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Electronic Energy Bands in ZnS: Potential in Zincblende and Wurtzite
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This paper reports on the calculation of the crystal potential in ZnS. Experimental evidence relating to the
nature of the chemical bond is reviewed, and it is concluded that the bonding is a mixture of covalent and
ionic with effective charges of +-', for Zn, ——', for S. Radially symmetric sp' valence electron densities are
constructed for each ion and normalized within each equivalent volume sphere to the appropriate net ion
charge. It is concluded that the same charge densities are appropriate for zincblende and wurtzite. Calcu-
lation using these charge densities then shows the crystal potential to be the same for both modifications in
two corresponding prominent crystallographic directions. Hence, there is justification for using the same
spherical potential for the cellular calculation of electronic energy bands in both structures. Finally, the
close geometrical relationship of the two structures implies that many of the LCAO integrals which will arise
in interpolating the band structures are identical.

1. INTRODUCTION
' 'HIS is the first of several papers reporting on the

cellular calculation of electronic energy bands in
crystalline ZnS. In this paper the nature of the chemical
bond in ZnS, and the calculation of the crystal potential,
will be discussed. It will be shown that it is reasonable
to use the same crystal potential for both ideal crystal-
line modifications of ZnS, in the approximation that
the potential is spherically symmetric. The subsequent
papers will report on the results for zinc blende, and for
wurtzite. '

The cellular calculation can be conveniently carried
through only at isolated points of high symmetry in the
Brillouin zone (generally end points in prominent
directions) and the main burden of the calculation is to
obtain accurate eigenenergies at these points. When
such eigenenergies are available, the method of Slater
and Koster' can be used to obtain the values of certain
"LCAO" (linear combination of atomic orbitals) in-

tegrals needed to interpolate the band structure at
points of lower symmetry in the zone. As a consequence

Fro. 1. Atomic polyhedra, zincblende (left-hand side) and
wurtzite (right-hand side). The atoms are assumed equal in size.
The polyhedron appropriate to zinc (or sulfur) is shown in each
case. The wurtzite polyhedron is obtained from zincblende by
rotating the three planes (110), (101), (011) into (100), (010),
and (001), i.e., by 60' about the L111]direction. (All directions
are given in a Cartesian system. )

of the geometry of the two structures, many of the
same LCAO integrals arise in the band calculation for
zincblende and wurtzite. Hence the LCAO integrals
determined from the two independent cellular calcula-
tions should agree closely. In fact, ZnS is well suited to
test the LCAO approach in this manner because of the
close relationship of its two ideal crystalline modifica-
tions. Since for ZnS, both of the ideal crystalline
modifications exist, an experimental test can be made
of the band structures predicted by the cellular calcu-
lations, and of the relationship between the wurtzite
and zincblende band structures predicted from the
appearance of common LCAO integrals.

2. GEOMETRY OF ZINCBLENDE AND WURTZITE

Zincblende belongs to space group T~', with the
atomic positions fixed by symmetry. ' The structure may
be considered as two cubic close-packed arrays, one of
sulfur atoms, the other of zinc atoms, translated with
respect to one another by -', the body diagonal of the
usual cubic cell (i.e., along a threefold axis). Each atom
has 4 first neighbors of the other kind at the corners of
a regular tetrahedron, and 12 second neighbors of the
same kind. Six of the second neighbors are in the same
plane as the original atom, at the corners of a regular
hexagon; the remaining six are distributed three above,
and three below at the corners of a trigonal antiprism.
Crystallographic data are summarized in Table I.

Wurtzite belongs to space group C6,4.' This space
group allows the introduction of a parameter. ' The
structure may be considered as composed of two
interpenetrating hexagonal close packed arrays of zinc
and sulfur atoms displaced with respect to one another
along their common threefold axis. The parameter in
this space group is a measure of the relative separation
of the two close packed arrays. In the ideal wurtzite
structure, the ratio c/u= (8/3)' and the parameter
u=-,'. For this ideal structure, each atom has 4 first

~ In what follows, zincblende and wurtzite will refer to the
actual ZnS cubic and hexagonal structures, which are to a good
approximation "ideal. "

~ J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).

