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A quantum theory of the dielectric constant for solids of both low and high polarizability is developed
from first principles. In the latter case, the approach used is collective in that the long-range part of the
electron interaction is described by the plasmon field. The conditions under which the local field corrections
of Lorentz may be neglected are clearly defined. Both the static and frequency-dependent dielectric constant
are derived. It is shown that the interaction between electrons may be described in terms of the dielectric
constant of the solid provided the electrons in question form a small minority group which can be isolated
from the much larger majority electron group. The theory is applied to a calculation of the frequency-
dependent longitudinal conductivity and the optical properties of the solid.

1. INTRODUCTION

SATISFACTORY quantum theory of the dielec-

tric constant in solids should answer three ques-
tions. First, under what circumstances is the concept of
a dielectric constant meaningful? (Can it be used for
all wavelengths, or to describe the interaction between
any pair of particles in the solid?) Second, what is the
role played by the local field corrections of Lorentz?
Third, how do we express the dielectric constant in
terms of the electronic wave functions for the solid?
In this paper we apply the collective description devel-
oped in the preceding paper’ to a treatment of the
dielectric constant. We shall see that the approach is
particularly well suited to the problem at hand, and
that we are able to obtain a satisfactory answer to the
foregoing questions. We derive from first principles
both the static and frequency-dependent dielectric
constant, and give a critical discussion of the circum-
stances under which its definition is meaningful.

We begin Sec. 2 with a brief review of the concept
of the dielectric constant and the classical description
of Lorentz for an insulator. We consider next the
possibilities of an individual-particle quantum treat-
ment of the dielectric constant (by means of suitable
canonical transformations on the basic Hamiltonian
for a set of test charges interacting with the solid).
We are thereby able to find the conditions under which
the influence of electron interaction on the dielectric
constant may be neglected, vz., when 4ma<<1, a being
the polarizability. When 4ma2>1, we are able to take
electron interaction into account in an approximation
which is equivalent to neglect of the local field correc-
tions. However, we do not find it possible to justify
the approximation within the framework of our indi-
vidual-particle approach.

The development of a collective approach to the
static dielectric constant is carried out in Sec. 3.
In the region of high polarizability (4ma>>1), it is clear
that a treatment of the electron interaction in terms of
a plasmon field is the correct one, since this is just the
region in which the plasmons are well-defined ele-

1 P. Nozieres and D. Pines, Phys. Rev. 109, 741 (1958), preced-
ing paper, hereafter referred to as NP I.

mentary excitations of the system. The long-wavelength
response of the electrons to the test charge is described
by the plasmon field, and the dielectric constant is
determined. It is shown that the local field correction
may be completely neglected for those solids for which
plasmons are a well-defined elementary excitation, and
for which the influence of the short-range screened
electron interaction on the electronic motion may be
regarded as a relatively small perturbation. Where H,
becomes important, we can redefine the dielectric
constant by using a representation in which (Ho+H:)
is diagonal. The concept of a dielectric constant is then
meaningful, but that of a local field correction is not.
In regions of intermediate polarizability (4ma~1)
neither the collective approach mnor an individual
particle approach which neglects electron interaction
is valid. Since, however, the high-polarizability result
yields correctly the low-polarizability limit, it probably
serves as a useful interpolation formula.

In Sec. 4 we generalize the method of the preceding
section to calculate the frequency-dependent dielectric
constant. We also discuss the relative role played by
the plasmons and the individual electrons in the deter-
mination of the dielectric constant.

A knowledge of the dielectric constant at arbitrary
frequency enables one to calculate a number of inter-
esting properties of the solid. In Sec. 5 we discuss anew
the plasmon dispersion relation in the light of our
knowledge of the dielectric constant, and establish the
equivalence of the microscopic and macroscopic
approach to the determination of the plasmon energy.
We then consider the extent to which the interaction
between electrons may be described in terms of the
dielectric constant of the solid. In Sec. 6 we show
that this may be done provided the electrons in question
form a small minority group which can be easily
isolated from the much larger majority group of elec-
trons. We apply this result to a calculation of the fre-
quency-dependent longitudinal conductivity in Sec. 7.

Essentially the same collective approach may be
applied to the interaction of light waves with solids.
In Sec. 8, we outline the calculation of the optical
properties of solids, and discuss briefly the results. We
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summarize our conclusions regarding the dielectric
constant and optical properties in Sec. 9.

2. GENERAL CONSIDERATIONS

We consider first the static electronic polarizability.
The problem of the dielectric constant may be formu-
lated by introducing test charges in the solid with a
density er(x). Assume the charges to be infinitely heavy.
Call 7, the Fourier components of 7(x), and further
assume that only components with reasonably small %
are present. In free space, the charges interact through
a simple Coulomb law, with an interaction energy

1
Z/c §Mk21’k1’_k.

In the solid the electric field of each test charge is
screened by the electron cloud, and the Coulomb energy
is thereby modified. Under certain conditions, the
effective Coulomb energy brought in by the test charges
may be written

2ok M/ e(k). (2.1)

From elementary electrostatics, we see that ¢(k) is the
dielectric constant at wavelength .2

Certain of the limitations on the definition of a
dielectric constant may be understood in the following
way. Consider the Hamiltonian of the total system
which may be written as?

H=Ho+3 5 sM*(prtri) (o—rt7_4).

Let us suppose that by a suitable canonical transforma-
tion we eliminate the interaction term linear in 7.
We then obtain second-order terms, which have the
general structure,

(2.2)

Z g(k)kl)rkrk’a

k.k

where g(k,k’) is an operator depending on the electron
coordinates. Such terms describe the change in Coulomb
energy due to the distortion of the electron cloud.
If k71 is larger than the interelectronic spacing, we may
neglect the fluctuations of g(k,k") around its expectation
value. The expectation value itself is nonzero only when
k'’=k+K, where K is a vector of the reciprocal lattice.
Now, if % is well inside the first Brillouin zone, we may
neglect the very rapid fluctuations caused by the terms
with nonzero K. The second-order terms then combine
with the original 7-» interaction to give a term like
(2.1); the dielectric constant may" accordingly be
defined and determined. Clearly, the concept breaks
down for values of % of the order of the first Brillouin-
zone size. For such values of % the fluctuations which
we neglected become very important, and an average
“‘effective” r-r interaction becomes meaningless.

Before going into the details of the calculation, we

2 This definition of e(k) works equally well for metals and in-
sulators. For an insulator, €(0) is a finite quantity, while for a
metal e(k) is roughly £:2/k2, where k. is the Debye wave vector.

3 We use the notation of NP I.
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F1c. 1. The Lorentz model for local field corrections. The

charge (Q, —Q) produces E; (Q1, —Q1) produces Ei; (Qz, —Q)
produces Es.

review the macroscopic picture developed by Lorentz
for an insulator. Consider a slab of solid between two
condenser plates. The electric field E and polarization
P are uniform. Around any point M of the solid, draw a
sphere of radius small compared to the slab thickness,
but large compared to the atomic dimensions, as shown
in Fig. 1. The local field Ey on a charge within the
sphere is the sum of (a) the field E of the charge located
on the condenser plates, (b) the field Eoy of the polar-
ized matter outside the sphere, and (c) the field E; of
the polarized matter inside the sphere.

We know that Eoy is the same as that produced by
a surface charge density P, on the boundary of the solid
and the surface of the sphere (P, being the component
of P normal to the surface). We may write Eoy; as

Eoub = E1+ EZ,

where E;= —4xP is due to charges located on the ex-
ternal surface of the solid, and E;=%xP is due to
charges on the surface of the sphere. Altogether, the
local field Ej is

Ey=E+E;+E,+E;. (2.3)

E; comes from the discontinuity of polarization at the
surface of the solid. (Es+E;) describe the so-called
“local field correction” which is produced by the field
of polarized matter close to the point M ; this correction
involves localized charges, while E; does not. The
dielectric constant is defined as

1/e= (E—4xP)/E. (2.4)
Let us now denote by a the microscopic polarizability,
P=aEM.

The above set of equations determines € in terms of «.

Suppose we completely neglect the interaction between
electrons. We therefore neglect the field of polarized
matter, and so take E;, E; and E; to be zero. We
thereby obtain

1/e=1—4ra. (2.5)

4H. A. Lorentz, The Theory of Electrons (Dover Publications,
New York, 1952), p. 138. :
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A possible improvement consists in taking into account
E, while neglecting the “local field”” corrections E; and
E;. We then find the familiar expression

e=1+4ra. (2.6)

Finally, if we write Eo+E; as 47Py (where v is some
number of order unity), we obtain

1-+dra(1—7y)
C l—dray

@.7)

€

Lorentz has shown that for a set of oscillating individual
electrons distributed in a cubic array, E; is zero, v is
equal to . Equation (2.7) then leads to the well-known
Lorentz-Lorenz formula. We expect this result to be
satisfactory if the electrons are closely bound to the
ions of a cubic lattice. (In such a case, the electronic
polarizability is small.)

