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Statistical Broadening of Spectral Lines Emitted by Ions in a Plasma*
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The Holtsmark theory of line broadening omits the factor e ~'~~~~ in the evaluation of probabilities, V;;
being the Coulomb interaction between the ith and the jth ions. This leads to serious errors in the wings of
a line where frequency shifts arise from close encounters which are inhibited by the Boltzmann factor. In
part I of the present article a consistent binary approximation to the line shape is given, the assumption
being made that only a single perturber is involved in a collision. Part II treats the case of many particles,
retains V;; for all perturbers j interacting with a single radiating ion i, but ignores forces between the
perturbers themselves. Comparison is made with other treatments.

HE Holtsmark theory of line broadening involves
the probability W (F) that the plasma will

produce an electric field of magnitude Ii at the radiating
ioe. W(P) has been calculated by Holtsmark with
neglect of the interaction between the ions. This is a
good approximation for high temperatures, low density,
and small ionic charge, but holds in general only for
relatively small values of Ii.

Methods' ' have recently been proposed to permit
inclusion of the efI'ect of the interaction between the
ions. Mayer' employes a single-encounter theory for
large fields and assumes, for small fields, among other
conditions, that the ions are attracted to their equilib-
rium positions by a force proportional to their dis-
placement. Broyles' uses the method of Bohm and Pines
to divide the Coulomb field into a short- and a long-
range component. The former acts like a system of
particles and the latter like a system of waves. He
evaluates the particle part using two diGerent approxi-
mations. The erst, (a), considers interactions oe/y
between the radiating ion and the plasma ions while
the second, (b), introduces the field but limits interac-
tion to the nearest neighbor. Kcker, ' following Holts-
mark, keeps the statistical independence of the ions
but replaces the Coulomb Geld by a Debye field.

In part I of this note we sketch a fairly obvious
generalization of the simple one-perturber form of the
Holtsmark theory, compare it with the latter in the
range of distances over which both are valid, and draw
some conclusions as to the importance of the corrections
required. This analysis follows a well-known procedure
outlined, for example, in Unsold's book. 4

In part II we treat the many-body problem using
the following model: the free electrons form a uniformly
smeared out negative charge and interactions are con-
sidered only between the radiating ion and the plasma
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ions; we thus ignore interactions between the plasma
ions themselves. This model is similar to Broyles'
approximation (a) except that we apply it to the actual
Coulomb interactions of the ions rather than to the
short-range forces that arise in the Bohm-Pines method.
The advantage of our method, we believe, is that it
avoids some uncertainties inherent in the approxima-
tions attending the use of Bohm-Pines' approach, for
our approximations are clear in their physical meaning
and the analysis is otherwise exact. The limitation of the
present work is, of course, its failure to be applicable to
radiating atoms; here our results reduce to Holtsmark's.

Let P(r) be the probability that there shall be no
particle within a sphere of radius r about the radiating
ion. The probability that there be no particle in a small
spherical shell between r and r+dr is known; it is
1—4n-Ce—'"r'dr provided that

Here a =QiQs/kT, Qi is the charge on the radiating ion,
Qs is that on the perturbing ion, %=the total number
of perturbing ions present, and A=the radius of the
sphere containing them; k is the Boltzmann constant
and T the temperature.

Unless they are equal, we assume that the perturbers
greatly outnumber the radiators. From (1),

g
A (a,r) = e 'i "r'dr.

4sA(u, R) ~o

For very large R, A (u,R) =R'/3, and C=' e, the number
of ions per unit volume.

By the law of combining probabilities

P(r+dr) =P(r) (1 krCe 'I'r'dr), —
or

P~ P~C&—a/rr2 P—g 4m CA (e,r)

The probability that there be one or more ions in the
sphere is
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and
dP(r) =krC exp) a/—r 4—irCA (a,r) jr'dr. (3)

F000

This is normalized in the sense that

Let us refer to (3) as dP(a, r) Hol. tsmark's distribu-
tion is then dP(O, r) . The ra.tio of the two,

O. l 100

dP(a, r)

dP(O, r)
=exp ——/47rs~ ——A(a, r)

~
. (4)').

