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The wave functions and the energy spectrum for the spin-wave problem in a normal spinel are found
by means of a straightforward extension of Anderson's approach to antiferromagnetism. Only A —J3 ex-
change is assumed to exist, and the calculation is carried to second order in the magnitude of the propagation
vector, k. Five distinct energy surfaces (8 vs k) are found, two of which are identical, in the classical limit,
to the ones previously reported by H. Kaplan. Although the energy surfaces are all spherically symmetric,
the wave functions depend in general on the direction of k, The error in a calculation by Vonsovski and
Seidov, which led to a linear energy vs k relation for the lowest branch (as opposed to the quadratic relation
found by H. Kaplan), is pointed out.

I. INTRODUCTION

URGENT experiments being performed by Brock-
house' on the inelastic scattering of neutrons by

ferrites have stimulated interest in the theory of ferri-
magnetic spin waves. The theoretical situation has been
somewhat confused since there are in the literature two
papers which give contradictory results. In one of
these, H. Kaplan' applies the semiclassical spin-wave
theory in the form presented for example by Herring
and Kittel, ' to the normal spinel structure. By assuming
that the spin-wave amplitudes for the tetrahedral (A)
sites are equal and those for the octahedral (8) sites
are equal, he finds two branches in the energy (E) tts

propagation vector (k) relation. The lower one, for
small k, is quadratic in k. In the other paper, Vonsovski
and Seidov4 use the approach of Holstein and Primako65
or Anderson. "Again assuming equal spin-wave ampli-
tudes for the A sites and for the 8 sites, they obtain
two branches in the E ~s k curve. However, when the
A —3 and 8—8 interactions are put equal to zero in
their result, their lower branch is linear in k for small k,
in serious contradiction to the result of H. Kaplan.
Because of experimental uncertainty, Brockhouse' was
not able to decide definitely between the two relations;
however, his data tended to favor H. Kaplan's result.

The situation is resolved when one notes an ele-
mentary, but essential error in the calculation of
Vonsovski and Seidov. Namely, their assumption of

* Work performed under the auspices of the National Security
Agency and the U. S. Atomic Energy Commission.
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equal spin-wave amplitudes on the 3 sites and on the
8 sites is incorrectly made in the Hamiltonian (whereas
H. Kaplan does it in the equations of motion). The
fact that the two results differ is simply a matter,
speaking classically, of whether one diGerentiates the
Hamiltonian (to obtain the equations of motion) before
or after equality between various independent variables
is assumed. ' Stated alternatively, one sees in their
transformation of variables given by Eq. (1,8), in the
translation4 of their work, where they assume the
equality of the various spin wave amplitudes, and
which they then use in the Hamiltonian, the total
number of independent variables is reduced.

It is felt that the calculation of the full energy
spectrum and the wave functions (with the removal of
the a priori assumption as to the equality of any spin
wave amplitudes) will be of interest. Knowledge of the
wave functions, for example, will enable one to calculate
the neutron scattering cross section, which should be
useful in connection with current experiments. Conse-
quently we carry out this calculation in the present
paper. Our method is a straightforward extension of
that used by Anderson' for the antiferromagnetic case;
our model is a normal spinel in which only A —8
exchange is assumed to exist. The results are obtained
to second order in k.

Five energy surfaces (E ts k) are found, two of which
in the classical limit of large spin quantum numbers,
are, as expected, identical to those found by H. Kaplan
(when the 2 —2 and 8 8 interaction ter—ms are
neglected in the latter). Although all the energy surfaces
are spherically symmetric, the normal coordinates (and
therefore the wave functions), with the exception of
those corresponding to H. Kaplan's surfaces, depend on
the direction, k, of k. This is physically reasonable
since the properties of the lattice depend on k. For
example, the densities of 8 sites in adjacent planes of
constant k. r will be in the ratio 3:1 when k is in the
(1,1,1) direction, while this ratio will be 1:1 for k in a

This may be seen in terms of the formalism of the present
paper. The "before" and "after" methods indeed lead to quadratic
and linear relations, respectively, when the spin quantum numbers
for all sites are equal (which is the case considered by Vonsovski
and Seidel).
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cubic direction. In connection with the higher energy
surfaces, it is noted that, from energy considerations
alone, neutrons with wavelength of the order of J, to
2 A have sufhcient energy to excite them. (See Sec. IV.)

