
SUPEREXCHANGE I NTERACYION

the result of this special case. In Table II the numerical
values of the terms given in (60) are tabulated, where
AE(single) is the energy difference given by (60). From
the results shown in Table II, we see at once that:

(a) The values of )t a,re nearly equal to S, that is,
X is a 6rst-order quantity.

(b) The magnitude of AE(single) is proportional to
S' or S'. Our prediction that it may be a fourth-order
quantity is approximately correct.

(c) In the MnO crystal the overlap integral between
two orbitals (3d0) and (2p0) is expected to be 0.05.—0.1.
Therefore, we will take values of S which correspond to
a/as= 7, 8, and 9.

(d) The contribution from DE4 is rather small.
(e) The most important contribution comes from the

term 2(2)tS+)t')LB(AB)—(AB~BA)j; however, this
contribution is at most half of the total value.

(f) The contribution from the term (2(2)tS+X')
X (X'/I") —Qz F) is rather large.

In Table III the numerical values of the terms given
in (65) are tabulated, where AE(config. ) is the energy

difference given by (65). It is shown in Table III that:
(a) Under the assumption that the (p —s) transition

energy is 3 ev, the large contribution from these higher
configurations is rather remarkable.

(b) As. for the energy, the single determinant gives
very similar results for the many configurations. Thus
it seems to be a good approximation, at least for the
four-electron problem.

(c) As for the probability of the higher configura-
tions, the single determinant gives very poor results.
This is not surprising, because the total energy is deter-
mined accurately by the minimum condition, but the
wave function is not.
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A general Hamiltonian formalism is developed to treat from first principles the motion of electrons in

solids, including their mutual Coulomb interaction. By a series of canonical transformations it is shown

that under suitable circumstances (which obtain in nearly all solids) plasmons (a quantized collective

plasma oscillation of the electron gas) represent a well-defined elementary excitation of the solid. The
"existence criterion" for plasmons is found to be a high electronic polarizability. %here plasmons exist,
we are able to give a satisfactory description of their properties when the majority of the individual electron
oscillator strengths correspond to transitions in which the energy change is large or small with respect to the
plasmon energy, M„=h(4sXe'/m)&. After the plasmon modes are separated out, the remaining electron
interaction is found to be screened, with a range of the order of the interelectronic spacing. The usefulness

of this effective Hamiltonian for the calculation of the electronic energy levels and cohesive energy in solids

is discussed briefly.

1. INTRODUCTION

HE interaction between electrons in a free-
electron gas has been considered recently in a

series of papers. ' There it was shown that the inter-
action between the electrons could be treated simply
provided one recognizes at the outset the existence of

' D. Pines and D. Bohm, Phys. Rev. 85, 338 (1952), hereafter
referred to as BP II; D. Bohm and D. Pines, Phys. Rev. 92, 609
(1953), hereafter referred to as BP III; D. Pines, Phys. Rev. 92,
626 (1953), hereafter referred to as P IV; D. Pines, Proceedings
of the Tenth Solvay Congress, (R. Stoops, Bruxelles, 1955);
D. Pines, Solid State Physics, edited by F. Seitz and D. Turnbull
(Academic Press, Inc. , New York, 1955),Vol. 1, p. 367; hereafter
referred to as SSP. A quite similar approach has been developed
by D. N. Zubarev, J. Kxptl. Theoret. Phys. (U.S.S.R.) 25, 548,
(1953) and by N. N. Bogoliubov and D. ¹ Zubarev, J. Kxptl.
Theoret. Phys. {U.S.S.R.) 28, 129 (1955).

collective behavior in the system, the plasma oscil-
lations induced by the Coulomb interaction. The
plasmons (the quanta of the plasma oscillations)
possess an energy near ha&„, where to~'=4z. lVe'/m, X
and m being the electron density and mass. They
describe almost completely the long-range part of the
Coulomb interaction, corresponding to momentum
transfers (k., where k, is the maximum wave vector
for which the plasmons constitute an independent mode
of elementary excitation. Because the plasmons are not
usually excited (5to„ is greater than Es, the energy of
an electron at the top of the Fermi distribution), the

long-range part of the interaction is eGectively frozen

out. There remains a set of electrons interacting via a
short-range interaction of range k, '. For electron gases
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of densities equal to those encountered in metals, the
screening radius is sufIiciently short that the motion of
a one-electron-like excitation appears meaningful. In
other words, once the plasmons are separated out, the
remaining elementary excitations are of an essentially
independent electron character, modified somewhat,
to be sure, by the short-range screened interaction.

To what extent does the foregoing picture apply to
solids. It is not, at first sight, obvious that it should
work even for the alkali metals, which are the most
nearly "free-electron-like" solids. The difficulty arises
from the periodic potential, which leads to the possi-
bility of two kinds of excitations for a solid described
in the usual one-electron model. The first kind are the
intraband transitions, which, for an alkali metal, are
well-represented by a free-electron gas (in which,
perhaps, the mass of an electron is taken to be the
effective mass, m*). The second kind are the interband
transitions, which are peculiar to the periodic character
of the potential, and which fall quite outside the scope
of a free-electron model. It is the interband excitations
which one might expect could alter the free-electron
plasma treatment.