An integration by parts yields

A(a, r) = ', e '~"(r'-',ar'+—2a-'r)+6a' Ei(—a/r),

where
e '

Ei(—x) =—— dh. —
t

O.OI lO

If we introduce a variable $—=r/a, then

A (a, (a) =-',a'F(&),
and

(5)

'X OOI
0

I
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riG. 1. Graph of F(().
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E($) is plotted in Fig. 1.
In order that the nearest-neighbor approximation

shall be a valid approach to the Holtsmark distribution,
the quantity P=(r0/r)' must be greater than 7 (see
Unsold' ), r0 being given by 0.62m '*. The present results,
then, begin to be useful at values of r in the neighbor-
hood of ~e: and remain so for smaller radii. At this
critical r„Eq. (4) becomes

4~ 4~ p 1
S=exp 4ae'+ — ea'F ~—

192 3 (4am&) . (6)

in view of Eq. (5). The terms in the exponent are
appreciable when 4am&~&0. 1. 0 the equality sign holds,
then

lnS= —0.1+0.065 —0.055 = —0.09,

the value of F(10) being 845. For 4am&=1, we have

lnS = —1+0.065—0.017= —0.952,

and for larger values of 4am* only the term exp( —4am~)

of S remains important.
In the light of these numerical results, we consider

two cases. Of astronomical interest is the perturbation
of singly ionized helium atoms by protons. Here
Qi=Q2=e. The condition that our nearest-neighbor
approximation be significant is that r(0.62m '. On the
other hand, r must be greater than the size of a helium
ion, r&5)&10 cm. Combining these inequalities we
see that m&10'4 cm ' is the criterion for the existence
of a useful range for the single-particle approximation.
This, then, implies no physical limitation at all.

But to have S appreciably smaller than 1, ae& must
be in the neighborhood of 1.This means that T= (e'/k) e&

=1.7)&10 'e' K and is probably never of interest in
astrophysical situations. In a plasma, with a tempera-
ture of 1000'K, e has to be of the order 10"cm ' before
the correction here computed is important.

The situation is diferent for conditions of explosions
treated in references 1 and 2. An atmosphere of iron
ions, each with Q = 23e, and with 2'=10~ 'K, has
a=8.4&(10 ' cm. At normal density, m=10" cm ', and
the condition upon r is r&10 'cm. Because of the
small size of the iron residue, this leaves a considerable
range in which the present one-perturber theory is
valid. Indeed, at the critical r, for which formula (6)
has been computed, 5=10 '5, indicating that the error
in the Holtsmark formula is enormous. For smaller r
(larger "frequency distances" from the line center), S
is accurately given by e 1'". For larger r, a more
elaborate analysis of the sort given in reference 2 and
in part II of this paper becomes necessary.

If the radiating ion is placed at the origin and there
are S ions in a volume V interacting with it, the
probability WN(F) that the field at the origin be F is
given by

WN(F) = ~ W'N(rir2 ~ rN)
v

N ) N

&&bl F-ZF; III«;, (7)
i 1 ) j 1
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where W//(rir2 rAT) is the probability density of
ending the S ions in the position rq rN. In our model,
WAr(r, rA) is

W2/(r, rA) =E(V) exp( —ap,2; '), (8)

where E(V) is a normalization constant. In Eq. (7), 5

is the Dirac function and F; is the field produced at
the origin by the ith ion:

F;=Qsr;/r, s.

Equation (7) can be written in a more convenient form.
It is best obtained through use of a method given by
Chandrasekhar. ' The results can be summarized as
follows.

Denote by H(s) the probability of finding a field of
strength s where the dimensionless quantity s=Fb &

the third term for y»1 is c22rye 'r/s24! Therefore

H(s) =cs 1'e 2[1+(c/12) (P/s)+ ~ j, (12)

valid for s»P; p—=Psl»1. The leading term of Eq. (12)
as s-+ eo agrees with the leading term of Eq. (3) in the
same limit.

Case 1:g«1; y—= gsl«1

For this case we expand Eq. (5) and, denoting x/s
by y, we obtain a series in p:

15 (2~ i I"
de '"(s—sins)8i) ~,

( 1)nPnn/ n/2sn/2—xZ, (»)
n-0

f/= (4/15) (22rQ2) f/2,
which gives

2/=1 —ciPy '+c2P'y '+ (14)
i.e., b: is essentially the field produced on one particle
by an ion at- the average spacing between ions, and
m=number density of ions. %e then find'

TABLE I. CoeKcients of the 6rst two terms of Eq. (15).
Values of (2/n. s)Ip(s) taken from reference 5.

2 r" (xy&
H(s) =—, exp —

~

—
~

2/ x sillxdx,
~s&, ! s)

(10)

15!/'2
dss-»2(s —sins)8&i~,

(s)
yexp —ps&( —(, (11)

&x

0.1
0.6
1.0
2.0
3
6
8

10

(2/ )Io( )

0.004225
0.129598
0.271322
0.33918
0.176
0.02417
0.01038
0.00556

(2/~S) C1I1(S)

0.00745
0.21264
0.3860
0.1791—0.08707—0.0507—0.0273—0.0168

where where ci= —',ss (2r/2) 1, cs= 5/4. Equation (10) becomes

It is seen that, as T +po, 2/
—+1, an—d Eq. (10) reduces to

the Holtsmark distribution. ' H(s) can be computed
directly from Eqs. (10) and (11).However, for certain
ranges of P(P&(1 and P»1) the form of H(s) can be
simplified. We shall now obtain expansions for H(s)
valid in these two ranges of p and also for the limiting
case of finite p and large s.

