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(which I am sorry I called it) but a suggestion as to the
interpretation of the structure of the line, being the
smallest hyperfine structure and isotope shift that
would give a- pattern of blends conforming with his
observed Ba I structure, taking no account of Arroe's
inferred Ba r isotope shifts but giving shifts qualitatively
somewhat similar to Arroe's observations in Ba u.

He agrees that it is preferable to find an interpretation
consistent with both Jackson's and Arroe's experi-
ments, as he is satisfied that my inference is. He points
out that, moreover, my inferred component at —3.1 mK
provides a very satisfactory explanation of the observed
increase in the extent of his main component, at inter-
mediate intensity, to —3.5 mK (reference 3, page 951).
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Molecular beam resonances are discussed for molecules subjected to various combinations of nonuniform
fixed and oscillatory fields. The transition probability equations are reduced to forms which are suitable
for digital computer calculations. A UNIVAC computer program for the calculation of the shapes of the
resonances has been developed which is applicable to systems involving simultaneous transitions between
two or three different energy levels and to cases where the magnitudes of the fixed fields, the amplitudes
of the oscillatory fields, and the phases of the oscillatory fields vary arbitrarily throughout the transition
region. The calculation is applicable to systems perturbed at as many as nine different frequencies simul-
taneously and to arbitrarily determined molecular velocity distributions. Curves are shown for molecular
beam resonances with two, three, and four separated oscillatory fields and for resonances with a gradually
applied single oscillatory field. The effects of phase variation along the beam in distorting a separated
oscillatory field resonance are discussed.

I. INTRODUCTION

' ~N his original molecular beam resonance proposal,
J. Rabi considered only a single uniform oscillatory
fi.eld region. Several years ago Ramsey' pointed out that
this was not the only method of applying the oscillatory
field since resonance curves of a diferent and often
more useful character could be obtained if the amplitude
and phase of the oscillating field were varied along the
path of the beam. However, the only arrangement
which he discussed in detail was that of his separated
oscillatory field method in which the oscillatory field is
confined to small initial and final regions, with no oscil-

lating field in between. It was shown that the separated
oscillatory field method often provided much narrower
resonances than a single oscillatory field and that the
resonance was less affected by Doppler broadening.
Other, possible configurations of oscillatory fields were

not discussed because of the difhculty in calculating
the shapes of the resonances for more complicated field

configurations. In the present paper general methods
are presented for the calculation of the shapes of
molecular beam resonances under a wide variety of
circumstances. Results of calculations of the shapes of
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the resonances for various field configurations are
described.

II. PROBABILITY AMPLITUDE EQUATIONS

Consider a system with three eigenstates p, q, and r
of the Hamiltonian X,o. I-et the system be acted upon
by the additional time-dependent perturbation V and
let (pl l) represent the transformation function between
the eigenvector

l p) of the pth eigenstate of pcs and the
general time-dependent state vector

l l) of the system
with X=Xs+V. Then by a simple generalization to
three energy levels of the well-known' two-level rela-
tions, the three appropriate diGerential equations are

ia—&p l)=&plxo p&&pll&y&pl vip&(pll)

+&pl l'I v)&all&+&pl vlr&&r ll&, (1)".
together with the two equations obtained by cyclic
permutations of p, q, and r. Here and subsequently,
the subscript "cyc" behind the equation number indi-
cates that the equation represents the three equations
obtainable by cyclic permutations of p, q, and r.

Equation (1) is exact but it is excessively general for
integration since no limitations on the forms of Ko and
V have been made. A wide variety of relevant problems

'N. F. Ramsey, 3faleellar Beams (Oxford University Press,
New York, 1955), pp. 119and 127.
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can be included if Xo and V are restricted to forms
which provide Hermitian matrix elements such that

&pl~ol p)/@=a. ,

(P l
v

l q)/h =b„expl i(cob„t+8b„))
+c, exp[i(a&, „t+8,„)),

(Pl &lr)/P =b, exp[i( —~b, t —bb )]
'" '

(2)...
+c, expl i(—(u„t—5„)),

(p I
V

I p)/a=d, cos(~„tabb„),

where a„, b„, c„,d„, 6.„,5~„, etc. are real constants that
are not explicit functions of the time, although they
may vary in magnitude along the path of the beam.
For example, if the amplitude of b„vanishes everywhere
except at the beginning and end of the transition
region, the condition corresponds to that of the sepa-
rated oscillatory held method. The quantities co,„,etc. ,
correspond to the various frequencies of the perturba-
tions and are assumed to be unaltered throughout the
transition region.