Actually, in most cases they do not, as was first
pointed out by Mott. ' Mott showed, using a semi-
classical argument, that if the majority of the interband
transitions correspond to excitation frequencies co p,

which are small compared to the plasma frequency,
+„, then the plasmons will be little aGected by the inter-
band transitions. Because the plasma frequency is so
high, (Aa&„15 ev for a wide variety of solids), such a
situation is frequently encountered in practice. One
might, therefore, hope that electron interaction in such
solids could be treated in detail by methods similar to
those used for the free-electron gas. In this, and suc-
ceeding papers, such a theory of electron interaction in
solids is presented.

Our principal aim is to discuss the modification of the
ground-state properties and the excitation spectrum of
electrons in solids brought about by the electron inter-
action. In this paper we present the general Hamiltonian
formulation of the problem. We develop the conditions
under which plasmons constitute a well-defined elemen-
tary excitation of the system. Where the conditions are
satisfied, we transform to a system in which there are
X' independent plasmon modes. (X'(E, the number
of electrons. ) There remains a short-range screened
interaction between the electrons, plus a set of E'
subsidiary conditions on the electron wave functions.

In the following paper, ' we consider the response of
the electrons in the solid to both static and oscillating
test charges. We derive the dielectric constant from
first principles, and thereby establish the conditions
under which local field corrections are negligible. We

'N. F. Mott, Proceedings of the Tenth Solvay Congress,
(R. Stoops, Bruxelles, 1955).

'P. Nozieres and D. Pines, /Phys. Rev. 108, 762 (1958)7,
following paper, hereafter referred to as NP II.

also work out the optical properties and obtain the
eGective interaction between a selected small group of
electrons, taking into account the role played by the
subsidiary conditions. In the third paper of the series,
we discuss the elementary excitations of electrons in
solids. We establish from first principles that under
suitable conditions there are, in fact, "one-electron-
like" elementary excitations in solids, which have a
behavior quite similar to that presupposed in the usual
one-electron theory of solids. In a fourth paper' we con-
sider the excitation of plasmons in solids, and the role
that plasmons play in various solid-state phenomena.

A discussion of the influence of the periodic potential
on plasmons has been given previously by WolG, '
Kanazawa, ' and Adams. ' Wolff uses a Hartree approxi-
mation to obtain the dispersion relation; the major
defect in his treatment is that one cannot derive the
conditions under which such an approximation is
applicable. (We return to this question in Sec. 3.)
Adams has treated two special cases by a Hamiltonian
formalism, but did not apparently recognize either the
possibility of a more general treatment, or the fact,
already mentioned, that plasmons are so frequently
only slightly modified by the periodic potential of the
ion cores. Kanazawa has carried out a treatment which
is closely related to that given here. Our treatment
differs from his in that we emphasize the simplifying
role played by a generalized "f-sum" rule for the
problem. We also consider critically the validity of the
Hamiltonian treatment of the problem, and take into
account the influence of the core electrons on the
valence-electron excitation modes. We show that the
treatment goes through when the majority of the
electron excitations (either core or valence) has energies
either smaller or larger than k~„. What is required is a
separation of the plasmon mode from the individual
electron excitation modes.

In order to illustrate under what circumstances the
plasmon approach may be expected to succeed, let us
consider several classes of solids in order of increasing
complexity. The simplest solids are those for which
there is a well-defined separation between the valence
electrons and the core electrons. By valence electrons
in an atom, we mean those electrons in the external
unfilled shell: for instance, the three M electrons of Al.
In a solid, this is not always a clean-cut definition. For
instance, in Zn, we may wonder whether to treat d
electrons as core or valence electrons. There are certain
solids for which no such ambiguity arises. Such solids
are made up of atoms for which the core and valence
states are widely separated in energy. When the atoms
are brought together to make the solid, no appreciable

4P. Nozieres and D. Pines, Phys. Rev. (to be published),
hereafter referred to as NP III.

5P. Nozieres and D. Pines, Phys. Rev. (to be published),
hereafter referred to as NP IV.

P. Wolff, Phys. Rev. 92, 18 (1953).
7H. Kanazawa, Progr. Theoret. Phys. (Kyoto) 13, 227 (1955).
s E. N. Adams II, Phys. Rev. 98, 947 (1955).
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admixing of atomic core and valence states takes place,
and so it is clear which are the valence electrons in the
solid.