If 4re is much smaller than 1, e is well represented
by (144wa), and a precise knowledge of the local field
correction (i.e., of v) is not necessary. On the other
hand, if 4ma>>1 (as occurs in metals and semiconduc-
tors), (2.7) leads to the rather strange result

e=1— (1/7)y

which is certainly wrong. However, unless we can show
that E; and E; cancel one another almost completely
(v being very small), it is not meaningful to keep only
E,, thereby neglecting the local field corrections. For a
gas of high polarizability, we must accordingly evaluate
v. In what follows, we shall develop the circumstances
under which it is very small, and so justify the neglect
of local field corrections in such cases.

The competition between the Sellmeyer formula,
e=1-+4na, and the Lorentz one, 3(e—1)/(e+2)=4ma,
is an old puzzle of the theory of dielectrics. Darwin® has
given a very interesting study of the problem, in which
he treated by classical analytical mechanics the micro-
scopic motion of the electrons. He reached the con-
clusion that whenever the electrons were spatially well
localized, the Lorentz formula should apply, while for
almost free electrons the Sellmeyer formula is valid.
Our results will, in fact, confirm these views.

Let us consider what the foregoing approximations
correspond to in a Hamiltonian treatment of the
problem. Suppose we first neglect the Coulomb inter-
action between electrons. The Hamiltonian is then

HQHO""Zk %M}c2{27’_kpk+7’_krk}. (28)

We thereby neglect the field on a given electron of all
the other electrons, whose wave function ®(E) depends
on the applied electric field. The influence of the elec-
trons on a given electron may be split into two parts:

(i) The electric field of the distribution in the
absence of an applied field, #(0), which gives rise to a
change in the microscopic polarizability, «. This we

5 C. G. Darwin, Proc. Roy. Soc. (London) A146, 13 (1934).
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expect to be a predominantly short-range process,
since the electron interaction is screened. (In fact, it is
just due to Hs;.) The effect of the field will be small
if Hg: has but little influence on the electron motion
(which is the case for “almost free” electrons). We
assume that we deal with such a case, and neglect this
effect.

(if) The field due to the distortion of the electron
distribution by the applied field [®(E)—®(0)]. This
describes the field of polarized matter and corresponds
to the corrections E;, E,, E;, which we just discussed.

Therefore, as long as we can neglect the effect of
short-range correlations on e, the neglect of the electron
interaction amounts to a neglect of the corrections

E,, E;, E;.

The linear interaction term in (2.8) is easily elimi-
nated by a canonical transformation generated by S:

S=2 1 Mi*r_xD,
(Dk) mn=1 (Pk) mn/wmn:

where Dy, is an electron operator defined in the “one
electron” representation. In the second-order terms,
quadratic in 7;, we replace the commutator [ p,Ds | by
its expectation value® in the ground state, and obtain

—2M& _ | (p)on|?

Wno

(2.9)

Z %M sz ¥ —Ik

k n

(2.10)

From our previous study, we know that when E;, E,,
and E; are neglected the effective interaction is

>k M1 —4ma (k) ].

Equation (2.10) thus defines the microscopic polariz-
ability «(k). We express it in terms of the oscillator
strengths by

Wy

1
dra(k)=—72" fno(k) (2.11)

N = wn02
When most of the wao are larger than w,, 4ma is much
smaller than 1, and our neglect of Ey, E,, E;is justified.
This treatment obviously fails when 4ra>1.

We may try to improve our treatment by taking into
account Coulomb interaction between the electrons.
In order to do this, we should modify the operator D,

appearing in .S in such a way as to get
i
gl:Ho—{—z %ngpkp_k, S]—': —Z Mk21'_kpk. (212)
& )

Equation (2.12) is in general very difficult to solve.
We may, however, obtain a simple solution if we make
a combination of the Hartree approximation and the

8 Compare the discussion earlier in this section. Let us remark
that we automatically neglect the higher order terms. They in-
volve higher powers of 7; and correspond to a nonlinear effect. The
concept of a dielectric constant has meaning only for #; small
enough to stay in the linear range, far from saturation.
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random-phase approximation, replacing the commu-
tator [pz,S] by its expectation value.” In doing this we
are averaging only one factor in the product p_x[pr,S],
so that we are neglecting exchange terms. We have
no way of estimating the accuracy of such an ap-
proximation; we make it primarily to investigate its

consequences.
We then find that the transformation is generated by
M yr_yDy, v
k 14-dra(k)

where Dy, is defined by (2.9) and a(k) by (2.11). When
we combine the new second-order terms with the original
r-r interaction, we obtain the following “effective”
7-r interaction

M2
>
k2 14+4ra(k)

V¥ —rk

The dielectric constant is therefore
e(k)=1+4+4ra (k). (2.13)

The foregoing approximation thus is equivalent to
taking into account the part E; of the field of polarized
matter, and ignoring the local field corrections. In
cases where E; and E; do not cancel one another, we
see a posteriori that the approximation is bad. (An
example is a cubic array of electrons, for which the
Lorentz treatment applies.)

It is physically obvious that the local field corrections
E; and E; are necessarily outside the scope of the
random-phase approximation. These fields arise from
localized charges, therefore from wave packets of
density fluctuations pi. In the random-phase approxi-
mation, we keep only one p; interacting with »_; and
thus cannot describe a localized charge response.

We summarize the results of our individual-particle
treatment of the dielectric constant. We found that we
could neglect electron interaction altogether when
4ra<k1l. We further found that a combination of a
Hartree approximation with a random-phase approxi-
mation yields results which are equivalent to the neglect
of local field corrections. We were not able to investigate
the validity of this approximation. Therefore, we need
to find a better treatment of the polarizability in the
region 4ma>1. As we saw in NP I, this is just the region
in which plasmon behavior becomes important. We
therefore now consider the polarizability from a collec-
tive standpoint by introducing the plasmons to describe
the response of the electrons to an external field.

7 This approximation is #of the random-phase approximation
of NP I, in which terms which are quadratic in the plasmon field
variables are shown to be small. It is more nearly akin to the
linearization of the equations of motion for px, which involves the
coupling via H,; as well. A similar approximation has been made
by S. Nakajima [Proceedings of the International Conference on
Theoretical Physics, Kyoto and Tokyo, 1953 (Science Council of
Japan, Tokyo, 1954)7], in the treatment of the electron-phonon
interaction.
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3. COLLECTIVE APPROACH TO THE STATIC
DIELECTRIC CONSTANT

We wish to introduce the collective coordinates
(Pr,Qx) which will describe the plasmon field and hence
the long wavelength response of the electrons to the test
charge. We do this along the lines of NP I, by extending
our basic Hamiltonian (2.2). Aswehave mentioned there,
and as is emphasized by BHP, in choosing our extended
Hamiltonian we need be guided only by the twin re-
quirements of “positive definiteness” and “expediency.”
Thus, Hex should have a lower bound (in which case
the lower bound will be the ground state of H) and
should be chosen so as to make the resultant problem as
simply soluble as possible. We give such a Hamiltonian
below. We were led to it by a combination of some
physical notion of what form it should take and con-
siderable experience in the practical consequences of
various forms for the added terms.

Our starting Hamiltonian was chosen to be?

Heww=Ho+HA Z {%lepk+Pk|2+%Mk27’k1’_k

k<ke

+ (Mk_,ka)7'—k(Mkpk+Pk>+chMk7'—kPk}- (3.1)

We are keeping only the long-wavelength part of the
test-charge field, since we are interested in the long-
wavelength part of the electron response. The quantity
ur is an, at present, arbitrary constant which we
determine later by consistency requirements. We shall
then see that us<My; its physical meaning is better
understood after the canonical transformation we now
carry out.

Our first transformation is the same transformation
as that for electrons alone; it is therefore generated by

S=—=2 (MQxpr).

k<ke

We then obtain the following Hamiltonian
Hexy=Ho+Hsieta+Hing+He+U
+k§c { (M o= pi)r—wPrt-ueM e _rpr
‘ My (3.2)
together with the set of subsidiary conditions '
(Pr—Mipon)¥=0, k<k,. 3.3)

Now, the meaning of uj is obvious. Almost all of the
electron-test charge interaction has been redescribed
as a plasmon-test charge interaction. Only the small
fraction ur/My is left as a coupling with the individual

8 Hexy may be shown to be positive definite in a variety of ways.
For instance, in the absence of test charge we note that the Hamil-
tonian is positive definite. We add to this Hamiltonian a term
which is linear in the test charge variable ;. The response of the
system to the test charge will never cancel it completely (see BHP),
so that the only effect of the 7; terms might be to increase the
ground state energy. To see this another way, note that (3.1)
could blow up only if (pz)ay were to become very large and negative;
this would, however, cost too much kinetic energy.
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particles. The quantity u, measures the extent to which
the interaction between the test charges and the
electrons cannot be described in terms of plasmons.
Its introduction is not merely a mathematical artifice;
it corresponds to the physical reality that the screening
is not perfect.