Limit of s—+~
I„(s)=

Jo

/xq 1 (xq &

exp —
]

—
f

x sinx( —
f

dx.
Es~ (s)

2
H (s) = Ip(s)+Pc,I—t (s)

mls

(c 2

+Ps' I2(s) csI;(s)—i—
(2 ' i

where

(15)

(16)

It will first be shown that in the limit s~ eo Eq. (10)
reduces to the sam. e limit as the binary theory given in
part I. The integral in Eq. (10) can be written as

Im
(x) &

exp —
~

—
( q+ix xdx

m 1 fx~ sn/2

=Im
n !pL22S/

~ S. Chandrasekhar, Revs. Modern Phys. 15, 1 (1943).' Our notation is slightly difterent from Chandrasekhar's.

The erst term in the expansion is zero; the second
term iS 222rCS 'C &, Where C=(2/2r)'(15/8); y=pS1, and

It can be seen that (2/2rs)Ip(s) is the Holtsmark dis-
tribution to which Eq. (15) leads in the limit T +oo. —

The integral of Eq. (16) can be expanded in a series
and easily evaluated for s&3 and s&6. The range
from 3 to 6 is dificult because of the slow convergence
of the series. The coeKcients for the 6rst two terms in

Eq. (15) are tabulated in Table I.

Case 2: g»1; s(&g

For this case we treat Eq. (11) in a different manner.
If we put x/s=y and psly '= p, we have

15 /r 2q &
p y q

-~
/
"

P '[P'yP-' sin(P'yP-')-ge dP. —-
4 (2r) (ps)
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We expand the sine and obtain the following asymp-
totic series for q..

TABLE III. Comparison of Eq. (19) with Broyles' SRN¹

Eq. (19)
n= &iy'P ' &—sy'0'+-Esy'"P

15 (2~'1 15 t 2i'*4!

4 E~) 3! 4 (s-j 5!

0.3
0.5
1.0
1.5

0.69
1.25
0.64
0.04

0.63
1.13
0.66
0.147

15 (2~ &8!
Es ———

l

—
l
—. (17)

4 E~) 7!

Equation (18) can be integrated to give

pfs' exp( —s'p/4Ei)
H(s) =

2x IC]
(19)

TABLE II. Correction to the Holtsmark distribution
for P=2X10~.

0.1
0.6
1.0
2
3
6
8

10

Holtsmark

0.004225
0.129598
0.271322
0.33918
0.176
0.02417
0.01038
0.00556

Correction

+0.00015
+0.0042
+0.0078
+0.0036—0.0017—0.0010—0.00054—0.00034

Equation (19) is identical with a formula proposed by
Mayer' ' on the basis of a simpler physical model than
ours.

Applications

(a) A typical case of astronomical interest involves
the following values of temperature, density and charge:
T=6000'C, I=10", single charged ions, Qi=Qs=e.
For this case P=2X10 '. Here we can use the results
under case 1 for ranges of s from 0.1 to 100. Table II

If only the first term is kept, we have

2 t
" -

(E&y&p
a(s) =—s' exp yfl l y»n(~y)&y (18)

s.s e 4 P )

corrects the Holtsmark distribution; it is based only
on the first correction term of Eq. (15), for the range
0.1&s&10.

The percentage error in the Holtsmark distribution is
small, It becomes large in the limit of large s, i.e., when
the binary theory becomes valid. In the limit of large s,
the ratio of H„ the corrected Holtsmark, to B, the
Holtsmark distribution is given by H,/H= exp( —Ps&);
hence the percentage error becomes very great.

(b) A case of recent interest, ' ' already alluded to in

part I, involves: T=1.16&10 degrees, m=8.4X10"
atoms/cc, and Qi=Qs=23e. For this case, P=5.5. For
s«5.5 we can use the results under case 2. For s))5.5
the binary theory can be used.

We have compared (see Table III) the SRNN (short-
range nearest-neighbor) result of Broyles' with those
of Eq. (19) for 0.3&s&1.5. The percentage error in
using Eq. (19) increases with increasing s and is
estimated to be less then 10% for s=1. Since the as-
sumption underlying our derivation are quite di6erent
from his, one may well have confidence in the practical
correctness of this simple result.

For a more detailed comparison of Eq. (19) with
Broyles' results and the Holtsmark theory see Fig. 2 of
reference 2.' The curve marked simple harmonic oscil-
lator is the result of Mayer' ' and, as mentioned before,
it is identical with our Eq. (19).
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