Examples of simple valence solids are the light alkali
metals, alkaline earths, and the solids just beyond them;
for such solids suppose we 6rst neglect the inhuence of
the core electrons. We shall show that the valence-
electron plasmons have an energy large compared to
characteristic individual electron intraband or inter-
band excitation energies. Hence, they represent well-

defined excitation modes of the system. Further, if we
want to take into account the influence of the core
electrons on the valence plasmons, we can do so by
introducing the static core polarizability, since the
characteristic core excitation frequencies are very large
compared to the plasma frequency. By the time one
reaches the heavier alkali metals, it is, in fact, desirable
to treat the influence of the core electrons on the
valence-electron motion, since the core polarizability
becomes appreciable. For such cases, however, one can
treat the core electrons on an individual-particle model,
since their excitation frequency is very large compared
to their plasma frequency.

Insulators for which the band gap is relatively small
with respect to the valence-electron plasmon energy
represent another comparatively simple example. In
such cases, the characteristic valence-electron "indi-
vidual-particle" excitation energy will be comparable
to the gap, so that again the valence plasmons con-
stitute an independent excitation mode. They corre-
spond simply to a high-frequency polarization wave in
the solid.

Semiconductors have interesting plasmon properties.
Here one may have both valence-electron plasmons and
conduction-electron plasmons. A plasma treatment is
necessary to describe the valence-electron excitations
because the valence plasmons possess energies large
compared to the individual particle valence-electron
interband excitations. Moreover, because the number
of conduction electrons is relatively small, the con-
duction-electron plasma may be easily decoupled from
the individual-particle conduction-electron interband
excitations and the valence-electron motion. (The
conduction-electron plasma quantum is small with
respect to the conduction-electron interband ex-
citations, the valence-plasmon energy, and the band
gap. ) In such cases, then we deal with two kinds of
electrons, but their excitations are distinct.

This is no longer the case when we consider the
transition metals, the noble meta1s, or those immedi-
ately beyond them. For the transition metals, it is, of
course, obvious that a clear distinction between "s"
and "d" electrons is out of the question. Consider the
noble metals. When we are dealing with energies of
the order of 10 ev (the "s"electron plasmon energy in,
say Cu or Ag), the distinction between "valence" s
electrons and the "core" d electrons is again meaning-
less. A similar point may be made for the metals just

beyond them in the periodic table. It is for just this

group of electrons that the methods developed in this
paper are least useful. They provide, perhaps, a
qualitative guide, but that is all.

The present paper is largely formal. The main

physical discussions are carried out in the following

paper, and in NP III, so that the reader interested
primarily in a qualitative picture would be well-advised
to read the next two sections, and go on to the afore-
mentioned papers. In Sec. 2 we discuss our basic
starting Hamiltonian, and derive and discuss the gen-
eralized f-sum rule. In 3 we give a simple analysis
of plasmons and electron correlation which is based on
a study of the equations of motion of the density
Quctuations. One may thereby obtain results, equiva-
lent to Mott's, which provide a useful qualitative guide
and orientation for what follows.

In 4 we begin our Hamiltonian treatment by
introducing plasmon field coordinates and carrying out
a canonical transformation which relates these to the
appropriate oscillating electronic variables. We consider
the possibilities for an accurate treatment of the
plasmon-electron interaction, and estimate k„and
hence the number of independent plasmon modes one
may expect to encounter. In 5 we carry out a further
canonical transformation which under suitable circum-
stances leads to a set of essentially independent
plasmons. In 6, 7, 8, and 9, we discuss what those
circumstances may be, considering the convergence
of a series of such canonical transformations, the
inQuence of the short-range electron interaction on
the plasmons, the damping of plasmons by individual
electron interband transitions, and the importance of
core electron-valence electron exchange and correlation.
In 10 we summarize the conclusions we are led to in the
course of the paper.

2. GENERAL CONSIDERATIONS

Let us consider a solid in which no appreciable
admixing of core and valence states occurs. The valence
electrons then move in the potential of the periodic
array of nuclei, and of all the core electrons. We assume
that this interaction is well described by an average
Hartree potential V(r), depending only on the positions
r; of the valence electrons. We thus neglect exchange
and correlations between core and valence electrons,
which is quite a sensible approximation for our simple
"valence" solids. The core electrons are repelled by the
valence electrons through forces whose origin is both
statistical (exchange potential) and purely electro-
static (correlation potential). Under this influence
they are polarized, and their potential upon valence
electrons is modified. Our neglect of core-valence
exchange and correlations is equivalent to the assump-
tion that the core polarizability is very small; which is
true. Later on, we shall take the core polarizability into
account, and we shall give a mathematical expression
of the extent to which such an approximation applies.
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The Hamiltonian of the valence electrons may then
be written

(psp-~ —&) (2 &)

where X is the number of electrons and p& their density
Quctuation

ps ——Q, exp( —ik r,).
By V(r,), we mean the potential of the periodic array
of nuclei plus a uniform background of negative charge,
giving an over-all neutral charge distribution. We
consider the interaction of the electrons with one
another and with a uniform background of positive
charge, the latter compensating exactly the above
negative charge. We thus cancel the term with k=0 in
the electron interaction; we indicate this by a prime
on the p.p

We shall find it convenient in what follows to define
all operators involving the electrons in terms of the
eigenstates C of the operator

IIp g —+V——(r,)
i 2m

(2.2)

' As in BP, we assume that the system is enclosed in a box of
unit volume; E is therefore the density of the electrons. Since we
shall not make explicit use of the fact that the term k=0 is
excluded, we shall drop the prime in the summation.