II. THE HAMILTONIAN

We begin with the Heisenberg exchange Hamiltonian,

a=Z+S,A S,B,

where

(S '")'+ (S '"')'
S Bz'~ S B+

25~

(3)

S,'= L.SA(SA+1)j-:, S,B=LSB(SB+1)$'. (4)

Equation (1) becomes, dropping a constant term and
neglecting higher order terms in the x' and y' compo-
nents,

which is appropriate to a normal spinel structure
assuming interaction only between nearest neighbor

Bpai—rs. S,A and SP are the spin operators (in units
of A) for the tetrahedral and the octahedral atoms,
respectively. The summation is over the nearest neigh-
bors j of i, followed by the summation of i over
the A sites. We make the approximation (following
Anderson) '

(2)

where S~ and S~ are the spin quantum numbers
associated, respectively, with the 3 and 8 sites, and z'

refers to an arbitrary direction. Then, for large S& and
Sg,'
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Fxo. 1. The sites in a primitive unit cell of the spinel structure.
o =A sites; o=B sites. (Oxygen not shown. )

~
A —0

gtB =—s'a(1,5,1),
psB = s'a(3, 7,1),

9s"———,'a (1,1,1),
psB= -', a(3,5,3),
94'= so(1,7 3)

(7)

Each of the two cubes shown in Fig. 1 are octants
of the usual cubic unit cell. Any two such octants
sharing an edge are identical, any two sharing a face
are different.

The general location of the sites is

r A(n)=R„+9 ", n=i, 2,

rpB(n) =R„+ppB, p= 1, 2, 3, 4,

where the lattice translations are

R„=nta~+nsa, +nsas, n,= 1, 2,

translations may be taken as

at ———',a(1,1,0), as ———',a(0,1,1), as ——-', a(1,0,1), (6)

where the numbers in parentheses refer to the x, y, and
z components, respectively. The atoms are located at

IZL(S "*')'+(SA"')'3(S
ES A)

S A)
+lJZBI I'LL(S'")'+(S '"')'3

SB

+J p (S.Ax'S Bx'+S.Aw'S Bs') (5).
&z, j)

where Z~ and Z~ are 12 and 6, the numbers of nearest
neighbors "seen" by the 3 and the 8 sites, respectively.
Note that (5) reduces to Anderson's Eq. (6) for the
antiferromagnetic structures which he considers.

The six magnetic atoms in a primitive unit cell for
the spinel structure" are shown in Fig. 1.The primitive

E E/E2E 3 total Xo. of unit cells. (10)

where

tr ns, pk=2'+
I

—Ib
s=t Eg;]

We now make the transformation to the Fourier
transforms (spin-wave amplitudes) of the spin variables:

S"&'$r."(n))= (SA/S) ' px exppik r."(n) $P.A (k),
SA*'(r A(n)$= (SA/N)' Ps exp( —ik r "(n)jg "(k),
sB&'(rpB(n)7= —(sB/E)& ps expf ik rp(—n)7Pp(k),
SB"TrpB(n)$= (SB/cV)l P~ expt ik rp (n) jgpB(k),

Equation (3) is the central approximation of the theory.
Anderson's justi6cation for the antiferromagnetic ground state,
as well as F.J.Dyson's recent work LPhys. Rev. 102, 1217 (1956)g,
which justi6es the spin-wave picture for long wavelengths and
small excitation in the ferromagnetic case, indicates that the
approximation is probably valid for the present case.

' For a detailed discussion of the spinel structure see, for
example, E. W. Gorter, Philips Research Repts. 9, 295 (1954).

a,"b =5;,,

ns, =0, &1, &2, , ~ (—'1V,—1), —'S,.
The inverses follow from

P„expLi(k —k') R„)=&g»,. (13)
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Using (2), we find for the commutators

LP-"(k),Q- "(k')j=[P-'(k) Q- '(k')3
= —i5 822, (14)

with all other pairs of variables commuting.
Note that we have E values of k and therefore 6E Q's

and 6Ã I"s, which corresponds correctly to the 12K
variables 5,"*,S,A", 5 B*,S,B".Equations (11) are now
to be substituted in (5). Sample terms are

Z.(5."*')'=SA Zk 2- Q-'(k)Q-'( —k), (15)
and

p S,A*'Si. *'=—(SASB)l p p exp[ —ik r A(22)
(n, , n', P) k, k'

+ik' rpB(22') jQ.A(k)QpB(k'). (16)

P."+(k)=2—i[p "(k)+P "(—k) j,
Q-'+(k) =2-:[Q-'(k)+Q."(—k) j,
P A—

(k)=,2—:[PA(k) P A(

Q. -(k) ='2-:I Q.'(k) —Q- (—k)3,

(23)

with similar definitions for P B+ and Q B+. (The +
and —variables are, respectively, even and odd in k
to —k.) Then

where

A = JZAS B(SA/S,A), P= JZBS,A(SB/5 B)
(22)y= &(SASB)'.