The next step is to eliminate the two interaction
terms by a suitable canonical transformation. In order
to do this, it is not necessary that we eliminate Hixe
first. We determine the generating function, ', for the
transformation by the condition

7
i[Ho“i’Hfield, S’]

=— 2 AWM= p)r—iPrtmeM ir—rpic}.

k<ke

This is easily solved to give

S'=3 {— (Mk—#k)f—kQ—k+ﬂkMk7—ka},
k<ke

where D, is defined in (2.9). Naturally, the transforma-
tion acts also on Hint, Hsr and U, yielding extra in-
teraction terms linear in 7. But only the small part
wurM 7_iDy, contributes to the commutators. We may
systematically neglect the contribution from U, which
we have shown to be very small. The contribution
from Hiny may be written

(3.4)

1
Z éukMkLle[Vl,Dk]-

k<ke
1<k
This is a triple interaction between plasmons, individual
electrons, and test charges. Its expectation value with
respect to electron coordinates is zero. The off-diagonal
part involves triple collisions, and has a structure
equivalent to the nonlinear interaction U. In the same
way that U was negligible compared to (Ho+ Hiiela),
this extra nonlinear interaction is negligible compared
to the original interaction. A geometrical factor,
together with a factor N'/N are responsible for the
reduction. The extra interaction arising from H; leads
to greater difficulty. The discussion of such terms is
complicated, and we postpone it.
We now calculate the second-order terms quadratic
in 7, (replacing all electron operators by their expecta-
tion value). We get

(Mie—pe)® md _ 2M&* | (pk)on]®

_— V¥ —k.
k<ke 2 2 n 7 Wno

(3.5)

To obtain the dielectric constant explicitly, we must
find u;. We determine it by the following consistency
requirement: in the elimination of the electron-test
charge and plasmon-test charge interactions in Hext,
test-charge variables must not be introduced in the
subsidiary conditions. In other words, after the final
transformation, test charges and electrons must be

P. NOZIERES AND D.

PINES

entirely separated, both in the Hamiltonian and in the
subsidiary conditions. Since our treatment of the
Hamiltonian is accurate to second order in 7, we need
cancel only the linear terms in 7, in the subsidiary
conditions (one has always one more degree of accuracy
in the Hamiltonian than in the wave function). On
averaging the electron operators multiplying 7, we
obtain the following consistency relation

2Mlc2 [ (Pk) on ] 2

n Wno

M o—pi=pi }, (k<kc). (3.6)

Using (2.11), we see that

M,

pr=—"—, (k<ke). 3.7
1+47a(k)
For a gas of high polarizability, ux is effectively much
smaller than M. Combining the second-order terms
(3.5) with the original interaction, and using (3.6), we
obtain the final screened (r-r) interaction:

M2 rir—_s
k<ke 2 e(k)
4t fao(k)
e(k)=1+4ra(k)=1+ > (3.8)
m n Wao

We remark that M= e(k)uxr. This is not an accident,
since u; describes that part of the test charge-electron
interaction attributed to individual particles. It there-
fore measures what is left of the original Coulomb in-
teraction after screening. This is just the definition
of 1/e(k).

Almost all the (r-r) interaction was cancelled by
second-order terms arising from the plasmons, which
were calculated rigorously. This emphasizes the main
advantage of the collective description. We redescribe
most of the long-range density fluctuations in terms of
Py and Qi for which the random-phase approximation
is rigorously true:

[Pk’Q1]= —hbs, 1.

Equation (3.8) corresponds to no local field corrections
(complete cancellation of E; and Ej). Our only approxi-
mation concerned terms of order uy arising from Hg;.
These may yield an appreciable correction to e(k), but
they cannot change its order of magnitude, (&) ~M /ux.
Since the only possible local field correction must
proceed from this short-range effect, we may conclude
that these corrections are much smaller than the one
predicted by the Lorentz formula (which would lead
to e=—2).

The importance of the local field corrections depends
on how much influence H,; has on the electron motion.
If H,, is only a small perturbation, whose effect is small
compared to that of H, the terms arising from it in the
preceding canonical transformation will be negligible
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compared to those arising from H, [which determine the
screened (r-r) interaction]. In this case we expect the
local field corrections to be negligible, and we have e=1
~+4ma. Such a case occurs, for instance, if allw,oare much
smaller than the plasma frequency  (see Sec. 7 of
NP I), as happens for free electrons. This is just the
conclusion reached by Darwin® for the case in question,
that of nonlocalized electrons.

If, on the contrary, H,, is important in determining
the electron behavior, the correction may be sizable,
so that e(k) will only be of the order of magnitude of
[14-4mra(®)]. In this case, just as in NP I, we may
overcome the difficulty by a change of representation.
As we pointed out in Sec. 7 of NP I, when the effect
of H,; is large, the natural representation in terms of the
physical actual eigenstates is the one in which (Ho+H.,)
is diagonal. Let us therefore switch to such a repre-
sentation, whose basis we call ®;;. The treatment of
the dielectric constant goes along exactly as before,
but we no longer need worry about Hs,. The dielectric
constant is therefore given rigorously by

Wyl

1
e(B)=14+—2 fou(k) Lk, (3.9)
N M

)
ware®
For values of % larger than k., there is no collective
mode, and the dielectric constant must be calculated
by a direct perturbation treatment, as was done at the
beginning of this section. We obtain

1 1
—_—= 1—— Z f(]M(k)wp2/wM()2, k>>kg (310)
e(k) N

This is now a rigorous result since we have absorbed the
effect of Hy, into the representation. When £ is of order
ke, (3.9) and (3.10) do not agree. This may be due to
the fact that for such values the effect of the random-
phase term U becomes important. However, we may
expect that (3.9) will serve as a useful interpolation
formula, since it is accurate for both limiting regions.
We pay for the rigor of the foregoing results by the
fact that we no longer have a simple physical interpreta-
tion of what is going on. In (3.9), the quantity
(e—1)/4w is not the microscopic polarizability because
it already takes into account the short-range part of the
electron correlations. In other words, E, and E; are
automatically included. Accordingly, we do not know
how to separate what is due to local field corrections,
and what is not. We do not even know what the micro-
scopic polarizability a () is, since in the present case the
short-range electric field of the equilibrium distribution
of electrons modifies a strongly. Equation (2.11) is then
incorrect. As far as local field corrections are concerned,
we can only conclude that in such a case they are size-
able, although they do not change the order of magni-
tude of e. It is interesting to see physically why the
local field correction is so drastically reduced compared
to that of Lorenz-Lorentz. Let us go back to the Lorentz
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picture for an insulator (Fig. 1). The electric field at
point M may still be written as

Ey=E+E;+E,+E;,
E1= —4:7I"P,
E2+E3=41FP’Y, (3.11)

where v is a number of order 1. Now the field E, arises
from free charges located at the outer boundary of the
solid. This field is related to a macroscopic boundary
condition of electrostatics, and is not screened: it gives
a contribution to the polarization P

P1=a(0)E1, (3.12)

where «(0) is the polarizability for zero momentum,
which may be very large. On the other hand, E; and E;
arise from the microscopic field of the neighboring
electrons on the one which we are considering. Due to
the collective behavior, this field is screened within a
radius of order k;. Hence, E; and E; arise from
particles very close to M. When calculating the polariza-
tion produced by (E.+ E;), we should, therefore, use the
polarizability at a wavelength of order k., and not at
zero wavelength; i.e.,

Pyis~a(ke) (B2t-Es).

We know that a(&.;) is much smaller than «(0) and is
of order 1/4x. These considerations are summed up in
the following equation determining P:

4P =4na (0)[ E— 4w P H47a (k) [4nPy].

(3.13)

(3.14)

From (3.14) it is trival to obtain the dielectric constant

4ra(0) (3.15)

A typical value of 4ma(k.)y will be §. We see that the
local field correction does not change the order of magni-
tude of e. If the screening radius k. is of the order of
the interelectronic spacing, the effect of the short-range

Coulomb interaction is small, and we expect 4ma (k)Y

to be much smaller than 1. In this case there are no
local field corrections at all.

The drastic reduction of the local field corrections
when 4ma(k) is much larger than 1 is due to the fact
that the fluctuations of the long wavelengths pi’s are
frozen by the subsidiary conditions: one cannot have
localized charge leading to a local field. This emphasizes
the need for a collective treatment.

4. FREQUENCY-DEPENDENT DIELECTRIC
CONSTANT

We now generalize the discussion of the preceding
section to the case of a nonzero frequency, 2. Let us
assume that the test charge 7; is oscillating with a
frequency Q.

T"k=1:91’k.
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We may guarantee that the 7, have this equation of
motion by adding a new term, Hy., to the Hamiltonian
such that

[Htc,fk]=h91’k. (41)

The 7, now constitute a set of commuting operators.
We use the same approach as in Sec. III, and our
result will be subject to the same limitations.