IIO is a sum of one-electron operators. Each term has a
complete spectrum of eigenstates p, which are the
usual Bloch wave functions. The states C „of the whole
system are Slater determinants built with the p„. The
set of C„provides a complete basis of the space of
antisymmetric wave functions. In general, the C„have
no resemblance to actual electronic states: they simply
yield a convenient representation. However, where the
eGect of the Coulomb interaction on the electronic
motion is small, the C„will be very close to the actual
physical eigenstates of the system of individual par-
ticles (after the collective modes have been separated
out). This is a quite useful case. Where it does not
obtain, we run into some diS.culty since we express all
the physical properties in terms of states C„which we
cannot obtain experimentally.

The one-electron states p„may be divided into two
categories:

(1) States which correspond to a set of low-lying
levels, filled by the core electrons. Such states are
forbidden to the valence gas by the exclusion principle.
However, we must keep them in order to get a complete
set of p . As a consequence, we shall encounter in our
calculations matrix elements involving states C „of
the valence gas for which some of the "core levels" are
occupied. The corresponding terms are spurious, and
arise from the fact that we did not treat correctly the
indistinguishability of core and valence electrons. This
trouble disappears in a better treatment. In fact, the

importance of these spurious terms just measures the
validity of our neglect of core-valence exchange.

(2) Proper valence levels which lie above the "core
levels. " The Ã lowest valence levels are filled in the
ground state Co of the valence gas, which may involve
one band (Na, K, ) or several (Be,A1, ).

In the following we shall express all our results in
terms of the matrix elements of the p~ between the
ground state C 0 and various excited states C . Since
the pg, are sums of one-electron operators, and belong
to the representation of the translation group with
wave vector k, (ps)p„ is nonzero only when the state
C„ is produced from Co by excitation of only one
electron from the level p.. . to the level q „+s,„(pp is an
arbitrary wave vector inside the first Brillouin zone,
and v, u' two arbitrary band indices). We could ex-
plicitly label the states C by the four indices ~, k, v, v',

but then we must take explicitly into account the
exclusion principle in the choice of indices. In order to
simplify the notation, we shall keep the condensed
expression C „.

For every k, the matrix element of pl, satisfies an
important f-sum rule. To obtain it, let us calculate in
two different ways the expression I LHp, ps7, P sI pp.

Since we have no exchange terms in Ho, the corn™
mutator [Hp, p&$ involves only the kinetic energy. We
have

[Bp,ps(„„= Q —(p,+-', Sk)e '""
m

= kpemp, (ps)mn) (2 3)

2m
fp. (k)= ~-pl(p. )p-l',

Ak'
(2.5)

they satisfy the usual f-sum rule

P„fp„(k) =X. (2.6)

The fp„(k) measure the strength of the coupling of the
ground state C 0 with various excited states C „.We shall
express all our results in terms of them.

We now exhibit certain properties of the fp„which
will prove useful in later sections. Consider values of

"Generally, the reQection R belongs to the space group of the
crystal. The states C„and C =M„are degenerate. As a conse-
quence, EC p= +C p. One then shows easiiy that

~ (p&) p„~ '
=

~ (p p)pm(P. Since cop„——pip, the sutn over I of either of the
above terms is even in k. The oscillator strengths have the simple
property fp (k)= fp (—k).

where hpp =(E E„). We may —now evaluate the
double commutator either directly (thereby obtaining
a "c" number), or in our particular representation.
Equating the two results, we get

&- &~-p( I (p&) o. I'+ I (p-~) o- I') =.&'k'&(~. (2.4)

Each of the terms inside the curly brackets yields a
total sum which is even in k."Therefore, if we define
a set of oscillator strengths fp„(k) as
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+-', Q k„kp
BK~BKp

+O(k') . (2.7)
Kr V

1

(2) If t'Wt, we have an interband transition. Then
(pt)s„ is of order k, while toe„ is, to lowest order, k
independent. From Eq. (2.3), we obtain

t P; k (p~+-', Sk)e—'".r;7
(pa) o.=

to the lowest order in k, we find

f inter (k)—
1(k.1~)o- I'

mk AN&~0

(2.8)

where C„ is the limit of C„when k goes to zero. (4„
denotes a state in which one electron has made a
"vertical" transition, going from the level q„, „ to the
level to„,„.)