3 R. W. G. Wyckoff, Crystal Structures (Interscience Publishers,
Inc. , New York, 1951), Chap. III, p. 19; International Tables for
X-Ray Crystallography (Kynoch Press, Birmingham, 1952), pp.
325, 293.
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neighbors of the other kind at the corners of a regular
tetrahedron, and 12 second neighbors of the same kind.
Six of these are in the same plane as the original atom,
at the corners of a regular hexagon, the remaining six
are three above and three below this plane at the corners
of a trigonal prism. For the appropriate crystallographic
data see Table I.

Although the ZnS wurtzite structure is not ideal
(c/a/1. 633), for purposes of this calculation it can be
considered ideal. In addition the first and second
neighbor spacings are, to within 2/o, identical for both
zinc blende and wurtzite. Hence, in comparing the two
structures we see that first neighbors are in identical
locations, as are 9 of the 12 second neighbors, the other 3
being rotated by 60' just as in the difference between
a trigonal prism and a trigonal antiprism. It is necessary
then, to go to third neighbors of a given atom in order
to find significant differences between the two modifi-
cations (see also von Hippel').

TABz,z I. Crystallographic data for ZnS. '

Primitive vector set

Zincblende

ai =n (1,1,0)
a = (1,0,1)
a3 =n(0, 1,1)

Wurtzite

ate=a(VS/2, —-'„0)
a =(0, 1,0)
a, =c(0,0,1)

Basis (0,0,0), (2, y) r) (0)0,0), (I) -„—,)
(o,'o,

'
)', (-'.', l', —,'+ )

First neighbor distance
Second neighbor distance
c/a'
u'
rEVB '

2.36 A
3.82 A

3.18 a.u.

2.33 A
3.81 A
1.636
0.375
3.17 a.u.

a Data from R. W. G. Wyckoff, Crystal Structures (Interscience Pub-
lishers, Inc. , New York, 1948), Vol. 1.

b Referenced on Cartesian coordinate axes. a =like atom separation;
a and c: hexagonal cell sides.

o The value of u has been assumed =-'„. For the ideal wurtzite structure
c/a =1.633, which is sufFiciently close to the observed value to consider
it ideal.

d Radius of the equivalent-volume sphere (FVS), i.e. , a sphere whose
volume equals the volume per atom (atoms are assumed of equal size in
each structure). (In atomic units: 1 a.u. =0.528 A. )

e We shall take the rzvs for wurtzite to be 3.18 a.u. in the calculation,
even though this introduces an error of 0.01 a.u.

' A. von Hippel, Z. Physik 133, 158 (1952).' F. Seitz, 3IIodern Theory of Solids (McGraw-Hill Book Com-
pany, Inc. , New York, 1940), p. 329.

6A. SchonQiess, Theoric der Eristallstruktur (Gebruder Born-
trager, Berlin, 1923), p. 513.

The geometrical relationship of the two structures is
conveniently seen by constructing the atomic and
cellular polyhedra which are appropriate. ' An atomic
polyhedron for a given structure may be defined as
that region closer to the atom at its center than to
any other atom in the structure. If there is more than
one atom in the base, the cell polyhedron is formed by
taking together the polyhedra for all the atoms of the
base. (The concept of cell polyhedra or "fundamental
bereiche" of the structure was earlier discussed by
Schonfliess. ') To construct the atomic polyhedron the
atom is imagined shrunk down to a point, and then the

)i,o

FIG. 2. Cell polyhedron, zincblende structure. Atoms are assumed
equal in size. 8 is a zinc atom, 8' a sulfur.

planes perpendicularly bisecting the radius vectors from
the atom to its first and second neighbors are erected;
these bound the polyhedron. In Fig. 1 the atomic
polyhedron for zinc in zincblende and wurtzite are
shown. Note the close similarity of the two figures;
both polyhedra enclose the same volume, and the per-
pendicular distance from the center of each to corre-
sponding planes is identical. For zincblende the bound-
ing planes of the zinc polyhedron are (111), (111),
(111), (111) and the 12 {110)planes. If wurtzite is
referenced on cubic axes, the corresponding bounding
planes are (111),(111),(111),(111),the 9 (110}planes
with one or both indices negative, and (100), (010),
(001). By this construction then, the cell polyhedron
for zincblende, Fig. 2, is identical to that for diamond,
Op, ', and that for wurtzite, obtained by superimposing
4 polyhedra like the right-hand side of Fig. 1, to a D«'
structure.