First, suppose we neglect the electron Coulomb inter-
action, and calculate €(%,2) by a simple perturbation
treatment. In this approximation, the Hamiltonian of
the system is

H=H0+Htc+2k %M/c2[2pk7’_k+7’kr__k_—]. (4:2)

A straightforward calculation yields the following result
(which is just a special case of the Kramers-Heisenberg
formula) :

) =1—A4ra(k,Q),

Wy

(4.3)

2
Wno"—

1
4"'-a(k)ﬂ) = Z fOn(k)
N =
We know that (4.3) is accurate only when 4w« is much
smaller than 1. When 4re>>1, we must go over to a
collective approach.

We see already in (4.3) that difficulties arise when
wno~. The difficulties are of the same sort we en-
countered in NP I when w~wao, and may be resolved
in similar fashion. Thus, where w,o=£, resonant absorp-
tion of energy from the test charge takes place. Such
absorption may be described in terms of the conduc-
tivity o(Q), which we calculate in Sec. 7. We could
explicitly omit such terms in our various transforma-
tions by a procedure analogous to that followed in
NP I. However, as was obvious from the treatment
there, such a prescription is equivalent to taking
principal parts in the sum over excited states », and
we shall understand that to be done in (4.3) and what
follows. As was the case in NP I, we do not expect this
procedure to work when @ is of the order of the average

wno. In this case, taking principal parts cuts out too.

many electronic excitations. Put more physically, the
indeterminacy in frequency due to power absorption
is then too large to permit an accurate definition
of e(%,92).

In carrying out the collective approach, we adopt as
our starting Hamiltonian®

Hext= H0+Hfield+Hint+Hsr+ U,
FHeet 2 {(Mi—pr)r—iPrtueM r_ips
k<kc
+%Mk27‘_k1’k}.

H . differs from (3.2) only in the addition of Hy.. Again,

(4.4)

9 The Hjiela which appears in (3.2) and (4.4) involves the free-
plasma frequency w,, and not the corrected one, w. This is im-
portant for the derivations of this section.
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ur is an arbitrary constant which we shall determine
later. Simultaneously with (4.4) we must consider the
set of subsidiary conditions, (3.3).

'Our goal is now to find a canonical transformation
which eliminates from (4.4) the plasmon-test charge
and electron-test charge interactions, and which, at the
same time, does not introduce test-charge variables
into the subsidiary conditions (3.3). Let S be the
generator of this transformation. We must have

7
i[Ho-l'Hﬁeld-I—Hint—l-Hsr-l' U+Hye, ST
== 2 A(Mi—pr)rsPitmedirspr}.  (45)

k<kc
To satisfy (4.5) we try an .S of the general form

S= ):;c (akPk+5kQ—k+Fk)f~k,
k<kc
where a; and 8;, are numbers, while F; is an unknown
electron operator.

The new features in the calculation arise from the
commutator of Fj with U, Hs,, and Hi,. We first
remark that we may always neglect the terms arising
from U, (since we have shown in Sec. 6 of NP I that
U is very small). Next we do not have to consider the
terms arising from H;. Either H; does not influence the
electron motion appreciably, and the corresponding
terms are negligible; or Hy, has a large effect on the
eigenstates, and we then take it automatically into
account by switching to the many-body representation
in which (Ho+Hs,) is diagonal. Consider now the terms
arising from Hiny which are of the type:

(4.6)

i

= 2 [VeFiQw-.

% k<ke

1<ke

These terms differ from the analogous terms in the static
case because the commutator [ Vi, F;] has a finite ex-
pectation value. We keep the terms involving [V, oo,
and neglect again the triple collisions between electrons,
plasmons, and test charges. With these approximations,
it is just a matter of algebra to find the coefficients
ax, Br, and the operator F:

%{e?zi;)_”k}’

1—e(k,Q)
ﬁk=Mk[——},
f(k)Q)
u.ckMk iMk2 Wmn
(Fk)mn'— (pk)mn. (47)

Q _Qe(k,ﬂ) wmn+9
Here e(%,2) is defined from the «(%,2) given in (4.3):
e(k,Q)=144ma (k). (4.8)

The next step is to determine u; by the requirement
that 7;, does not enter the subsidiary conditions. Again,
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we replace the commutator [p,Fi] by its expectation
value. We then find that this requirement is satisfied
for any choice of ux.!° Since the only approximations in
our treatment arise from the term Fy, of the generator S,
we choose uy so as to have an Fy, as small as possible.
For very low frequency @ (much smaller than the
average w,o), the most convenient ux is M/e(k,Q), as
in the static case. [With such a choice, Q@ disappears
from the denominator of (F)mn. | For high frequencies,
on the contrary, the best choice is ux=0, and we shall
make that choice in the following. When u,=0, the
second-order terms are trivially calculated. When
combined with the original (r-r) interaction, they yield
the following screened interaction:

Mk27’k1’—k
k<ke 2e(k,Q)

‘e(k,Q) is therefore the dielectric constant at wavelength
k and frequency Q.
The derivation of the basic formula,

B 14— 5 funl)—"
B =14+—3 fonll)——,
N n ° wn02"Q2

(4.9)

completes the aim of this section. However, before going
on to a discussion of the meaning of (4.9) it is desirable
to have a clearer picture of the physical origin of the
expression. Thus, in our derivation, the contributions
from the plasmons and the electrons to the screening
of the test charges were intermingled. We can, however,
separate them in the following way.

Let us first isolate plasmons and electrons, that is,
first eliminate Hiy from (4.4). Since our treatment may
be carried out for any choice of uz, we take a simple
choice, ux=0. Our Hamiltonian (4.4) is then

PPy te,2010-x
+Hint+Hsr+Htc

Hext:H0+ Z

k<ke

+ Z (Mkf’—kpk“f"%Mk?T—kfk)-

k<ke

(4.10)

We eliminate Hiyn exactly as in Sec. 5 of NP I, without
considering the test charges. We then get the following
Hamiltonian :

Hext= H0+Hsr+Hrp+Hfie1d+Ht.c
+ > {MkT—kPH-Mk1’~k3k+%Mk27~k7’k}:

k<ke
where By is defined in (5.5) of NP I. The test charges

10 Tn fact, this is not surprising : two Hamiltonians with different
values of uj only differ by a term Aur(Mror— Pr)7_r. (Mrpr—Pr)
is the operator of the subsidary condition, which rigorously com-
mutes with Hex¢. One may therefore change the value of ux by a
canonical transformation, generated by (¢Aur/Q) (M rpr—Pr)7—z,
which acts only on Hy,. Since we can change uj at will, the results
must be independent of its choice. This is not possible in the static
case, where 2=0. In order to keep a; and Fy finite, we must then
choose ur=M/e(kQ).

(4.11)
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now interact with electrons through a screened Coulomb
interaction. The plasmons are independent of - the
electrons (they do not appear in the subsidiary condi-
tion). We may therefore eliminate independently the
plasmon-test charge interaction. This is done rigorously
by a canonical transformation generated by

Q
—iMkr._kPk ) 2]. (412)

w?—

S=X

k<kc

w?
{ —Mwr_Q_x .

w?— 2
The resultant Hamiltonian is
Hext: Hfield+H0+Hsr+Hrp+Htc

{Mk2 Q?

— ViV E
92 — (.02

+2 +M kr_kBk], (4.13)

k<ke

which must be considered together with the subsidiary
conditions (5.15) of NP I. We should like to emphasize
that the only approximations involved in obtaining
(4.13) are those required to eliminate Hiys, that is, the
approximation of well-defined independent plasmons.
What have we accomplished at this point? We have
determined the role that plasmons play in screening
the initial interaction between test charges. We see
that the screening is not complete, although nearly so
for low frequencies. We could characterize this lack of
complete screening by a dielectric constant, e.ou(%,%2),

defined by
1 Q?

con(kQ) P—ut

(4.14)

Since the test charges are still interacting with indi-
vidual electrons in (4.13), there is also an “individual
particle” contribution to 1/¢, which we could obtain
by eliminating M#_iBx from (4.13). It is in fact simpler
to get it from the total 1/¢ calculated in (4.8) using

1 1 1
ena(2,) (D) eon(kQ)

(4.15)

With the aid of the dispersion relation, and Eqgs. (4.8)
and (4.15), it is straightforward to show that

t"coll(kﬂ) _ Z nfOn (k)wn02/[(“’2— “’n02) (92_ wnoz)]
nd(B2) T afon(B)R/[ (P —wnd) (@—wn?)]