If Eq. (2) is substituted into Eq. (1) the required
three complex simultaneous differential equations for
(pit) are obtained. Alternatively these three complex
diGerential equations could be reduced to six equations
for the real and imaginary parts respectively of each

(pit). For only two energy levels, for a constant oscilla-
tory field amplitude, and for a single perturbing
frequency, these equations have known integrals, ' but
this is not true for the more general cases considered
here.

III. REDUCTION TO ITERABLE FORM

In principle, the combination of Eqs. (1) and (2)
together with a knowledge of a„, etc. , and of the initial
conditions (p l0), etc. , provide equations that could be
numerically integrated to yield the desired transition
probabilities. In practice, however, such a straight-
forward numerical integration procedure is not useful;
in a typical experiment the molecules are subject to
frequencies of 10' cycles per second for 0.01 second so
a million or more successive steps would be required
for a direct numerical integration with a moderate
number of steps per cycle; such an integration would
have to be completed for several different velocities
before a single theoretical point on a resonance curve
could be obtained.

However, for most significant problems the oscillatory
frequencies of the perturbations are much greater than
the rates at which the perturbation and probability
amplitudes change as the molecules go through the
transition region. Consequently, for an interval of time

including a considerable number of cycles, the
coefficients in Eqs. (1) and (2) may be treated as

approximately constant. Under such conditions expres-
sions for the integrals can be obtained in terms of
well-known functions.

The results of the above integration over time 6
may be written as

(p l t+a)rb F—(—a„d„~„,t,a)(p l t),
+$G(a~,a, ,b„,(ub„,bb„,t, t& )
+G(a„a„c„,~,„,b,„,t,a))(q l

t)rb

+G(a„a„,c„—a)„, b.—„t, Z)](r l t)rb

+H(a~, d„,(op~, "r&d„,t,h)(p l
t)r

+[I(a~,a„b„,ar b„,b b„,t,h)
+I(a„,a„c„a).„,b,„,t,h))(ql t)r

+I(a,a„c„—(u„, I„,t, —h))(rlt)r, (3)„„.
(pit+6) = H(a„—d,~ „,b „,t,t&)(pit)

+I(u.,a.,c.,~-,b-, t,~))(q I t) ~

+I(a, a„c„—a).„b.„t, a—))(r t)rb

+I'(a„,d„~„,b.„t,z)(pl t),
+L (»»r»& b»' b&'» )
+G(a~,a„c„(o,„,b,„,t, r&&))(q

l
t)r

+G(a„a„c„cu.„b—.„t, A—)](r l t)r,

where

Ii (a,d, (o,b, t,h)
=cos(aA) —2d costs(t+6/2)+5)

X sin(ah) Lsin (&vh/2) )/co,
G (a,a„,b,(u, b, t,h)

= 2b sin[a) (t+6/2) —(u,+a„)6/2+ b)
X {sinl (~—a,+a„)6/2))/(~ —a„+a,),

H( du, (v,b, t,d,)
(4)

=sin(aA)+2d cos[cv(t+6/2)+5)
Xcos(ah) l sin(cud/2))/~,

I(a.,ay, b,(u, b, t,h)
= 2b cosL~ (t+6/2) —(a,+u„)6/2+8)

X {sin[(a)—a„+a,)a/2))/(&u —a,+a,).
The subscripts E. and I indicate real and imaginary
components. The conditions for the validity of Eq. (3)
are (a) that 6 must be sufficiently small for the quanti-
ties a„, b„, 5», etc., not to change significantly through-
out the time 3,, and (b) that 8, must be suKciently small
for the products of 6 times the perturbation coefficients

b„, c„, d„, etc. , to be small compared to one. The last
condition must be well satisfied since Eq. (3) is ordi-
narily used many successive times and errors may tend
to accumulate.