Clearly, if the zinc and sulfur atoms were the same
size it would be reasonable to assign to each the same
size polyhedron, and then Fig. 1 would be a valid
representation of the region in space belonging to each
atom, in the particular structure. Hence a decision as
to the appropriate atomic or cell polyhedra in a given
structure depends upon assigning sizes to the atoms,
and this in turn depends upon our conception of the
bonding.

3. CHEMICAL BOND IN ZnS

The evidence indicating that ZnS is characterized by
a type of bonding intermediate between the extremes
of pure covalent and pure ionic will be reviewed in this
section.

If ZnS were pure ionic, one would picture closed-shell

configurations of Zn+', S ', resulting from a transfer
of two zinc 4s electrons to the sulfur 3f shell. The very
first conception of tht: bonding in ZnS was that it wag
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FIG. 3. Cell polyhedron for zincblende, assuming ions. Faces in
the sulfur polyhedron are more developed; see text for details of
construction. This cell would be appropriate for cellular-type band
calculations in a pure ionic model. 5 is a zinc ion, 6 a sulfur ion.

purely ionic, and this followed from t'he assumed ease
of creating closed shell ions Zn+', S ' by complete
electron transfer. The fair agreement of (a) the theo-
retical and experimental (Born-Haber) binding energies,
(b) the sum of ionic radii and the observed lattice
spacing, and also (c) the large electronegativity differ-
ence which is consistent with this model, led support
to this belief. In fact, as recently as 1940 Seitz included
ZnS among the "ionic solids. " One then expects the
two ions to differ markedly in size, as is reQected in the
Pauling or Goldschmidt ionic radii, so that in defining
the region about one ion "belonging" to that ion it
would be natural to modify the construction which led
to the atomic polyhedra. Figure 3 shows such a modified
polyhedron constructed for zincblende by erecting
planes perpendicular to the radius vectors from each
atom, which divide the lines to first neighbors in the
ratio of the ionic radii. Crystallographically, the poly-
hedra shown in Fig. 3 are similar to those of Fig. 2
except that certain faces are more "developed. " Simi-
lar polyhedra could be constructed for wurtzite by
developing the appropriate faces of zinc and sulfur
polyhedra.

The belief that ZnS is a purely covalent material
stems essentially from the tetrahedral surroundings of
each atom, which imply directed valence bonds of sp'
character' for each atom. These are the strongest"
covalent bonds which can be formed from the available
s and p valence orbitals of both zinc and sulfur. Since
the eight valence electrons per atom pair are shared

' Reference 5, p. 53.
'A. F. Wells, Strlctlral Inorganic Chemistry (Oxford Uni-

versity Press, New York, 1950), p. 70.' Eyring, Walter, and Kimball, Quantlm Chemistry (John Wiley
and Sons, Inc. , New York, 1944), Chap. XII.

+ g.qfgrence 8, p. 48,

equally, the effective formal charges would be Zn ' and
S+'. Equal sharing also implies that equal regions of
space belong to each ion and hence the polyhedra shown
in Figs. 1 and 2 would be appropriate. However, because
of the closer fit of the sum of ionic radii to the observed
internuclear spacing, and the unlikelihood of occurrence
of Zn ', it was early realized that the covalency must
have a considerable admixture of ionic binding. "

Clearly, in order to proceed with a calculation, it is
necessary to estimate the departure of the bond type
from either extreme. One method of characterizing the
bond is by means of the effective charge per ion, and
so we need to estimate these charges from the available
evidence. The first quantitative indications of the
departure of ZnS from pure ionic binding were obtained
by Born and Bormann in 1920 when they estimated
the effective zinc charge as +0.3, using the Born lattice
theory and the measured values of elastic, dielectric,
and piezoelectric constants. "A more recent attempt,
to obtain the ionic charges from the piezoelectric con-
stant alone, "has been shown to be incorrect. " (It may
be possible to use a model proposed by von Hippe14 in
this connection but this calculation has not yet been
concluded. ") Vasile8, in a recent paper on thermal
ionization of impurities has obtained a value of +0.51
for the zinc effective ionic charge, using measured values
of the Reststrahl frequency and the dielectric con-
stants. ' Another indication of the departure of the
bond in ZnS from pure ionic is obtained from the photo-
elastic constants" although the quantitative interpreta-
tion of the measured constants is not a simple matter,
and the existing theory is incomplete for ZnS due to
neglect of the inner displacements. ' Studies based on
hardness and the cleavage in ZnS" have also indicated
a mixture of about —,

