 0.1	0.50	1.19	1.56	3.57	$\times 10^{-3}$	E2
E~	Expt.	Theoretical $K/(L+M)$ ratio			Assign-		
(Mev)	K/(L+M)	E1	E2	M1	M2		ment
0.089	8.0 ± 1	6.5	2.4	6.8	4.2		E1, M1
0.199	$4.6{\pm}0.2$	6.8	4.6	6.6	5.4		É2

⁸ Way, Kundu, McGinnis, and Van Lieshout, *Annual Review* of *Nuclear Science* (Annual Reviews, Inc., Stanford, 1956), Vol. 6, p. 129.

⁶ Fagg, Wolicki, Bondelid, Dunning, and Snyder, Phys. Rev. 100, 1299 (1955).

⁷T. Huus and A. Lunden, Phil. Mag. 45, 966 (1954).

⁹ F. R. Metzger and W. B. Todd, J. Franklin Inst. **256**, 277 (1953). ¹⁰ Scharenberg, Stewart, and Wiedenbeck, Phys. Rev. **101**, 689

¹¹ M. J. Glaubman, Phys. Rev. **98**, 645 (1955).

FIG. 1. Proposed decay scheme for In¹²⁰ and Sb¹²⁰. The Sb¹²⁰ ground state half-life and positron energy are taken from reference 14. The disintegration energy of In¹²⁰ is taken from the beta-decay energy systematics of reference 13. The theoretical electron capture to positron ratios have been used in calculating the 16-min Sb¹²⁰ branching ratios. The remainder is the result of this work.

For the 0.089-Mev gamma ray the internal conversion coefficient data show that M2/E1 is less than 0.01. The (0.089γ) - (0.199γ) angular correlation results may be fitted with the spin sequence 7⁻, 6⁺, 4⁺ with M2/E1=0.001 or 5⁻, 6⁺, 4⁺ with M2/E1=0.02. No mixture will fit the sequence 6^- , 6^+ , 4^+ . Thus the only compatible assignment for the 2.51-Mev 11-µsec level is 7with M2/E1 = 0.001 for the 0.089-Mev gamma ray. The partial M2 half-life is then 0.006 sec. This gives a comparative half-life, $\log_{10} \left[\tau_{\gamma} A^{\frac{3}{2}} E_{\gamma} \right] = -6.1$. The expected range for M2 transitions¹² is -4.5 to -6.5.

The order of the 5.8-day and 16-min Sb¹²⁰ levels is not known. The beta-decay energy systematics¹³ predict 2.7 Mev for the total decay energy of Sb¹²⁰. 1.7-Mev positrons¹⁴ follow the decay of the 16-min Sb¹²⁰ and hence this activity most likely belongs to the ground

TABLE VII. Expected half-lives for In¹¹⁸ and In¹²⁰.

Nucleus	In ¹¹⁸	In ¹²⁰	In ¹²⁰ <i>m</i>
β decay energy (Mev)	4.2 ^a	5.4 ± 0.4^{a}	$\begin{array}{r} 3.2 \pm 0.4^{a} \\ 2.22 \\ 5.25^{\circ} \\ 70_{-30}^{+50} \end{array}$
Final Sn level (Mev)	ground state	ground state	
Assumed log ft	4.60 ^b	4.60^{b}	
Calculated $T_{\frac{1}{2}}(\sec)$	6	14_{-13}^{+6}	

^a See reference 13.
 ^b Log ft for 3.3-Mev β of 13-sec In¹¹⁶.
 ^c Log ft for 0.87- and 1.00-Mev γ's of 54-min In^{116m}.

state. The limit on positron emission of the 5.8-day Sb^{120} (<0.3%) implies that its decay energy to the 2.51-Mev Sn¹²⁰ level is less than 1.3 Mev. The log ft for this activity then lies between 5.0 and 6.3 which is compatible with an allowed transition. A spin of 6⁻, 7⁻, or 8⁻ is therefore assigned to this level.

A 20-Mev neutron bombardment of natural tin is expected to produce short-lived \sim 1-Mev gamma rays which may originate only from the decay of In¹¹⁶, In¹¹⁸, or In¹²⁰. In¹¹⁶ and In^{118m} are known to have half-lives of 13 sec and 4.5 min, respectively. The data of Table VII are the basis for assigning the \sim 55-sec activity to In^{120m} . The metastable levels of both In^{114} and In^{116} are both known to have spin 5, and hence In^{120m} is assumed to have spin 5. A comparison between the measured and expected half-lives would allow branching to both the (4+) 2.22-Mev and (6+) 2.42-Mev levels in Sn^{120} .

The high spin assigned to the 5.8-day Sb¹²⁰ would account for the fact that this activity was not observed in the following reactions: Sn(6.8-Mev p,n)¹⁵ and Sb(≤ 18 -Mev γ, n).¹⁶

The proposed decay scheme is shown in Fig. 1.

ACKNOWLEDGMENTS

I wish to express my appreciation to R. W. Hayward for his generosity in placing the facilities of his laboratory at my disposal, to D. Hoppes for his cooperation in the experiments, to N. Heydenburg and S. Buynitzky of the Department of Terrestrial Magnetism, Carnegie Institution of Washington, for the cyclotron bombardments, to H. W. Koch for the betatron bombardments, and to K. Way and D. N. Kundu for their helpful suggestions.

¹⁵ Blaser, Boehm, Marmier, and Wäffler, Helv. Phys. Acta 24, 245 (1951).
 ¹⁶ L. Katz and A. G. W. Cameron, Can. J. Phys. 29, 518 (1951).

¹² M. Goldhaber and A. W. Sunyar, in Beta- and Gamma-Ray ¹⁴ N. Goldader and A. W. Shiyal, in *Deal-and Gamma-Ray Spectroscopy*, edited by K. Siegbahn (Interscience Publishers, Inc., New York, 1955), Chap. 16, Sec. II.
 ¹³ K. Way and M. Wood, Phys. Rev. 94, 119 (1954).
 ¹⁴ P. Stähelin and P. Preiswerk, Nuovo cimento 10, 1219 (1953); Blaser, Boehm, and Marmier, Helv. Phys. Acta 23, 623 (1950).

⁽¹⁹⁵⁰⁾