We see from (4.16) that when Q is much smaller than
the average wno, 1/€ina is much larger than 1/e.on; in
such a case, the screened interaction is determined
mainly by the individual particles. (In other words,
the screening due to the plasmons is essentially com-
plete.) On the contrary, when Q is much larger than the
average wno, the term 1/econ is preponderant, and the
dielectric constant depends almost entirely on collec-
tive plasmon properties. (At such high frequencies,
the individual-particle excitations do not follow the
test-charge oscillation.) The fact that at high frequency

(4.16)
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Fic. 2. Schematic representation of the frequency-dependent
dielectric constant. The shaded area represents the ranges of Q
where we do not trust our results.

the individual part of 1/e is negligible shows that in
such circumstances the electron-test charge interaction
appearing in (4.13),

Z M kf’—kBk,

k<kc
is negligible. At high frequencies (of the order of w,)
one might expect some difficulty with the nature of the
individual-particle excitation spectrum, since the sub-
sidiary conditions then act to reduce the number of
degrees of freedom. However, when the plasmons are
well-defined, they determine entirely the dielectric
constant at such frequencies, so that the above difficulty
does not arise.

Let us now discuss in a closer way the behavior of
1/€(k) as a function of the frequency Q. Consider a
solid in which the excited states &, form two groups:
a group of low-energy states for which wno~wi<Kw, and
a group of high-energy states for which w,o~ws>w.

(1) In the range Q<Kw;, € is essentially the static
dielectric constant. It is determined mainly by the low-
energy excited states of the electrons.

(ii) In the range w;KQ<Kw,, € is approximately equal
to €co1, being given by

21— (0¥/Q). (4.17)
It is almost entirely determined by plasmons.
(iii) In the range Q>>ws, one finds
e=1— (w,2/Q?). (4.18)

This differs from €011 by the small amount (w?—w,?)/Q2.
In this case e is again determined mainly by plasmons.
If, however, one prefers to discuss the behavior of
4ma rather than of ¢, we see that at such frequencies,
the part —w?/Q? arises from plasmons, while the part
(w?—w,2)/Q? arises from the high-energy excited states
of the individual electrons.
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(iv) Finally, in the ranges @~w; or Q~w,, we en-
counter difficulties with our use of principal parts, and
we cannot define e accurately.

The foregoing results are summarized in Fig. 2.

When the dielectric constant is determined mainly by
individual electrons, the discussion of the local field
corrections of the preceding section applies. Where it
is determined by the plasmons, no local field corrections
can appear. For instance, in an ionized gas, where the
excitation frequencies are small, the dielectric constant
is simply 1—w,?/Q?, as indicated by Darwin.®

5. PLASMON DISPERSION RELATION

Let us reconsider the dispersion relation for plasmons,
obtained in NP I, in the light of our determination of the
dielectric constant. We found that the plasmon fre-
quency w is determined by

47!'62 f()n
1=—

m n Wr—wno?

(5.1)

On comparing (5.1) and (4.9) we see that the dielectric
constant vanishes when Q@=w. This result is a conse-
quence of simple electrostatics, since a longitudinal
wave may only propagate when e(k,2)=0. The vanish-
ing of the dielectric constant at the plasmon frequency
was used by Hubbard! and by Frohlich and Pelzer'? to
determine the plasmon energy.

The great advantage of the microscopic treatment is
that it allows a discussion of the local field corrections
which enter e. These appear in our Hamiltonian as
extra short-range terms whose importance we are in a
position to evaluate. In a sense, then, we need never
worry about the influence of local field corrections on
the plasmon energy. Either the contributions from H,
are negligible, and we have no local field correction,
or they are important, and we include H; in our basic
representation. The w,o in (5.1) and (4.9) are then the
appropriate “many-electron” excitation frequencies.

We are now able to interpret in a simple way the
effect of the core electrons on the plasma frequency.
Let us consider again the dispersion relation (9.5)
of NP I:

4re fou(k) Y fOu(k) _1

r(val) w2—w0,,2

(5.2)

m u(cobre) w2—w0”2

We see from (4.3) that the first term, involving excited
states of the core, is just [—4wacore(kw)], where
@core(k,w) is the polarizability of the core electrons, at
frequency w and momentum k. The dispersion relation
may therefore be written as

4re?

foﬂ(k) _

2

1. (5.3)
Mecore(Ryw) #ival) w?—wo,
117, Hubbard, Proc. Phys. Soc. (London) A68, 441 (1955).

2 H. Frohlich and H. Pelzer, Proc. Phys. Soc. (London) A68,
525 (1955).
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This shows that the core acts only through its dielectric
constant, modifying the effective valence-electron
Coulomb interaction. When acore is small, this way of
presenting the result is more natural, and better fitted
for comparison with experiment (acoro- may be inferred
directly from experiment). On the contrary, when acore
is very large, we would do better to include the core
into the plasmons, and treat it as we do the valence
shell. Of course, there are intermediate cases; for in-
stance, the d electrons in transition metals. We then
may think of the collective mode in two ways: either
as a plasma of s and d electrons, where the d electrons
are strongly coupled with the plasmons, or as a plasma
of s electrons alone, but embedded in a highly polarizable
gas of d electrons. The two points of view are equivalent,
and neither makes possible a simply convergent
calculation.

6. INTERACTION BETWEEN A SMALL
GROUP OF ELECTRONS

We now consider under what circumstances we may
generalize to electrons the concept of a dielectric
constant which we have introduced for infinitely heavy
test charges. In order to render the concept of a medium,
and hence a dielectric constant, meaningful, we must
consider only a small fraction of the electrons as our
“test charges.” Let us accordingly isolate a group of
minority carriers, N in number, whose density fluctua-
tion is pr, individual electron Hamiltonian H,, etc.3
We take N<<N, and assume in this section that the
operators, px, Ho, etc., refer only to the majority carriers.
We remark that in isolating a group of minority
carriers, we automatically neglect all effects associated
with the indistinguishability of the minority and
majority carriers (e.g., exchange effects in their
interaction).

We may then write our initial Hamiltonian as

H=Ho+Ho+3 o M2 (ox+pr) (o—rt+p-r).  (6.1)

The situation is quite similar to that encountered in
Sec. 4 for test charges. There are two new complica-
tions. First, the density fluctuations px no longer carry
out simple oscillatory motion. If we choose the eigen-
states ®, of Hy as the basis representation for the
minority-carrier operators, we have

(ﬁoaﬁk)w:hguv(ﬁk)uw

Second, there is a short-range majority-minority inter- -

action which may influence the excitation spectrum of
the minority carriers. In other words, the minority
electrons are not infinitely heavy, and may recoil when
interacting with the majority electrons.

We shall be primarily interested in low minority
excitation frequencies, ,,. We therefore wish to

13 This notation for minority carriers should not be confused
with that introduced in NP I for the separation of the principal
parts of certain operators. No such separation involving principal
parts is carried out explicitly in this paper or in NP III.
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generalize our low-frequency test-charge treatment, in
which u; was taken to be M;/e(k,). (The high excita-
tion-frequency case is treated, in quite similar fashion,
by taking ux=0.) We first define a screened minority
density fluctuation, p,* by

(ﬁks)m’= (ﬁk)nv/e(k,guv)- (6.2)

In place of (6.1), we introduce the following extended
Hamiltonian :

Hew=Ho+-Hot+ Y M 2(or+ o) (o—x+5_x)

k>ke

+ ¥ Y (Mior+Pr)(Mip—r+P_r)
k<ke

+ 2 {(Mi(pr— ﬁks)P—k+Mk25kP-k
k<ke
+3M2prp-i}-

We then introduce plasmons which involve only the
majority carriers. (Since there are very few minority
carriers, this cannot alter the plasmon behavior.) After
the first canonical transformation generated by

S= Z (‘_MkaPk))

k<ke

(6.3)

Eq. (6.3) becomes:
Hew=Hot+ Y M2 (oitpr) (p—rtp—r)

k>ke

+ > 3 (PePort020x0-) +Hine+U

k<ke
+H+ Y Mi(pi— o) P—it+Mi2pito—s

k<ke
+3M2pip—i. (6.4)

Equation (6.4) is the simple analog of Eq. (4.4).

Consider the short-range terms of (6.4). They may
modify the dynamics of the electrons and, so, change
the dispersion of the solid. We already know how to take
into account when necessary the majority-majority
short-range interaction by including it in the basic
representation for the majority electrons. The minority-
minority interaction is certainly exceedingly small for
small ¥. Difficulties may arise with the short-range
minority-majority correlations. The magnitude of k. is
usually such that the screening radius is of order of the
interelectronic spacing and we expect such correlations
to berelatively unimportant. However, they may modify
the ©,,, and a more involved treatment is required to
take this effect into account. In what follows, we neglect
these possible corrections to the Q.

We may now eliminate the majority-minority and

14 A word of caution should be injected at this point. In making
the foregoing statements we have assumed that the minority
carriers are not strongly spatially correlated with each other.
Such correlations may occur where there is an energy gap in the

excitation spectrum, that is, with excitons and superconductors.
We discuss this situation in detail in NP III.
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the plasmon-minority electron interaction from (6.4).
We thereby transform to a new set of “dressed”
minority electrons which carry a cloud of virtual
majority electrons and virtual plasmons. The desired
canonical transformation is generated by an .S, such
that:

i L
;L[H0+H0+Hfie[d+Hint+ > M2prp—r, S]

k<ke

=— 2 {Mw(pr— ") P—rt+Mi*pip-r}.

k<ke

(6.5)

On purely physical grounds, we expect that in (6.5) the
contribution from the long-range minority-minority
interaction will be negligible if we take N small enough.
(The screening is not affected by the interaction between
distant carriers.) We obtain our results neglecting this
contribution, and later discuss its importance.