' ionic and 3 covalent binding, hence
effective charges of +0.7 for zinc. From considerations
of the electronegativity coefficients for Zn and S,"one
is led to an assignment of an effective charge of about
+0.5 for zinc. Paramagnetic resonance experiments on
ZnS:Mn also indicate the mixed bonding through the
magnitude of the hyperfine splitting constant A.20 2 de-
creases in a systematic fashion with increasing covalency
between Mn++ and its neighboring anion in a series of
Mn++ substituted compounds. "A rough estimate indi-

"L.Pauling, Ãatlre of the Chemical Bond (Cornell University
Press, Ithaca, 1945), p. 178."M. Born and K. Bormann, Ann. Physik 62, 218 (1920)."B.D. Saksena, Phys. Rev. 81, 1012 (1951)."J.Birman, Phys. Rev. 98, 1567(A) (1955).' H. D. Vasile8, Phys. Rev. 97, 896 (1955)."E.Burstein and P. Smith, Phys. Rev. 74, 229 (1948)."H. Mueller, Phys. Rev. 47, 947 (1935),especially footnote 18,
p. 951.

"G. A. WolG, Signal Corps Laboratories (private communi-
cation). I am indebted to Dr. Wolff for a discussion of his work."Reference 8, p. 37.

~ W. D. Hershberger and H. ¹ Leifer, Phys. Rev. 88, 714
(1952).

~' J. S. van Wieringen, Discussions Faraday Soc. No. 19, 121
(1955);L. M. Matarrese and C. Kjkuchi, J.Phys. Chem. Solids 1,
117 (1956),
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cates about 30% covalent character for the Mn —S
bond, and if this is characteristic of the bonding of sulfur
to zinc, too, then the zinc effective charge is about
+0.8. In summary, the evidence cited in the foregoing
paragraph indicates effective charges in the neighbor-
hood of +0.5 for zinc and sulfur, respectively.

Evidence indicating higher effective charges is pro-
vided by Asano and Tomishima" and Jumpertz. "The
former is a theoretical paper in which the cohesive
energy of zincblende is calculated by a variational
method due to Schmid, "and effective charges of about
&1.7 are deduced for zinc and sulfur, respectively.
These authors use interpolated atomic wave functions
for sulfur, and for the zinc 4p state, which may intro-
duce an error in computing necessary exchange and
overlap integrals; these are particularly sensitive to the
wave function. " This treatment is of value in illus-
trating the diGerent contributions to the binding energy,
and their relative magnitudes. The second paper, an
experimental determination of the total electron density
distribution in zincblende by Fourier x-ray methods,
clearly shows the departure of the total electron density
between the atoms from values presumably charac-
teristic of either pure ionic or pure covalent binding.
By means of an integration of the (assumed) spherically
symmetric charge density Jumpertz finds an effective
charge for Zn of +1.29. However, to determine the net
charge of each ion precisely, requires values of P(sin8/X)
at small values of (sin8/X). There are no experimental
points at suKciently small values (Jumpertz; Fig. 4) to
allow an accurate extrapolation. Hence the net charge
determined in this manner may be in error. "

Although the evidence is by no means conclusive,
the writer feels that a choice of effective charges of +s
for zinc, —

2 for sulfur is reasonable, and these effective
charges will be used in the calculation. Since these
charges imply a sizable ( ts) covalent character for the
bond, it is felt that the polyhedra of Fig. 1 which as-
sign eggat uolmmes to each of the atoms irt each strmcture

are appropriate. Of course in principle one should strive
for self-consistency in the band calculation, i.e., the
charge density p(r) used in calculating wave functions

f&, should have the property p=p&~lt&~' and further,
at each stage of such a self-consistent calculation, the
appropriate polyhedra should be constructed and used
for normalization and boundary conditions. However,
the work involved in such a program is probably greater
than is justi6ed by our lack of really precise and con-
vincing knowledge of the nature of the bond. It is hoped
that the energy band structures calculated here from
the assumed charges and charge densities will at least

~ S. Asano and Y. Tomishima, J. Phys. Soc. Japan 11, 644
(1956)."E.A. Jumpertzz, Z. Elektrochem. 59, 425 (1955).