In (2.7) and (2.8), let us now average over the
direction of k, and let ~k~ go to zero. We obtain the
following limits:

m rl'E t'm qf intra (0)—
35' Bii ' E m*3

(2 9)
i(P,.)o. I'

f inter (0)—
3m + IEMn'0

where (1/m*) ii is the effective-mass tensor. (For the
isotropic case, the intraband oscillator strength is just
m/m*. ) These fs„(0) are just the optical oscillator
strengths, averaged also over the direction of k. While
the optical fe 's refer to the coupling of electrons with
transverse waves, the present ones refer to the coupling
with longitudinal waves. From (2.9) we see that for an
isotropic solid, both are identical in the limit of low k.
For an anisotropic solid, only their averages are equal.
The equality suggests an easy experimental approach
to the fon(k) which will enter our calculations.

"When summing over n, one gets results even in k. The linear
term of (2.7) therefore disappears in the summation. The "useful"
part of fo„(k) is the even part, which is regular at k=o.

k much smaller than the Fermi wave vector ko. Since
the state C „corresponds to excitation of one electron
from state q „,„to state q „+~,„,we have two possibilities:

(1) If t '= t, we have an intraba, nd transition. Then

~
(pt)en~' is equal to $1+0(k')j. (There are no terms

in k because of the normalization requirements on the
p„,„.) to p is given by a standard Taylor expansion; we
find"

2m BE
f intra (k)—

Sk ~ BK

O'E

3. SIMPLE ANALYSIS OF PLASMONS AND
ELECTRON CORRELATION

Just as was the case for the free-electron gas (see
BP II), considerable insight into the role played by the
Coulomb interactions may be obtained by a study of
the equations of motion of the pl, . We may obtain these
easily in our BIoch wave representation. The result is

d'P's

+ton ps ~

=—totnn (ptr)mnid' )„.
4n-e'

k k'(p~„.p„.)„„. (3.1)
~ ~~ mk"

The second term on the right-hand side arises from the
Coulomb interaction between the electrons. We have
separated out the contribution arising when k'= k, and
transposed it to the left-hand side, in the expectation
that in so doing we take into account the major e6ects
arising from the Coulomb interaction. The remaining
part represents a nonlinear interaction between diGerent
density Quctuations. In the case of the free-electron
gas, it was shown to be negligible (random phase
approximation) and for the time being we also take it
to be small. Such an approximation is difficult to
justify by a consideration of the equations of motion. "
One of the desirable features of the Hamiltonian
formulation in the following sections is that, by using
it, the approximation is shown to be valid in most cases
of interest.

In the linear approximation, then, one sees that the
motion of the pt (and hence of the electrons) depends
on the electron kinetic energy and the periodic potential
through the factor to '(k) (for a given transition, tits),
while its dependence on the Coulomb interaction
between the electrons appears in the factor u„'. A
typical value for or„ in solids is 15 ev. We see at once
that if for given transition, co „'&(co„',then the Coulomb
correlations dominate in determining the behavior of
(d'ps/dP), whereas when to,'«co„„', the Coulomb
correlations are unimportant in determining (d'pt/
dP) „„.

The general behavior of the electrons in the solid
thus depends on the relative size of the characteristic
individual electron excitation frequencies, co „and co~.
Two simple cases may appear.

(1) Almost all transitions connecting the ground
state C o to excited states C with appreciable matrix
elements (pt)p are such that to p))CO&. Because to„ is
so very high, this is a rather idealized case for long-
wavelength excitations which may, however, be met in
practice with the solid inert gases. Under such circum-
stances we may always neglect co„' compared to co „';

'~ A similar difficulty occurs when one attempts to derive the
dispersion relation for plasmons by linearizing the Hartree equa-
tion. LSee P. Wolif, e or R. A. Ferrell, Phys. Rev. 107,450 (1957l.g
The linearization of the Hartree equations may be shown to be
completely equivalent to making the random phase approxi-
mation.
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the characteristic excitation frequencies are essentially
unaffected by the Coulomb interaction, and for all
phenomena of interest the electron interaction may be
treated as a small perturbation. In other words, the
binding forces of the electrons to the lattice are much
more important than the electrostatic force between
the electrons. There will correspondingly be only a
small displacement of charges under an external electric
field, and hence the solid will possess a low electronic
polarizability.

(2) The opposite case occurs when most of the
transitions with appreciable (pp) p„are such that

p«(o&. In such a case, (3.1) may be replaced by the
simple approximate operator equation

d pa/d~ +pp pa=0 (3.2)

The density fluctuation, pj„oscillates approximately
at the free-electron plasma frequency, and we clearly
have plasmons as the dominant kth excitation mode.
Physically this means that the electrostatic interaction
between the electrons is far more important than their
binding to the lattice. The Coulomb correlations thus
act to increase markedly the characteristic excitation
frequency of the electrons, and furthermore tend to
produce a fairly unique one in the region of co~. We shall
see that this is a situation frequently encountered in
solids. The plasmon energy depends only slightly on
the binding in the lattice because the plasma frequency
is so high that during a time of interest ( 1/~~), the
electron essentially does not know it is bound. In such
circumstances we expect the electrons to be very mobile
as far as any electrostatic perturbation is concerned;
they will respond in such a way as to screen out any
charge disturbance, and so display a high polarizability.