With these simplifications, the problem is now com-
pletely equivalent to that encountered in Sec. 4. The
generating function S is obtained by a simple trans-
position of Eq. (4.7):

S= 2 {M(pr*—pr)QitGi},

k<kec

(6.6)
where Gy is an operator depending on both minority
and majority electrons, defined by'®
M2
E(kyﬂw) (wmn+QuV)

(Gk)mn,M‘Z } (Pk)mn(ﬁ-k)yv- (67)

[In order to satisfy (6.5), we again neglect the off-
diagonal “random phase” terms arising from Hiys. |

Let us now consider the second-order terms which
arise from the action of .S upon the minority-majority
and plasmon-majority interactions. These are

> — M2 (pr— pr®) (p—i— P—t")

k<ke,1<ke

7
+2_hM PLo-r,Gilpr

—1
Xz_h'Mle[<ﬁks"'ﬁk)7 (prr—p1) JP—xQ1
7
_l_%MkQ[ﬁks,Gl:]P—Jc . (6.8)

The last two terms involve only one minority carrier
at a time. They correspond to a change in the behavior
of an individual minority electron due to collisions with

15 We now have simultaneously two representations, one of the
majority carrier operators, in terms of the eigenstates ®, of H,
(or eventually Ho+Hs:), and one of the minority carrier operators,
in terms of the eigenstates &, of Hy. The two representations must
not be confused. A matrix element of .S should have four indices,
S uv, mn.
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two plasmons, or with two electrons. They have the
structure of a random-phase term and are certainly
negligible. (Their diagonal part with respect to minority
electrons corresponds to the reaction of these on the
majority carriers, which is exceedingly small.) The
first two terms of (6.8) describe the screening of the
minority-minority interaction. Again, we neglect the
fluctuations of the majority carriers, and replace the
commutator [p_x,Gi] by its expectation value. With
these approximations, (6.8) yields the following effective
long-range interaction between ‘‘dressed” minority

carriers:
> SMpps.
k<ke

(6.9)

We therefore obtain the very natural result that the
matrix elements for the transition y—v is screened by
the dielectric constant at frequency Q,,. Such a result
is in accord with the correspondence principle and our
physical intuition.

We now return to the terms arising from the com-
mutators of .S with the long-range minority-minority
electron interaction. They are

—1

— 2 sMHLSprlp-rtp-ilS,p}.  (6.10)
B k<te

If we replace the commutator, [S,55 ] by its diagonal
part, the resultant term leads to a screened energy
smaller than (6.9) by a factor of [wy2/{wno?)a J(V/N),
which is certainly negligible for a sufficiently small
(N/N). The off-diagonal part of the commutators gives
rise to exchange terms between minority electrons,
which are likewise of order (N/N) compared to the
terms we have kept. We can understand simply why the
long-range interaction between minority carriers is
ineffective. For Q,, larger than the minority carrier &,,
the effect of the Coulomb interaction is negligible com-
pared with the effect of H,. This is not the case for @,
smaller than @,, but for such frequencies the dielectric
constant, e is independent of the response of the
minority carriers.

We summarize the approximations we have made to
obtain the effective interaction between minority
carriers, (6.9). First, we have neglected the influence of
the screened long-range density fluctuations of the
majority electrons, since we kept only the expectation
value of commutators like [p_s,G;] in (6.8). Such an
approximation is excellent for sufficiently small %, and
we expect it to work well throughout the region of % of
interest. Second, we neglected the effect of the short-
range, and screened long-range majority-minority in-
teraction on the energy levels of individual minority
carriers. However, the corresponding change in Q,,,
even though it may be appreciable, will not influence
our result, (6.9) in the low-frequency region, since ¢ is
frequency-independent in that region.

We should like to emphasize the limitations of our
result, (6.9). It is valid only for a very small number
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of carriers, and must be used only to the lowest order in
px. For instance, we may use it to calculate the screened
exchange energy,

o 2] (Br)ou?
—
G(QMO)

We may also use it to obtain the transition probability
for the scattering of two minority carriers, using time-
dependent perturbation theory. On the other hand, it
may be used to calculate correlation effects only under
very special circumstances, in which the direct correla-
tions between minority carriers are more important
than the screened correlations with the majority
carrier fluctuations. For this to happen, the strength of
the minority-majority interaction must be down by a
factor of at least N/N compared to the minority-
minority interaction since there are so few minority
carriers. Such an effect does occur for the conduction
electrons in semiconductors.

EexchN: Z Z‘lz“

k<ke¢ n

(6.11)

7. FREQUENCY-DEPENDENT LONGITUDINAL
CONDUCTIVITY

As an application of the results of the preceding
section, we calculate the conductivity of the electron
gas. To do this, we introduce into the solid a test charge
7%, oscillating at frequency @, and calculate the rate at
which the test charge loses energy. An absorption
process will excite the electrons from state ¥, to state
¥,, such that w.o(k)=0Q. If we can neglect the effect
of H:, and of the subsidiary conditions on the excited
state ¥,, the states ¥y and ¥, are simply eigenstates &
and ®, of (H¢+H,:). We may expect that the effect
of the subsidiary conditions will be negligible for low
individual electron excitation frequencies, wnoKwsy.
When wao is large, however, the density of excited states
might reflect the reduction in the number of degrees
of freedom due to the subsidiary conditions. We carry
out the calculation with the assumption that this effect
is small. (A similar approximation was made in our
treatment of plasmon damping in NP I.)

Let us furthermore assume that H,, is a relatively
small perturbation on the electron motion, so that @,
corresponds to the excitation of a given electron. There
will only be a few electrons for which w,o(#) lies between
(Q@—n) and (Q+7n). We treat these electrons as our
“minority carriers”, and denote their density fluctua-
tion by 8px. In the minority group, we also include the
test charges. The p; of Sec. 6 is therefore

(7.1)

The damping of the test-charge oscillation then appears
as a scattering within the minority group.

In order to treat the scattering correctly, we must
first decouple completely the minority group from the
majority carriers. We do this by the techniques of Sec.
6. A simple application of (6.9) gives the following
“effective” interaction between test charge and “res-

Pr=0prt7k.
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onating” electrons:

M2

Hgoat= {718p—r+7_10pr}.
Q)

(7.2)

€

From (7.2) we obtain the transition probability for
excitation of any electron [only one term of (7.2) con-
serves energy |. We express the result in terms of the
oscillator strengths of the electrons*:

e M e W) (13
n ——Wno). .
m ek me 7 ’

W (k,Q)=

The rate of energy loss is simply #QW (£,Q). It is also
equal to ocFE? where E is the electric field of the test
charges. We get E from Poisson’s equation:

dre ik
E= (re—r_p).

B (B0

(7.4)

From (7.4) we obtain the rate of energy loss of the test
charges™®:

M2

QW (B,Q) =————117_s0. - (1.5)
le(2,Q)|?

We remark that in ¢ the dielectric constant disappears,

as we should expect, since ¢ is a “local”” property. (This

emphasizes the need for a complete decoupling of the

minority group before calculating transition prob-

abilities.) We finally obtain

e
O‘(k,ﬂ) = Z f0n<k)5(ﬂ—wno). (76)
2m n '

This resembles closely the usual expression for the trans-
verse optical conductivity, differing only in that longi-
tudinal oscillator strengths replace transverse ones.
For isotropic solids in the limit of low %, the conduc-
tivity is therefore isotropic.

The lifetime of plasmons is simply related to the con-
ductivity. Comparing (8.1) of NP I with (7.6), we see
that

1/7p=4mro (kw). 7.7

This simple relation was obtained earlier by Wolff'¢
and Kanazawa.!” Equation (7.7) may be obtained from
a mascroscopic argument, and is true even if our deter-
mination of 7,; and ¢ fails because of the effect of the
subsidiary conditions.

Finally when the test charge oscillates at the plasma
frequency, w (&), strong absorption occurs because of the
emission of plasmons. The calculation of plasmon ex-

* Note added in proof.—In the case of large damping (Q of the
order of the average wqo) € in Egs. (7.2) to (7.5) should be replaced
by the complex dielectric constant, €* = e-+4wio /.

16 P. A. Wolff, Phys. Rev. 92, 18 (1953).

17 H. Kanazawa, Progr. Theoret. Phys. Japan 13, 227 (1955).
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citation by, for instance, a moving charge, is straight-
forward, and has been dealt with elsewhere.!+12

8. OPTICAL PROPERTIES OF SOLIDS

In the preceding sections we have obtained the longi-
tudinal polarizability and conductivity. In this section
we use the same collective approach to the transverse
polarizability and conductivity, and hence optical
properties of the solid. Bohm and Pines'® have given a
treatment of this problem for the case of free electrons,
and what follows is simply a generalization of their
results to the case of electrons in a periodic lattice. A
somewhat different approach has been proposed by
Fano.?