2' L. A. Schmid, thesis, Princeton University, July, 1953
(unpublished); Phys. Rev. 92, 1373 (1953).

~~ Reference 24, p. 2."J.M. Bijvoet and K. Lonsdale, Phil. Mag. 44, 204 (1953).

be qualitatively correct. In discussing the uniformly-
charged-sphere approximation, a method will be sug-
gested for using fairly realistic potentials in which the
eGective ion charge and size could be carried through
the band calculation as a parameter and varied to see
its e&ect on the location of the calculated eigenenergies.

Although most of the evidence presented above
relates to zincblende, the close similarity. of the
geometry and properties of zincblende and wurtzite
lends strong support to using the same eGective ionic
charges and charge densities for the ions in both
structures, and this will in fact be done.

4. CHARGE DENSITIES

In what follows we shall assume spherically sym-
metrical charge densities centered at each atom's site
(in. agreement with Jumpertz). The equivalent-volume
sphere (EVS), whose volume equals the volume per
atom, will be used for normalization and for integration
of the radial equation.

From the Hartree calculation'~ for atomic Zn we can
obtain charge densities for all zinc electrons up to and
including 4s. For the zinc 4p function we use a Slater
orbital with constants so determined that the 4p func-
tion has its maximum at 3.15 a.u. just within the
EVS.28 Self-consistent-Geld calculations for K+, A, Cl
(a series isoelectronic with S ') are available" and have
been extrapolated to obtain the charge densities of the
sulfur atomic states 1s through 3p. The actual extrapo-
lation was carried out on Z„t (the effective charge for
potentiaP' in state nl) as this is the most suitable
quantity for an extrapolation (i.e., most smoothly vary-
ing as a function of atomic number). The extrapolation
procedure used, described in the Appendix, was tested
by "predicting" the Z„t(r) for Cl from those for argon.
The agreement was excellent. (As distinct from refer-
ence 22 we are extrapolating essentially charge densities,
rather than wave functions, so we hope a smaller error
is thereby made. ) From the extrapolated Z„t(r), the
corresponding radial charge densities I'„~ were obtained
by a numerical differentiation. Thus we have obtained
the "working" radial charge densities I'„~ for zinc and
sulfur, for all core states, and for the valence states:
respectively, 4s, 4p for Zn and 3s, 3p for S. Although
little can be said quantitatively about the accuracy of
the interpolated densities, it is believed that the
accuracy of the crystal potential determined from these
densities is no less than the over-all accuracy with
which the cellular calculation can be carried out.

The crystal charge density will consist of a core
charge density for each atom plus a valence electron
density for each. At the observed internuclear spacing,

» Hartree, Hartree, and Manning, Phys. Rev. 59, 299 (1941).
~ Reference 9, p. 163.
"D.Hartree and W. Hartree, Proc. Roy. Soc. (London) A166,

450 (1938); 156, 45 (1936).
~ J. C. Slater, Qgarttgm Theory of Matter (McGraw-Hill Book

Company, Inc. , New York, 1951),p. 137.
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the core densities do not overlap, hence atomic core
densities are taken over for the crystal. For the valence
density we construct for each atom, an sps hybrid
consisting of the radial parts of the appropriate atomic
densities, i.e., p, i =%(p,+3p~) using 4s, 4p for zinc and
3s,3p for sulfur. The normalization constant X is so
chosen that the net charge in the equivalent-volume
sphere is +-', and ——,

' for zinc and sulfur, respectively.
Electively then, we create a smeared-out covalent-like
spherical charge density for each atom, so normalized
as to yield ions at the sites. This is the basic crystal
charge density for both wurtzite and zincblende.

5. CRYSTAL POTENTIAL

The crystal potential consists of a classical part, and
a quantum-mechanical part; these will be discussed
in order.