We now make the canonical transformation to the sine
and cosine transforms,

To treat the latter equation, write

rpB(22')= r.A(22)+~.p,

where ~ p is independent of e. Then

g 5, *'5 *'=(SAS )*'p p Q (k)Qp (k)

(17)

[(P A+)2+ (P A—)2+ (Q A+)2+ (Q A—)2 ]
+1BP [(P B+)2+(P B )2+—(Q B+)2+ (Q B—)2j

e(Q A+Q B+ P A+P B+
Q

A—QpB-

+p." Pg )+vZ-, pi-p'(Q-' QP+
P A—P B++Q A+Q B PA+P—B )j (24)—

where

k (a, P)

)&exp(ik ~.p), (18)
where p'2 means to sum over half the Brillouin zone
[Eq. (12) I, such that, if k is in the set, —k is not

Referring to Fig. 1, we see that

P Q A(k)QpB(k) exp(ik ~ p)

where

2 4

2 2 l -p(k)Q-"(k)QP(k), (1~)
a 1 P=l

P =sum over the nearest neighbors P of n and sum n
&0., a)

over the unit cell

f p'= P cos(k ~ p ), f p' +sin——(k ~ p"), (25)

and the arguments (k) of all the functions have been
omitted in the notation. lt is interesting to note that
the nonvanishing of |p' connects the sine and cosine
transforms. This corresponds to the nonvanishing of
the first derivative terms in the Herring-Kittel semi-
classical equations, and corresponds physically to the
fact that the two A sites in our unit cell are not equiva-
lent lattice points and the four 8 sites are not equiva-
lent lattice points.

The ~ p", in units of a,~8, are given explicitly by

1 p(k)= P exp(ik ~. )p, (2o)

and ~ p", I= 1, 2, 3, are the vectors connecting the nth
A site to the three nearest neighbor 8 sites character-
ized by a given gp~. The ~ p" are given explicitly in

Eq. (26).
Thus (5) becomes with

~ii"——(1, 1, —3), (1, —3, 1), (—3, 1, 1);
~„-=(—1, 1, 3), (-1, -3, —1), (3, 1, —1);
~i2" (—1 —1, ———3), (—1, 3, 1), (3, —1, 1);
~24"= (1, -1,3), (1, 3, —1), (—3, —1, —1);

A
H =P —Q [P."(k)P."(—k)+Q."(k)Q.A (—k)j

2 a=1

4

+—Z [PP(k)PP( —k)+QP(k)QP( —k)j
2 P=l

2 4

+v 2 2 D-p(k)Q-"(k)QP(k)
a=1 P=l

—f-p( —k)p-"(k)PP(k) j, (21)
fiP'=f2P', (28)

~,p"= —~2p, u=1, 2, 3) p=1, 2, 3, 4. (27)

It may be noted that (27) is consistent with the
well-known fact that every 8 site is a center of inver-
sion; i.e., if some 8 is connected to an A by ~, then —~
connects that 8 with another A. The pair of A' s, by
(27), will always be an Ai and an A2. On the other
hand, the fact that there is no ~lp which is —~lp"' is
consistent with the fact that the A's are rot inversion
centers.

From Eq. (27) it follows that
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i ie'= —i 2e'.