The Hamiltonian for the system of electrons inter-
acting with the electromagnetic field may be written®:

H=Ho+3 > Moo
k
(4me)
+2
ikp  m

+3 2 [Prn™Prut (w5 Qru* Q]
Ly

(eru"PeEXQp,

2mwe?

-+ (8.1)

. Epp Slqu-i—lequ»,
k,u,l#%—kv m

where Qy, is the Fourier component of the electro-
magnetic field with wave vector k, polarization e,
(perpendicular to k), and where Py, is the conjugate
momentum of Q- Pr, and Qr, are assumed to satisfy
the reality condition :

(Qrw) *=0— u
(Pku)*zp—k e

In (8.1) we may neglect the long-range part of the
Coulomb interaction. Most of it will be described in
terms of longitudinal plasmons, and could lead only to
a very weak coupling with transverse photons (only
“three-particle” transitions will have a nonzero matrix
element). As for the short-range Coulomb interaction,
either its effect on the electron motion is small, and we
may neglect it, or it is large, and we take it into account
by including H, in the basic representation of the elec-
tron operators (absorbing H; into Hy). We remark that
(8.1) is very similar to the Hamiltonian obtained for
plasmons in Sec. 4 of NP I: it differs only by the
replacement of w,? by (w,?+c?%?), and of e, by the
transverse e,. This resemblance comes from the fact
that the plasmons are simply longitudinal photons.

The last term of (8.1) describes a nonlinear interac-
tion between photons and electrons. It is directly
analogous to the random-phase term U of NP I. It is

(8.2)

18 D, Bohm and D. Pines, Phys. Rev. 82, 625 (1951), hereafter
referred to as BP I.

1 U. Fano, Phys. Rev. 103, 1202 (1956).

2 See, for instance, BP I, Eq. (8).

P. NOZIERES AND D.

PINES

known to be important only for very high-energy
phenomena (for instance, the Compton effect). We
therefore neglect it. The only problem left is then to
eliminate the linear photon-electron interaction in
(8.1). We achieve this by the same techniques as those
used in NP I for the plasmon case, working in the repre-
sentation ®, where H, [or, if necessary, (Ho+H,,) ] is
diagonal.
Let us therefore write the Hamiltonian as

H=Ho+3 3 (Pr*Prutor, Qe Qi) +22 ViQru
k,u ku
+3 2 (02— wid) 0k Ok, (8.3)
kp

where Vy, is defined by
(4re?)?

Vku‘:z

i m

(Sk,‘ . pi)e_ik‘”.

(We have dropped the electron Coulomb interaction,
which we shall not take explicitly into account in the
following calculation.) In order to eliminate the inter-
action term, we perform the canonical transformation
generated by

SZZ (AkuP—kp—l"Banku), (84)
kp
where the operators 4, and By, are defined by
(A lc;t) mn= (Vku) mn/ (‘*’k;ﬁ*wmn?); (8.5)

(Bky) mn= —'iwmn(Vku) mn/ (wlcp2"' wan) .

As in NP I, we take the principal part of any divergent
expression, and treat later the energy-conserving transi-
tions, which give rise to the conductivity. We choose
the corrected frequency wp, such that the second-order
terms cancel the last term of (8.3). This leads to the
following dispersion relation

2 _ 11 (Viw)on| %m0
e APy { e

n

}. (8.6)

W’ — Wno
The final Hamiltonian is simply
H=Hot+3 kZ (Prw*Prut+wr®Qru* Qi)
’ —iL Voot AdnVw). (8.7)
u
Let us first consider the last term of (8.7) which
describes the screened magnetic interaction of the

electrons brought about by the exchange of virtual
photons. The nonscreened interaction should be

Vk[.LV~k[,L

Eao kP

(8.8)

—1
2

The screening therefore consists of the replacement of
Viu by ckAr.. From (8.5), we see that the screening
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radius &, is roughly defined by ck;=w,. This result is
quite analogous to the one obtained in NP I. There, we
were dealing with electric longitudinal interactions and
found a very effective screening, within a range
ki l~vo/w,. In this section, we are dealing with mag-
netic transverse interactions, whose strength is very small
(of order vo/c smaller than the electric ones). On theother
hand, their screening is much less drastic, within a
range k; 7'~ (¢/vo) ks . This explains why, for very long
wavelengths, the screened longitudinal and transverse
interactions are of the same order of magnitude (to go
from V3, to the Vi of NP I, one just has to change
€, into e, and wy, into wz. When k<w,/c, this is not
much of a change?).

Let us now turn to the dispersion relation (8.6)
which we write explicitly :

2
2w,

hmN

CR =il —w,—

XZ I(Zi(sku'pz)e_l .xi)OnI wn(). (89)

» Wi — e

Wno
In the last term of (8.9), the intraband transitions give
a contribution at most of order w,2(vs%/c%), which is
completely negligible. The contribution from the inter-
band transitions is most conveniently described in
terms of the following transverse oscillator strengths:

2 (Z’L (sk}t' 7,) —ik-Xq n 2
fOninter(k7"‘)=~—~i poe )0 | )

fum Wno

(8.10)

| ” PE
fonmtra(k’u) = Z _(skfl)o:' (Sk“)ﬂ .
a8 h?

KaOKg

It is shown in the appendix that these quantities
satisfy the usual f-sum rule: X, fou(ku)=N. Using
again the fact that, for an intraband transition,
wno?/wi,? is negligibly small, we may write (8.9) as

wk,u2

w 2
R =gt —— Y fon () ————
N = 2

Wiy —Wno

(8.11)

In this form, the analogy of (8.11) with the plasmon
dispersion relation is obvious. Equation (8.11) is a
well-known result, which is discussed in many places.??
In order to link our microscopic result with the usual
macroscopic treatment, we use the familiar relation

(8.12)

62k2= wk,ﬁe (w;w) .

2L The magnetic and electric screened interactions nevertheless
keep their respectively transverse and longitudinal character. No
mixing of their effects occurs, except in high-order transitions.
For instance, the longitudinal dielectric constant is negligibly
affected by the magnetic screened interaction between electrons.

% See, for instance, F. Seitz, Modern Theory of Solids (McGraw-
Hill Book Company, Inc., New York, 1940). A very detailed dis-
cussion is given by Fano (reference 19).
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Comparing (8.11) and (8.12), we obtain

1 on k, wp2
o) — 1=y T Ber”

n Wkt — Wno

(8.13)

The transverse dielectric constant e(wg,) given in (8.13)
is very similar to the longitudinal €(Q,k) given in Sec. 4.
When k<w,/c, the transverse and longitudinal e are of
the same order of magnitude (and would be equal for
an isotropic solid). On the contrary, when £>>w,/c, the
transverse polarizability [e(ws,)—1] is drastically re-
duced, while the longitudinal one is still very large.

Let us now turn back to (8.3), and consider the real
transitions for which wr2=w.o?. They give rise to the
conductivity. We evaluate the lifetime 7 of the photon
Qku by usual time-dependent perturbation method. We
find®

1 7wy
—=——73 fon(Bp)8(wru—wno), (8.14)
2N »

T

which is the simple transverse analog of the plasmon
lifetime calculated in NP I. From 7, it is a straight-
forward matter to calculate the rate of energy loss
from the photon field, and hence the conductivity,
o (k,u), which is

1 e
o) == 5 Fon()6(oru—con).  (8.15)
4wt 2m =n

Equation (8.15) generalizes to transverse modes the
longitudinal result obtained in Sec. 7.

We have now completed the determination from first
principles of the macroscopic properties of the solid: we
know the polarizability and the conductivity both for
transverse and longitudinal modes, at various wave-
lengths and frequencies. Let us again emphasize the
similarity of the transverse and longitudinal results,
which differ from one another only through the replace-
ment of longitudinal fy, and w(k) by their transverse
analogues.

9. CONCLUSION

On first beholding the familiar expression for the
static dielectric constant (3.8), coming as it does after a
lengthy and sometimes involved derivation, the reader
may well be inclined to wonder what all the fuss is
about. Certainly (3.8) may be derived in a wide variety
of ways. However, the conditions under which it is
valid have been a subject of much debate, and it is for
that reason that we have gone into the matter in so
much detail.

The collective approach which we have developed

23 Equation (8.14) is not exact for intraband transitions. Since
these can never conserve the energy, this does not matter. Notice
that the validity of (8.14) depends also on the assumption that the
individual-particle excitation spectrum is not appreciably affected
by the subsidiary conditions.
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is most useful when 4re>>1; this is also the region of
greatest uncertainty about the nature of possible local
field corrections. In this region of high polarizability,
we find that (3.8) is rigorous, provided we work in a
representation in which (Ho+H,,) is diagonal, so that
the oscillator strengths and energy differences which
appear there are calculated in this many-body repre-
sentation [compare (3.9)7]. Here the question of a local
field correction does not arise, but the many-body
eigenstates and oscillator strengths raise new problems.
Fortunately, in many cases H; is of sufficiently short
range that it may be treated as a relatively small
perturbation. In such cases again we have no local field
correction, and further more the fo, and wso of (3.8),
being now associated with only one-electron transitions,
should be calculable with no further intrinsic difficulties.