The classical or Coulomb potential consists of an
inner potential and an exciting potential. The ieeer
potepptial is the Coulomb potential within the equivalent-
volume sphere, due to the point charge nucleus, the core
electrons, and the valence density contained therein.
The charge densities are spherically symmetric so the
classical inner potential is too, and is easily calculated

by Gauss's theorem. Clearly, the inner potential is the
same, for the same ion in each of the two structures.

The excst&sg potentiaP' is the potential within one
KVS due to all the ions in the crystal except the one in
that KVS. Clearly, the exciting potential is not spheri-
cally symmetric in zincblende or wurtzite, and, since it
must show the crystallographic symmetry T&' or C6,4,

respectively, may be expected to differ in the two

TABLE II. Exciting potential in ZnS. '

1. Self-potential (Madelung constant)
psppp (000) = —1.8914

2. s [1117,= [0017 = [1/3, 2/3, —1/87
piooo(1/24, 1/24, 1/24) = —1.8984
tf&ppp(1/12, 1/12, 1/12) = —1.9902

psppp (1/8 1/8 1/8) = —2.3094

3. s [1107.= [0107
psppp(1/8, 1/8, 0) = —1.8961
Pppp(1/4 1/4, 0) = —1.6579

4. [1117,
Pppp(1/12 —1/12, 1/12) = —1.8105

psppp(1/gi —1/gi 1/8) = 1;6739
Pppp(1/4I —1/4I 1/4) = —1.0108
Popo(3/8, —3/8, 3/8) = —0.7698
qbppp(1/2 —1/2, 1/2) = —0.72125

a The ions are assumed to have net charges of +$ for zinc and sulfur,
respectively. All potentials are given in units of jej/d, where jej is the
magnitude of the electron charge and d is the cubic cell side. The subscript
on the direction bracket indicates either zincblende (s) or wurtzite (mi),
the latter in terms of the usual hexagonal coordinate system. (See Table I.)

The directions indicated are from a zinc ion, assumed at 000. The results
in corresponding directions from a sulfur ion are the negative of those listed,

b Coordinates of points refer to zincblende. The potential is identical at
corresponding points in wurtzite (see text), to 5%.

"M. Born and M. G. Mayer, IIandbuch der Physik (Verlag
Julius Springer, Berlin, 1933), second edition, Vol. 24, Part 2,
p. 712.
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structures. First we discuss the calculation of the
exciting potential in zincblende and then in wurtzite.
In the following two paragraphs crystallographic direc-
tions in zincblende and wurtzite will be indicated by
affixing a subscript s or w to the bracket: thus [hkl]„
[hkl]„, respectively, for zincblende and wurtzite. (For
the former, directions will be referred to Cartesian axes,
while for the latter, directions will be referred to the
vector set ai, as, as defined for wurtzite in Table I.)

For zincblende the exciting potential has been com-
puted in the three inequivalent directions from a zinc
atom (assumed at 000): [111]„[110]„and[111],.
There are four equivalent [111]„and twelve [110],
directions going to erst and second neighbors, respec-
tively. These are the prominent directions of interest in
choosing a spherical potential. The [111],directions
lead to "holes" in the structure, and may be of im-

portance in calculating activation energies for diffusion
of ions; results in this direction will not be used in the
band calculation, but are appended for illustrative
purposes. The calculated exciting potentials are tabu-
lated in Table II and illustrated in Fig. 4. From the
figure we note that the exciting potential is equal in
[111],and [110],directions, and essentially constant
to (~ r~)/d=0. 1. When (~ r~)/d) 0.1, the two potentials
differ, and this difterence increases as we go to the edge
of the EVS (~ r~/d=0. 31). To proceed with a cellular
calculation we need to create a spherically symmetric
exciting potential. This is often done by simply adding
the constant Madelung potential to the Coulomb inner
potential, but we feel this gives too much weight to the