IV. CALCULATIONS OF TRANSITION
PROBABILITIES

The formulas of Eq. (3) which relate (pit+6) to
(pit), etc., may be used successively many times to go
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from the initial probability amplitudes (p~0)'s to the
final (p~t)'s. Since this iterative procedure may have
to be applied a hundred or more times to obtain a single
transition probability for a single molecular velocity,
it is best done with the aid of a high-speed digital
computer. This problem has been programmed for such
a computer and coded for the UNIVAC I. In the pro-
gram, the twenty-one quantities a„, b~, c„, d„, 6», 5,„,
bz„, etc., may vary along the beam path in an arbitrary
fashion provided only that their values can be satis-
factorily inferred by linear interpolation between values
tabulated at twenty arbitrarily chosen points along the
beam. For each resonance frequency, the transition
probability can be calculated at up to twenty diferent
molecular velocities and these can be averaged with
arbitrarily chosen weights to provide an average over

any desired probability distribution. Ordinarily an
average over only five velocities is sufficient and for
some purposes the use of a single velocity is adequate
and much faster.

With no significant increase in computing time, the
final occupation probabilities of all three states can be
calculated separately. The extent to which these add
up to unity provides a measure of the degree to which

the validity conditions discussed at the end of the
previous section are satisfied.

V. SINGLE PERTURBATION FORMULATION

The above procedure is of course applicable to cases
in which only a single oscillatory perturbation is applied
and in which only two energy levels are concerned.
Such a case would correspond to all b~, c~, d~, etc. , being
equal to zero except for b„, so that transitions occur
only between levels p and q with a perturbation at the
single frequence ~&„. However, such a procedure is
wasteful of computation time since for this special case
the following much more efficient program can be
devised which is not dependent upon the validity
restriction (b) at the end of Sec. III. Consequently,
greater accuracy can be achieved with fewer iterative
steps.

In the single perturbation case, advantage can be
taken of the fact that Eq. (1) can be solved exactly if

a„, a„c„,and b„are constant. These solutions can be
used as the basis of the iteration; there is then no
objection to large variations of (p~ t) and (q~ t) over the
time A. From the standard form of these solutions, ' it
can be seen that all the procedures of the above sections
remain applicable except that in Eq. (3) F(a~,d~,ors~,

b&„,I,E) is replaced by F'(a~, a„b„,or&„,b&„t,h) with a
similar change being made for H, whereas G and I are
merely replaced by G' and I' with the variables upon
which they depend being unaltered. The G's and I's
which depend on c„may be omitted but that is not
necessary since these functions vanish in any case for
the assumed conditions. Equation (4) is replaced by
the following new set of defining equations:

7I. MULTIPLE SEPARATED OSCILLATORY
FIELDS

One application of the above methods is the calcu-
lation of the molecular beam resonance to be expected
when more than two coherent separated oscillatory
fields are employed. ' Figure 1 shows the resonances to
be expected with two, three, four, and an infinite
number of successive oscillatory fields; the total length
of the transition region is kept fixed. It will be noted
that the resonance becomes slightly broader as the
number of successive oscillatory fields is increased.
However, the resonance then becomes more clearly
differentiated from the neighboring subsidiary minima;
under some circumstances, this can be valuable.
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FIG. 1. Molecular beam resonances with various numbers of
oscillatory Gelds. — represents two separated fields, ~ three,
———four, and ———infinitely many separated fields (the
latter is equivalent to a single oscillatory Geld extending through-
out the entire transition region).