Examples of simple, highly polarizable solids, for
which (3.8) applies, are those solids for which the
plasmons are a well-defined mode of excitation possess-
ing an energy near #w,. Thus, on comparing the condi-
tions for the validity of (3.8), and the “existence’” and
“convergence” criteria for plasmons developed in NP I,
we find they are essentially identical. We furthermore
know that H, is a small perturbation when most of the
wno are smaller than w,, i.e., when the plasma frequency
w is very close to the free electron w,. Hence we should
expect (3.8) to be quite accurate in the alkali and
alkaline earth metals, in Al, and in Si and Ge. We also
expect it to be quite successful in a wide variety of
compounds.

The conditions under which our basic formula for the
dielectric constant fails, and local field corrections
become important are considerably less clear. Local
field corrections could arise when 4ma<<1, but in this
very low-polarizability region, they represent a small
correction to the already small polarizability. The inter-
mediate-polarizability region, 4ma< 1, combined with
fairly well localized charges (e.g., the Lorentz insulator),
would seem a prospect for possible local field corrections,
principally because our calculation is not accurate in
this domain. On the other hand, it should also be noted
that one might expect (3.8) to furnish a fairly accurate
interpolation formula throughout the region of inter-
mediate polarizability, since it works in both the limits
of high and low polarizability. As we saw, we also can
have important local field corrections when 4ra>>1, if
k. is smallenough that H,; perturbs strongly the electron
motion. However, such corrections do not change the
order of magnitude of a, and are far smaller than those
predicted by the Lorentz formula.

To sum up, we find that for a highly polarizable
electron system (and hence a nonlocalized group of
electrons), the local field corrections are small. For a
group of tightly-bound electrons (which display an
accordingly low polarizability) the Lorentz field correc-
tion exists, but the dielectric constant is only slightly
altered. Thus, our calculations substantiate the classical
work of Darwin.’
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With a knowledge of the dielectric constant and con-
ductivity at various wavelengths and frequencies, we
are able to deal with a large class of problems in solid
state physics, namely, those where the electron inter-
action enters only through its average effect. For in-
stance, the effective interaction between minority
carriers derived in Sec. 6 depends only on the macro-
scopic e(@,k). Other applications include the energy
loss of fast particles (which will be described in more
detail in NP IV), and the screened interaction of ions
in a metal, which is closely related to the propagation of
sound waves.? Quite generally, our derivation of e
and ¢ provides a link between the macroscopic approach
(for instance, the Fermi dielectric approach to the
characteristic energy-loss problem), and the micro-
scopic approach from first principles (as in the BP
treatment of the energy loss).

The usefulness of the macroscopic concepts (e and o)
depends on the neglect of the electronic fluctuations.
Whenever these fluctuations are important, our aver-
aging processes fail. This happens, for instance, when
k7 is of the order of the interatomic spacing, or when
@ is of the order of the individual electron excitation
frequencies. In such cases, our treatment does not
converge, and, in fact, the macroscopic quantities € and
o lose most of their physical meaning. A detailed treat-
ment of the microscopic correlations is then necessary.

It should be noted that the concept of a dielectric
constant is generally quite meaningful at frequencies
near the plasma frequency. We therefore expect that in
this range of frequencies, the interaction of electrons
goes through a resonance, due to exchange of virtual
plasmons. Such an effect might occur for the d-d inter-
action in transition metals, and be of importance for
the study of ferromagnetic effects.?® Another possible
field of application of the present results might be ferro-
electricity, where theoretical treatments have, in
general, been obscured by the uncertain knowledge of
the local field corrections. It is our hope that the con-
siderations developed in this paper may prove to be a
useful guide for the construction of a satisfactory theory
of ferroelectrics.

This paper constitutes an attempt to recognize that
many properties of solids do not depend on a detailed
solution of the many-body problem, and to formulate
carefully the conditions under which this is true. We
have seen that in the “well-behaved” ranges of & and Q,
one may describe the effect of the electric and magnetic
interactions of electrons using macroscopic polariz-
abilities and conductivities. This result promises a con-
siderable simplification in the treatment of electrons in

2¢ Thus the methods developed in this paper could be applied
to a derivation of the sound-wave dispersion relation in metals.
The results obtained will be completely equivalent to those found
by J. Bardeen and D. Pines [Phys. Rev. 99, 1140 (1955)].

25 A similar effect may occur in the interaction between transi-
tion-metal impurities in metals.
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solids and will form one of the major topics of the
following paper.

APPENDIX

Let us study more closely the oscillator strengths
defined in (8.10). Since the relevant values of & are
very small (<w,/c), we may replace (8.10) by its limit
for 2=0. For the interband oscillator strengths, wno is
independent of k. We then see from (8.10) that the
transverse oscillator strength fo.(k,u) is just equal to
the corresponding longitudinal fo.(ex.), in the limit of
small k. The interband oscillator strengths depend
only on the polarization of the wave, and not on its
direction of propagation.

In (8.10) we defined the intraband fo,.(k,u) as being
equal to the longitudinal fo,(ex.). The f-sum rule for
the transverse fo.(k,u) is then a trivial consequence
of the sum rule for the longitudinal fo,(ex,). If, however,
we had defined the intraband oscillator strength by the

7

same expression as the interband one,

n.p—tk-xg 2
P IR T E

hm Wno

(A1)

we would not have an f-sum rule. Using (A1) in place
of (8.10), one finds that

m
S fonlb)=N— ¥ ZAaAﬂ(-”;) (A2)
n aB

n(intra) a,8
where the vector A is given by

(eku X&) XV E
e VB .

(A3)

For a longitudinal polarization ez, A=0 and the two
definitions of the intraband oscillator strength are
equivalent. It is not so, however, in the transverse case.
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Superexchange Interaction Energy for Fe3+-02“-Fe3+.Linkages

M. A. GILLEO
Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey

(Received September 11, 1957)

The superexchange interaction energy for an Fe3t-O?~-Fe’* linkage is considered for seven oxides in
which Fe3* is the only magnetic ion present, and for magnetite. The superexchange energy may be estimated
from the value of T¢/n, where T¢ is the Curie temperature and # is the number of Fe3*-O?"-Fe?* inter-
actions per Fedt ion per formula unit. The average value of T'¢/n is 115° (range 106 to 132°). The only
compounds considered are antiferromagnetic oxides in which Fe3* ions are present in one set of crystallo-
graphically equivalent positions and ferrimagnetic oxides in which Fe?* ions are present in two different sets
of crystallographically equivalent positions. No distinct correlation of superexchange energy with Fes*-0%~
distances or with the included angle in the linkages is evident. Superexchange coupling is considered only
for contact distances and for included angles substantially greater than 90°.

INTRODUCTION

RAMERS! first suggested that the coupling of mag-
netic moments of transition-metal ions in oxides
could take place through excited states of intervening
oxygen ions, The nature of this coupling, which is
known as superexchange? interaction, has been investi-
gated in more detail by Van Vleck® and Anderson.
Néel® has shown that the antiferromagnetism of transi-
tion-metal oxides and the spontaneous magnetization
of iron spinels (ferrites), which he has called ferrimag-
netism, may be understood on the basis of negative
exchange (antiferromagnetic) interaction.
Thus far, attempts to estimate the exchange energy
have not yielded entirely satisfactory results. Theo-
1H. A. Kramers, Physica 1, 182 (1934).
2 Superexchange hereafter will be called exchange for brevity,
3 J. H. Van Vleck, J. phys. radium 12, 262 (1951),

4¢P. W. Anderson, Phys. Rev. 79, 350 (1950),
5 L.. Néel, Ann. phys. 3, 137 (1948).

retical treatment of the problem is difficult and experi-
mental data have been inadequate. Weisz® found a
semiempirical relationship of the exchange energy to
the magnetic moment of M, the M-O distances and
the M-O-M angle, where M is a transition-metal ion.
However, his relationship depends on the structure
type involved.

The Curie temperature,” T¢, of a material may be
considered to be the most direct measure of the inter-
action energy between magnetic ions. The number, #,
of M-O-M interactions per magnetic ion per formula

6 R. S. Weisz, Phys. Rev. 81, 626 (1951); Ceram. Age 59, 35
(1952).

7 The Curie temperature, T'¢, will denote the temperature below
which order appears in the orientation of the moments of the
magnetic ions. Usually T¢ corresponds to the appearance of
spontaneous magnetization as a consequence of order in ferro-
or ferrimagnetic materials, whereas the Néel temperature, Tw,
designates the appearance of order in antiferromagnetic materials
which have zero spontaneous magnetization,