We may be interested in the calculation to second
order in k. Hence we may put

By considering the constructs o p= p Q A+, er2+

=Z f. Qe", ."=Q"'-Q"', - =Eel-eQ",
using the exact properties (28) and Eqs. (37), it is easy
to see that

Then

i-e'=3 2—Z (k ~-e")', i-e'= 2 k ~-e" (29)

4

g+=P a +a +

P a1 71 a2 T2 +a3 r3 ae 74

(38)

and

where

Z (k -e")'=
u=l

11k 8
+x e,

f11'————',a (k,+k„+k,),
i 12'= 3a(k, —k„+k,),
i13'= g31a(k,+k„—k,),
f14'= ,'a( -k,+—k„+k,),

(31)

where

0 Wy(' a1+' a1+'
a2y —8 0 0 a2+ a2+

0 —y$' A —y$, a3+ a3+

0 0 2y —8, .a4+. .a4+.

are normal coordinates and their conjugate momenta.
Here, 2,+ are obtained from o.p by replacing Q by P;

(30) the aP are determined by

and

x11————,', a'(k, k„+k,k,+k„k.),
x„=,',,a'(k, k„——k,k,+k„k,),
x13———,', a'( —k,k„+k.k,+k„k.),
x14———,', a'(k k3+k.k.—k„k.),

S]P
—X2Pe

Hence the coefficients in the Hamiltonian
anisotropic in k.

It follows that

(32)

(33)

(24) are

4

~.= Z (i-e)', ~.= Z (~e)', ~'= Zi eV e, (40)

and the values of or are the roots of the quartic

L(~—A) (~+&)+27'$.7j(~—A) (~+&)+27'k.j
—4y4P =0. (41)

The exact roots may be found by first neglecting t'
/see Eq. (48)$. Considering well-known rules governing
various sums of products of the roots, it then becomes
apparent that the exact solutions are

Also
Pe x.e ——0.

i e'=3 —(11/128)k2a2 —2x e=g —-', x e.

III. THE NORMAL MODES

(35)

(36)

with

2(ui = (A —8)—L(A+8) 2—Sy2$,+xJ',
2(v2 ——(A —8)+L(A+8)2—872t +x$'
2(v3= (A P) L(A+8)2——Sy2$,——xje,

2~,= (A —a)+ I (A+ a)' —8~2g.—x]-:,

(41')

x=4''(&. 5)(1 —L1+5"—)(E. k.)'3'}-
The conjugate pairs satisfy

(42)rf= ee1Pe P= ~Ye

LV PE=2 (43)

the latter assuming the commutation relations (14).
LEquations (43) with (39) completely determines the
a' s.j This provides 8 of the 12 normal coordinates; we
shall denote them by q, ~, P,+,j 1, 2,=3, 4.

The remaining four normal coordinates and momenta
are readily found to be

4 . 4

q"= E e;eQe", p,'= p e;&PBB+, 3=5, 6, (44)
P 1 P=l

the e;p being determined by
e

e e;el „'=Pe e,el', e =0, P e;ee;e=b, , (45)

These coordinates are degenerate with the frequency

(46)

Referring to the Hamiltonian (24), one sees that the
normal coordinates and frequencies are to be found for
a 12-variable problem (fixed k). Fortunately there is

enough symmetry in the equations to enable one to
find these coordinates by inspection when the coeK-
cients are kept only to second order in k. However, for
the sake of clarity, we shall first reduce the problem to
three 4-variable problems, and then drop higher terms.

The normal coordinates can obviously be found by
treating the P's and Q's as classical quantities. The
equations of motion, using (24), are

Q A+ —Ap A+ + p (l. ep B++g op B)—
Qe +=&Pe'+ —v 2 (l e'P '++1 e'P ' )

Q A— AP A—++ P (i- eP B i. eoPe—B+)

Qe' =&Pe' +v 2-(l -e'P-' 0-e'P-'+)—
P-'+= —AQ-"+—7 Ze(i -e'Qe'++i -e'Qe' )

(37)

PeB+— QQeB+ + P (l. &eQ A++i. eoQ A—
)

P-" = AQ-" +v Z—e(i -e'Qe' i-e'Qe"), —
Pe = —&Qe' +v 2-(t -e'Q-' —

1 -3'Q- ').
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q'+=d'(Z- Q-'+~c' Z p {if'Qf'+),

p.+=2'(p p "+Wc'Qp {ip'ps ")
q,+=d, (Qi'+ —Qs"++c~ Z p t if''Qf'+)

p + d, (p AT p AT c.g g Opsii+)

2~,=A —8—
I (A+8) s—g&'47-

2Ms=A —8+I (A+8)' —gy'$. 7**

2~s A —8—
I

——(A+8)' —87'$ ]'
2oi4= A —8+L (A+8)'—8y'$.7',

where

c;= (A —ro;)/y(, =2y/(8+ro;),
d;= (2—

P c ')-l

c;= (A ~ )/vk. =2m!(8+~~)
d~=(2 —8 c') '

i=i 2

i=i 2

j=3, 4

j=3, 4
(48)

i=1 2

i=| 2
(49)j=3, 4

j=3, 4.