F'(a„a„,b,or, b, t,h)
=cos[(or —a,—a„)6/2) cos(AB /2)+ (or+ a,—a„)

Xsin[(to —a,—a„)6/2] [sin (A 6/2 j/A,

6'(a„ay, b,or, t'r, t,/r )
=2b sin[or(I+6/2)

—(a,+a„)6/2+bed[sin(A6/2) j/A,
(5)

H'(a„a„,b,or, t'r, t,h)
= —sin[(or —a,—a„)d /2) cos(AA/2)+ (or+a, —a„)

Xcos[(or—a.—a„)6/2j [sin (A 6/2) $/A,

I'(a.,a„,b,~,b, I,~)
= 2b cos[or(I+6/2)

—(a,+a„)6/2+ b][sin (A 6/2) j/A,

where

A = [(as—a —~)'+ (2b)'1'. (6)

Even though there may be a large change in probability
amplitude in a single step, the above procedure is
exact in so far as the perturbation can be represented
in a stepwise fashion.
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Fzo. 2. Assumed variation of oscillatory perturbation amplitude
along the transition region for the. transition probability calcu-
lation whose results are shown in Fig. 3.

jump abruptly to four times optimum, and to stay
there for a distance l before dropping abruptly to
optimum value and then linearally falling to zero in the
final distance —4l. The assumed amplitude variation is
shown in Fig. 2.

From Fig. 3 it can be seen that the apparently almost
negligible stray field has a profound inhuence on the
resonance shape and markedly narrows it. In some

respects the stray field gives to the resonance many
properties of the separated oscillatory field method. '
The narrow dips on the far wings of the resonance were

totally unexpected; they probably correspond to the
similar dips whose occurrence in the separated oscilla-

tory field method has been explained by Ramsey. '

4 P. Kusch, Phys. Rev. 93, 1022 (1954).' H. Salwen, Phys. Rev. 99, 1274 (1955) and private communi-
cation.' Lewis, Pery, Quinn, and Ramsey, Phys. Rev. 107, 446 (1957).

VII. STRAY FIELDS WITH A SINGLE
EXCESSIVE OSCILLATORY FIELD

Another application is the determination of the effect
of stray oscillatory fields in narrowing a resonance when
excessive oscillatory fieMs are used. Kusch4 has observed
that when excessive oscillatory fields are used in the
single oscillatory field methods, the resonance is often
narrower than would be expected. Salwen' has suggested
that this may be due to stray oscillatory fields and he
showed that such an effect can occur with an expo-
nentially applied field.

This interpretation was confirmed by the application
of the present program to a case where the oscillatory
field was primarily at a constant amplitude four times
the normal optimum. A comparison was then made
between the resonance pattern when there was just the
constant oscillatory field for a distance and no stray
oscillatory field and the pattern with a stray field. The
amplitude of the stray field was assumed to rise linearly
from zero to optimum value in the first distance 4l, to
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FIG. 3. Transition probability with excessive oscillatory field
and stray Geld. represents the transition probability with
stray fields as shown in Fig. 2; ———represents the transition
probability with no stray fields.

VIII. RESONANCE SHIFTS FROM STRAY
FIELDS OF DIFFERENT PHASES

Computations have also been carried out to investi-
gate the effects of stray oscillatory fields in shifting the
resonance frequency in the separated oscillatory field
method. The results of the calculations are consistent
with there being no shift as long as the stray fields are
either in phase or 180' out of phase with the primary
fields. However, if the stray fields in part have other
phases by virtue either of a simple phase shift or of a
rotation of the direction of the oscillatory field in space,
the frequency of maximum transition probability may be
shifted from the resonance frequency cos= (8„E,)/h, . —

The magnitude of such a shift may be estimated from
the relations derived by Ramsey' for the effects of
several oscillatory fields at different frequencies. These
relations apply since the motion of the molecule through
the region where the phase changes gives rise to an
oscillatory field which is at a slightly different frequency
as seen by the molecule. Such an oscillatory field not
only gives rise to resonance transitions at its own

apparent frequency, as in the Millman effect, ' but also
slightly shifts the position of the narrow resonance of
the separated oscillatory field method.

If all the stray fields are at the same phase as all of
the primary fields or of opposite phase, the resonance
is distorted but it is not shifted since under this condi-
tion the perturbations at higher and lower frequencies
are symmetrical about the oscillatory frequency so that
the shifts cancel.
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