I n, I i II

PiG. 4. Exciting potential in ZnS, Ordinate gives the value of
the exciting potential, abscissa the distance along the specified
direction in fractions of the cubic cell edge. Directions indicated
are for zincblende; however, the potential is the same to erst and
second neighbors in wurtzite. Results from a sulfur ion are negative
of those illustrated.
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potential at the origin, which is a nonrepresentative
point. Instead we multiply the computed exciting
potential in the [111],direction by a constant so chosen
that the total classical potential (inner plus exciting) is
zero at the edge of the zinc EVS. This has the eIIfect
of normalizing the results in the most important co-
valent direction (that to nearest neighbors) in such a
way that the classical potential obeys an ionic-like
condition: namely is zero midway between nearest
neighbors. [The edge of the EVS corresponds in this
sense, to the point (8& s, s).] A similar procedure is
applied in the sulfur EVS. In Fig. 5 we plot the poten-
tial in each EVS due to the net core charge (+2 for
zinc, +6 for sulfur), plus the assumed valence electron
density, as the dashed curve; and then this potential
plus the sphericalized exciting potential as the solid
curve. It will be noted that the latter is continuous and
smooth across the surface of the EVS, which corre-
sponds to the midpoint between the ions. (The true
classical potential, including the proper contribution
from core states, is included in Table III).

The exciting potential was computed in wurtzite
in the directions [001], [3, 3, —s]„which are in-
equivalent directions to first neighbors (there are
three equivalent directions Ps, —'„—s]„,P„—3, —is]„,
[—3, ——',,

—s], and the unique [001]„direction to
first neighbors), and in the direction [010), to second
neighbors. It was necessary to interpolate the available
Ewald potentials" in order to make the calculation, and
hence the results are accurate to only about 5/o. To this

3.0
S SPHERE Zn SPHERE

2.5

2.0

I,5

TAL
POTE N TIAL

INNER
POTE

0.5

INNER
POTENTIAL

AL
P C TENT IAL

-0.5

0.3 0.5 0.7 0.9 0 9 0.& 0.5 0'5
FRACTION OF DISTANCE TO EDGE OF E.V. S.

FIG. 5. Classical potential in ZnS. Dashed curve: inner potential
due to core charge (+2 or +6 for zinc and sulfur, respectively)
plus valence electron density (normalized sp' density); full curve:
dashed curve plus the sphericalized exciting potential. Potential
is normalized and plotted against fraction of the distance to the
edge of the EVS.

32 F. Hund, Z. Physik 94, 11 (1935).

TABLE III. Effective charge for potential in ZnS.

2Z& zinc 2Z& sulfur 2Z& zinc 2Z& sulfur

0 60.00 32.00
0.005 58.86
0.01 57.70
0,015 56.55
0.02 55.44
0.025 54.40
0.03 53.43 29.53
0.035 52.47
0.04 51.60
0.05 50.02
0.06 48.55
0.07 47.23
0.08 46.12
0,09 44.79
0, 10 43.64
0.12 41.47
0.14 39.43
0,16 37.54
0.18 35.77
0.20 34.16
0.22 32.68
0.24 31.34
0.26 30.16
0.28 29.07

28.73
28.08
27.21
26.51
25.83
25.19
24.57
24.59
22.31
21.36
20.42
19.58
18.81
18.09
17.43
16.79

0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.60
1.80
2.00
2.20
2.40
2.60
2.80
3.00
3.18

28.16
26.01
24.34
22.82
21.39
19.96
18.75
16.54
14.69
13.14
11.85
10.76
10.32
8.944
8.337
7.128
6.208
5.334
4.783
4,202
3.697
3.318
2.954
2.676

16.20
14.86
13.68
12.69
11.79
11.01
10,30
9.082
8.038
7.211
6.540
5.976
5.468

4.472
3.790
3.229
2.784
2.464
2.261
2.089
2.059
2.050
2.098

accuracy we find: (1) exciting potential in [—'„2, —si]
is the same as in [001]„,i.e., along the line to 6rst
neighbors the potential has tetrahedral symmetry;
(2) this first neighbor exciting potential in wurtzite is
the same as the [111],exciting potential in zincblende;
(3) the [010]„exciting potential is the same as that.
for [110],. Hence along two prominent crystallographic
directions (to first and second neighbors) the potential
in zincblende and wurtzite is the same. We therefore
feel it reasonable to construct a spherical exciting
potential in wurtzite in the same manner as was done
for zincblende (the midpoint between first neighbors
should be at zero potential for an ionic wurtzite, too).
Hence the results illustrated in Fig. 5 apply for wurtzite
as well as zincblende.