We should like to emphasize that in the above
considerations we have made no distinction based on
the conductivity of a given solid. Thus the existence or
nonexistence of plasmons does not depend on whether
a solid is a metal, semiconductor, or insulator. The
relevant question is whether, for a given momentum,
the large matrix elements of pI, occur for low-frequency
or high-frequency transitions. The irrelevance of a
distinction based on conductivity follows from the fact
that we are asking a very high-frequency question of
the electrons in the solid, and distinctions based on
energy gaps of only a few electron volts are meaningless
at such frequencies.

Let us consider the second class of solids (pp„p'«co„')
in more detail. The screening of a charge disturbance
we have mentioned is really of two kinds. The first
corresponds to the inhuence of intraband transitions;
the electrons are free to respond spatially to the per-
turbation, and so alter to the potential of an external
charge q from q/r to (q/r) exp( —k,r). The second
corresponds to interband transitions (the electrons do

not respond spatially) which reduce the potential from

q/r to q/pr where p is the dielectric constant. The latter

reduction will again depend on the Fourier component
of the test charge, and will be negligible for k)k, .
There is a very close connection between the screening
and the plasma oscillations between k, and the maxi-
mum wave vector for which the plasmon represents an
independent mode of excitation.

To see this, let us write the Coulomb interaction
between the electrons as

2' 8

p A.pp+ Q
k) kc jP k(kc k2

271'8

p—IpA;, (3 3)

p (2~e'/k')pI, p p,
&&&c

would not be expected to alter the electronic wave
functions and energy levels appreciably. We return to
this question in NP III.

The foregoing considerations do not tell us that high-
frequency transitions (co p))pp„) may not appreciably
alter plasmon behavior. To see that, it is necessary to
consider the coupling between the different frequencies
at which p& may oscillate (~„p and ru„). One way to do

this is directly analogous to that used in BP II, that is,
find the actual operators, XI„which, within the random

phase approximation, do oscillate at a well-defined

frequency. Such an approach is sketched in the Ap-

where k, represents the maximum wave-vector for
which the plasmon is an independent mode of ex-
citation. Further, the energy in a plasmon quantum is
so high that no plasma quanta will be present under
ordinary circumstances of temperature excitation.
Since the pl, oscillate at co„, this means that the low-
momentum components of the Coulomb interaction
are effectively frozen out. They can participate only
if sufhcient energy to excite a plasmon is supplied. This
is just another way of saying that the Coulomb cor-
relations between the electrons (which give rise to the
plasmons) are also such that the electron interaction is
screened within a distance k, '.

We may also remark that this maximum wave vector
k. in a metal will not be expected to be much larger
than it is for a free electron gas of the same density.
As we have mentioned, the intraband transitions are
aptly described on a free-electron picture; for these

p ir p;/tn We expec.t that the plasmon will no
longer be an independent mode of excitation when

co„, since here binding effects are competing
equally with Coulomb correlations. Hence, k, &~„/vp
for metals (vp is the velocity of an electron at the top
of the Fermi distribution).

We can also see qualitatively that for solids for which
k, ar„/pp, the one-electron Bloch functions may be a
fairly good approximation. For such solids, k, is of
the order of the interparticle spacing, so that the short-
range interaction,
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pendix. The resultant plasmon dispersion relation is

&e'

yg e

0
(3.4)

which is just that derived earlier by glott. A brief
inspection of (3.4) shows that high-frequency transi-
tions may reduce the plasmon energy from Ace„, but
they do not destroy the plasmon concept. We shall not
go further into the details of this approach at this time,
because such questions are better discussed within the
framework of a Hamiltonian treatment, which we begin
in the following section. We also postpone discussion
of the dispersion relation (3.4).

We should like to mention that fast charged particles
passing through a solid constitute a splendid probe to
determine the behavior of the pA, . The interaction of a
charged particle (position Ro, charge Ze) with the
valence electrons in a solid is

~jk Rp

@rZe'g pk

so that the' energy and momentum transfer from the
particle to the valence electrons is completely deter-
mined by the p&. Further, the charged particle has
sufficient energy to excite a plasmon, so that its char-
acteristic energy losses furnish a true measure of the
nature of the valence-electron excitation spectrum. "
We return to this question in detail in a subsequent
paper.

"For a recent discussion of the experimental knowledge of this
excitation spectrum see D. Pines, Revs. Modern Phys. 28, 184
(1956).

"Note that in BP and SSP the fie]d variables were taken to be
anti-Hermitean,

4. INTRODUCTION OF COLLECTIVE
COORDINATES

We have seen in the preceding section that there are
many solids for which the plasmons may be expected
to exist as a well-defined mode of elementary excitation.
Furthermore, in such cases, their introduction may be
expected to simplify the description of the remaining
electronic modes of excitation. For this reason, we wish
to begin by introducing the plasmons. We then inquire
into the nature of the electron motion after the cor-
relations which give rise to the plasmon have been taken
into account.