We now note that $' is of order ks whereas $, and $,
are, respectively, of order k' and k'. Hence, in the
calculation to second order, we may neglect terms in
$' in Kqs. (39) and (41). The resulting solution is
immediately found to be

where the second P means to sum over the 12 normal
modes. (co is in units of h.) Since the various q's and p's
satisfy Lq;,ps]=iB;& I approximately, even considering
(14) to be exact, since $' was neglected), the wave
functions follow immediately in terms of the solutions
to the harmonic oscillator problem.

IV. DISCUSSION

In Fig. 2 is shown a sketch of the five branches found
for the spectrum. The case 8(A(28 is shown, so
that co2 is lower than co3 or co5. However, for A&28,
the branches &os and cos will lie below cos. (Note that
when A &28, SA) Sii.) When A =8, o~i and &os coalesce
and are linear in k for small k; co3 and co4 equal co5=A
for k=0, deviating from this value quadratically in k.
To the order of our approximation (3), A= JZASii,
8=JZ~S~, so that ~ =8 implies S~=2Sg or antiferro-
magnetism (i.e., zero net moment in the ground state).

It is interesting to see how the zero-point excitation
enters into the calculation of the s component of the
total spin to give the expected value 2X(SA—2Sii)
instead of 2E(S,"—2S, ). Using (3) and (11) we find,
to order 1/SA, s,

Explicit calculation gives, to second order,

where
$ =4rfs=36(1 —s)s

e 11ksg2/3 g4 $ Psris/16

Using (22), we see that

y'= AB/ZAZii)

so that we may rewrite co~ and co2.

2o~i ——A —8—
I
(A+8)'—4AB(1—e)']',

2tos=A —8+I (A+8)' —4AB(1—e)']**.

(5o)

(51)

(52)

(53)

S,=P S,Az'+P S Bz'

=21v(s "—2s,~) —-,'Q'a Q,{p~l (P A~)'

+ (Q Aa)27 Q f(P B~)2+ (Q Bra)27) (56)

where o =+ and —.Write Eqs. (38) and (44) as

q'=Z f" Q, , p;=Z D,;p;. (57)

Since we are assured by normal mode theory Pand
Eq. (43)7 that Lq, ,p&]=i8,& /for the exact normal
coordinates and assuming (14) is exact], the inverse,
C, of C is simply the transpose, Dr, of D; also (D) '
=Cr. We thus find

roi= 2ABe/(A 8)—, —
(us A 8+2AB e/(A ——8)—, —
cos= 8+2ABe/33(A+8), —
oi,=A 2A8 e/33 (A+8—) .

(54)

These branches are identical to those found by H.
Kaplan' if we go to the classical limit S,~ —Sg, g.

To second order, assuming that ABc/(A —8)'((1,
we have

S, =2K(S,A —2Sp) —
s Q's p,{—(p, )s—(q, )s

+ (p&~)2+ (q rr)2 (p a)2 (q a)2+ (p a)2+ (q g)2

—L(Ps')'+ (qs')'+ (ps')'+ (qs')'7} (5g)

for A ~& B.For A &8, interchange 1 and 2. I The p's and
q's here are the Hermitean operators used in (55).]
Hence the eigenstates of (55) are also eigenstates of S, ;
using the values (p, )'+ (q, )'=2n; +1, n,'=1, 2,
it is seen the zero-point excitation terms in modes 5

We see that some of the frequencies are definitely
negative. This is not accidental (since the co's to second
order are roots of equations quadratic in a&), but has
the following significance. Whenever co(0, the corre-
sponding coefficient d is imaginary, so that the corre-
sponding operators are not Hermitian. However, the
simple canonical transformation q'= iq, p'= sp relieve—s

us of this difficulty. Thus, dropping the primes in these
cases, the Hamiltonian (24) is

&=-:Z'.{Zl~ I
(P'+q')),

"Note: H. Kaplan's JAs is J/2 and his o is one-half onr o.