The quantum-mechanical part of the potential which
will be used for the band calculation is the exchange
potential, which was computed by making use of the
Slater free-electron approximation. "

In Table III the radially symmetric effective charge
for potential including the Coulomb contributions from
the point nuclei, the atomic core states, and the
hybridized valence states, the sphericalized exciting
potential, and the free electron exchange potential, is
given for each ion, within its equivalent-volume sphere,
as it will be used in the subsequent numerical integra-
tion of the radial equation, for both zincblende and
wurtzite.

6. UNIFORMLY CHARGED SPHERE APPROXI-
MATION; ADDED TERM

Recent work on approximate molecular charge densi-
ties'4 makes it of some interest to examine a uniformly-

"J.C. Slater, Phys. Rev. 81, 385 (1951).
'4 Neumark, Westerman, Kleiss, and Birman, theses, Columbia

University Chemistry Department, 1951—1952 (unpublished).
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from states in phase space already occupied by core
electrons, and this has the effect of repelling the outer
electrons from regions in phase space densely occupied
by core electrons. This "repulsion" can be formulated
in the sense that the outer electrons do a certain amount
of work to get into such regions. Gombas has shown
how (in the free-electron approximation) to construct a
potential to be added to the Schrodinger equation for a
given state, incorporating the desired eftect of repulsion
of lower states with the same symmetry. At k=000, in
zinc blende, the valence and conduction states may be
described as "s"-or "p"-like so that Gombas' procedure
can be used directly to calculate the added potential
for those states. To illustrate the added term, the total
inner potential with and without this correction is
plotted in Fig. 7. Although the added term was not
used in integrating the radial equations, it may be used
later as a perturbation.

It may well be that a simple uniformly-charged-
sphere approximation, with free electron exchange
(Slater) and orthogonality (Gombas) terms, will sufFice

to give a qualitative picture of the energy band struc-
ture of materials with mixed binding. However, further
work will need to be done on this point before anything
can be conclusively stated.

7. SUMMARY

The nature of the binding in ZnS has been discussed,
and the evidence indicating mixed covalent and ionic
binding reviewed. The effective ionic charges used in
the calculation are %—,

' for zinc and sulfur, respectively.
Radially symmetric valence charge densities of the form
sp' have been set up, and normalized to the chosen
effective charge within the equivalent-volume sphere of
each ion (the ions are assumed of equal size); It has
been shown that the same equivalent-volume sphere,
and spherically symmetric potential is appropriate in
both zincblende and wurtzite. "It has also been shown

"L.M. Matarrese and C. Kikuchi LJ. Phys. Chem. Solids 1,
126 (1956)j, have assumed that (u') (ground-state splitting
parameter in zero magnetic Geld) is identical in zincblende and

that a crude uniformly-charged-sphere model is a fair
approximation to the calculated potential. Further
work along the lines of such simple models may prove
fruitful in elucidating the qualitative detail of band
structures in solids with mixed bonding.

Finally, because of the great similarity in the geom-
etry of first and second neighbors, in zincblende and
wurtzite, it follows that many of the same LCAO
parameters should arise in both band calculations. This
will be discussed further in the later papers.
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APPENDIX. INTERPOLATION PROCEDURE

Given Z„P(r), we want to find the radial scaling
function F„~(r) such that Z~P(rF„~(r))=Z„P'(r) where
E'=%&1 and the superscript refers to the atomic
member of the ion. The two ions are assumed to be
isoelectronic, e.g., Cl and A. Physically we wish to find
the radius r of the sphere about ion Ã' which contains
the same net charge as the sphere of radius rF„i(r)
about the isoelectronic ion E. It is assumed that

and the S„&(r) are determined numerically from the
isoelectronic series I+, A, Cl for use in extrapolating
from Cl to S '.

wurtzite, in computing a doublet splitting of 32 gauss for Mn++ in
wurtzite. If the experimentally observed splitting is of this
magnitude it will be a con6rmation of our result and their assump-
tion, on the equality of the potential in prominent directions in
zincblende and wurtzite. I am indebted to Dr. Kikuchi for a
discussion of this point.