FIG. 2. The spectrum
(drawn for the case B(A
&2a).
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and 6 add up to E, thus canceling the terms in S,~ and
SP of order 1/Sq, g."Hence

S, = 2N(S~ —2S~) —Q's Q.(es' —mt~+e4~
—~is' —ris —es ), A )B. (59)

FIG. 3. Examples of
coupled oscillators. (Equal
masses and equal spring
constants; the masses are
constrained to move along
the lines of the springs. )

Xsi

(t tt' and x o) anisotropic in k were neglected; The only
difference in the spectrum is that the small deviation
of ~3 from the value 8, and ~4 from A, did not occur.
Differences of zero order in k enter into the coordinates
associated with co3 and co5 in the sense that the pertur-
bation requires a particular linear combination (for each
direction of k) of the originally degenerate coordinates
associated with the frequency B.The differences in the
remaining coordinates are of higher order.

Equation (55) provides the starting point for the
calculation of the neutron scattering cross section. This
will be reported in a future paper with the purpose of
comparing the result for scattering involving the lowest
mode with current experiments, as well as a step
towards answering the question as to the possibility of
observing the higher modes. In relation to this question,
we should mention that the energies needed to excite
the latter are in the slow-neutron range (=10 ' ev as
estimated by using the value, J=4)&10 ' ev found by
Brockhouse' in connection with the lowest branch, and
taking S~——2.5, So——2.25, characteristic of magnetite).
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Note added in proof After the pres.—ent manuscript
was submitted for publication, the author became aware
of a paper by J. S. Kouvel LTechnical Report 210,
Cruft Laboratory, Harvard, February 1, 1955 (unpub-
lished)7 in which the semiclassical spin vector method
is applied to the ordered magnetite structure; in the
region of overlap of his and the present results there is
agreement as expected.

"It is felt that the alternation of sign from modes 1 to 2 and
3 to 4 (which results in no contribution from the zero-point
excitation in these modes), although deduced from expressions
(47)—(49), valid only to second order in k, probably occurs for all
k. The statement concerning modes 5 and 6 is exact since (44)—(46)
are valid for all k."F.KeRer, thesis, Berkeley, January, 1952 Lsee KeRer, Kaplan,
and Yafet, Am. J. Phys. 21, 250 (1952)g.

Note that the excitation of modes 1 and 2 contributes
to S, in the same way as found by Keffer" for anti-
ferromagnetic structures in the presence of a magnetic
field parallel to the spin axis. This is reasonable: for S~
slightly different from 2S&, the energy eigenstates are
approximately those linear combinations of the de-
generate states corresponding to co~=cv2 which are
eigenstates of S, (as they must be since S, is a good
quantum number) and hence of the Hamiltonian
including the energy due to a magnetic 6eld in the
s' direction.

Perhaps some insight into the dependence of the
normal coordinates on the direction of k may be gained
by the following simple intuitive discussion. Consider
the example 4= k(0, 1,0). Referring to Fig. 1, it is seen
that atoms 8~ and B2 are in one plane of constant
k r while Bs and B4 are in another such plane. Hence
one might expect B-i and B~ to be equivalent and
similarly for Bs and B4, each pair then behaving
analogously to the example of Fig. 3(a). This is borne
out in all the normal modes f Eqs. (44) and (47)$, in
the sense that, say, QP+ and QP+ are either equal or
x out of phase; similarly for any pair of variables
corresponding to Bt and Bs or Bs and B4. )This follows
since gts'=|~i'(1, 1,1,1), fry'=in'(1, 1, —1, —1), etp
= (1/2) (1, —1, 1, —1), esp

——(1/2) (1, —1, —1, 1).] As
a second example we take the case k= (&/~3(1,1,1).
By the same reasoning B2, B3, and B4 would be expected
to be equivalent and hence to behave analogously to
the example of Fig. 3(b). This is again borne out in
all the normal coordinates: f'~s' ——f~s' ——fry', t~i' f~s'——
= fg4'(= —|tt'/3), ego= (1/v2) (0, 0, 1, —1), esp ——(1/
g6) (0, 2, —1, —1). For the example of Fig. 3(b), the
normal coordinates are xt+xs+xs, xs —xs and 2xt —as
—x3, furthermore, the two oscillatory modes are
degenerate, completing the analogy (as far as we shall
carry it).

It is interesting to compare these results with those
obtained in a preliminary calculation, in which all terms