Our development of a detailed Hamiltonian formu-
lation of the valence-electron interaction problem will

closely parallel that given in BP and SSP. (A slightly
diferent version may be found in the article of
Kanazawa. ') We begin by describing the plasmons
explicitly in terms of a set of new conjugate variables,

Qk. The field variables may be chosen to be
Hermitean, " so that Pk=P k and Qk=Q k. Their

commutation rules are

[Pk,Qk ]=—ZIi6k, k'

where Mk is defined by Mk'=4vre'/k'. The added terms
describe the inertia of the plasmons, and their coupling
with the electrons. We may guarantee that the energy
spectrum and the number of independent degrees of
freedom of H, -& are identical with IIO by imposing a
set of S' subsidiary conditions on the wave function
0' of the extended system, "

Pk+=0 (when k(k, ). (4 2)

For any wave function 0 satisfying the conditions
(4.2), the expectation value of the extended Hamil-
tonian is the same as the one of the original Hamil-
tonian. Therefore our procedure does not modify the
energy spectrum of the physical system.

Just as was the case for the BP treatment of the free
electron gas, for many applications it is not necessary
that we work with wave functions which satisfy the
subsidiary conditions. It was shown in BP III, and
discussed in some detail by Bohm, Huang, and Pines, "
that with the particular choice of added terms in (4.1),
(1) H. & is positive definite, and (2) the subsidiary
conditions are automatically satisfied for the ground
state of the extended system, so that the ground state
is identical with the ground state of Ho. We refer the
interested reader to the article of Bohm, Huang, and
Pines" for a more detailed discussion of the role played
by the subsidiary conditions in the free-electron case.
In what follows, we shall continue to follow the sub-
sidiary conditions, in order to evaluate their role for
the present problem.

We now relate the I'& to the density fluctuations p&,

and thereby redescribe the long-range part of the

"We use the following notation: p„or q„, „represents a one-
electron level; 4„ is a Slater determinant for N noninteracting
particles, and is a wave function of the original system; + is a
wave function of the extended system which has (3E+N') degrees
of freedom." Bohm, Huang, and Pines, Phys. Rev. 1Q7, 71 (1957), here-
after referred to as BHP,

The Pk and Qk commute with all electron variables.
Because we anticipate that plasmons exist as an inde-
pendent excitation only up to a maximum wave vector
k„we wish to introduce only a limited number of
plasmon degrees of freedom, E' in number, where
1P=k o/6or'.

We introduce the plasmons by adding certain terms
to our basic Hamiltonian (2.1). The resultant extended
Hamiltonian is given by

K k=&o+ 2 sMk'pkp k
k) kc

(Mkpk+Pk)(Mkp k+P k)+Z
k&kc —Q -'EMk' (4.1)



P. NOZ I E RES AND D. PINES

Coulomb interaction in terms of field variables. This
is easily done by the canonical transformation

V, )g =exp (iS/h)%'„.„,
generated by the Hermitean operator 5 defined by

S= 2 (—~~paQa}
A:&&c

(43)

K s=&o+ Q ~P'd' ~+~„'QIQ a)
k&&c

+H;,g+ U+H„p 2M—I,'N, — (4.4)
k&&c

where the terms have the following meanings:
(1) H„ is the short-range part of the Coulomb

interaction,

Since pA, commutes with all terms in H but the kinetic
energy, we obtain exactly the same result as for free
electrons. The new Hamiltonian is

The Hamiltonian (4.4) describes a set of X electrons,
interacting with a screened Coulomb interaction of
range k, ', and a collection of plasmons of maximum
momentum k, . The two systems are coupled through
the terms H;„t and V. The strength of this coupling
will essentially determine k„since it is only meaningful
for us to introduce "reasonably" independent plasmon
modes of excitation. We assume that we can treat
H;„& and V independently of H„, so that we can esti-
mate the strength of the plasmon-electron coupling in
the representation in which Bo is diagonal. Such will

not always be the case, as we shall see.
The plasmon-electron coupling brought about by

JI;„& may be estimated either through the shift in the

energy it produces, or through the admixture of
electronic excited states in the wave function of each
plasmon. We calculate these quantities by ordinary
perturbation theory, a procedure whose consistency
we shall then be in a position to establish. The energy
shift is

K.= Q g~l'(pIp A, (4.5) l(l")o-I' &

AE; t= Q AE;„t(k)=—
&&ac L(ka e ~&+~&0 2~&

(2) H;„» describes a linear interaction between
plasmons and electrons, given by

MI,
K.~= Q —i I IIo,p~jQ~

&&&c

MI,= P i P([exp( ik—r)jk, (p;——',bh))Qg. (4.6)
k&kc m

K s= Q ~IQa,
&&&c

(4.7)

where V~ is an operator depending on electron coordi-
nates and momenta, the representation of which is

simply
(Vp) „= iMg(u —(pg) „

(3) U describes a nonlinear interaction between

plasmons and electrons:

M
~~~(i &)Q~Q~ .

kl&kc l 2~
kg —l

(4 g)

V is the so-called "random phase" term, because it
involves the factor p~+l, depending on the phase of all

individual particles.
The subsidiary conditions are modified by the

canonical transformation, and become'

(Pg- M gpss)%'= 0 (k (k,). (4 9)

"Equations (4.4) and (4.9) have a simple physical interpre-
tation. Equation (4.4) is the Hamiltonian of the electrons in
interaction with a field of longitudinal photons (which are, in
fact, the plasmons). Equation (4.9) is the Poisson equation for
longitudinal electromagnetic waves.

We remark that H;„& may be written in the general form

The energy shift AE; t(k) arising from the plasmon k

is easily expressed in terms of the oscillator strengths:

AM~ 1 &no
AE;.g(k) = — P —fo.(k)

4 ~ S Mo+cu„
(4.10)

In order for the plasmon k to be little modi6ed by its
interaction with electrons, the energy shift AE; t(k)
must be much smaller than the ground state energy

~hen„, which yields the condition:

—;Pf,.(k)
~~O+~y

(4.11)

"For instance, the spurious states C„with some of the core
levels occupied by valence electrons, correspond to co„0 negative
and much larger than co„. Their contribution will be unimportant
if they involve only small oscillator strengths, which is generally
the case. Apart from these special states, all states C„correspond
tO u„0)0.

Comparing with the f-sum rule, we see that (4.11) will

be satished if almost aH the oscillator strength cor-
responds to transitions to excited states C for which

co p&&a)„. We shall see that this case occurs frequently
among actual solids. On the contrary, if an appreciable
amount of oscillator strengths corresponds to transi-
tions for which co„o&~„,the modification of the plasmon

k due to H;„& will be large. These conclusions do not
depend on the intraband or interband character of the
transition leading to state C„."

Actually, as we shall see later, the relative magnitude
of the energy shift given in (4.10) is a sufficient, but
not a necessary, measure of the validity of a per-
turbation treatment. What is really the crucial test is

the admixture of excited states into the ground state



GENERAL FORMULATION 749

of each plasmon k. This is measured by the dimension-
less quantity

pressed in terms of the oscillator strengths, this
criterion is

I I H;.«(k) J.p I' 1 ~,~.p
fp„(k) . (4.12)

(E„—Ep)' ~ 4E (pp„+«p„p)'

M

Q fp„(k) )X.
G)~p 07~0 My

(4.14)

If the right-hand member of (4.12) is much smaller
than 1, the admixture of excited states is small, and the
perturbation treatment converges well. This requires
that almost all the oscillator strengths correspond to
co„o much smaller or mich larger than co„. The per-
turbation method may work, even with a large energy
shift AE; «(k). We shall discuss this point in more
detail later.

According to either (4.11) or (4.12), the plasmon-
electron coupling is k dependent. Hence, although II;„t,
may be a weak perturbation for small k, it will strongly
couple plasmons and electrons for a sufficiently large
value of k. Physically we expect that k, is determined
by the plasmon dynamics, in that it should correspond
to the value of k beyond which the plasmon may no
longer be regarded as a simple, independerit excitation
of the system. We shall see that this choice of k, is
essentially equivalent to the "energetic" criterion
introduced by BP, namely that it be energetically
favorable compared to the Hartree-Fock approxi-
mation to introduce the kth plasmon mode. "

I et us assume that II„, II;„~ and U are small per-
turbations: we then choose the ground state 0 0 of the
extended system to be the product of Cp (ground state
of Hp) by the ground-state wave function of the set of
Ã' independent oscillators. What happens to the energy
of the system when we introduce the kth plasmon mode?
We replace (2s.e'/k') p &pp by (-', (P &E&+pp„'Q &Q&)

+V&Q&}. The change in energy is given by

If the left-hand member of (4.14) is smaller than X for
k=0, a collective treatment does not appear fruitful.
On the other hand, if it is larger than X for k=0, we
may introduce plasmons up to that k, for which
8E(k) =0, or

2

Q fp„(k,)
Ceno COnp Coy

(4.15)

We see that (4.14) implies an appreciable amount of
transitions such that co 0(&co„. In solids with nonfilled
bands (metals), this is always realized for low enough
k, for the intraband co„o go to zero with k. Therefore, it
is always useful to introduce plasmons for metals. The
value of k, depends of course on the metal we consider.

When k is equal to k„ the average value of M„o is of
the order of co„.That is precisely when our perturbation
treatment of 8;„& loses its reliability. Therefore, Kq.
(4.15) defining k, is only qualitatively correct. In fact,
this does not matter', for the cutoff is certainly not
sharp: there is no exact k, . The fact that at k= k, the
electron-plasmon coupling becomes strong indicates
that the clamping of the plasmons by the electrons is
becoming appreciable. Our "energetic" criterion is thus
seen to be equivalent to the dynamical criterion that the
plasmons represent an independent elementary ex-
citation of the system.

In order to evaluate k, explicitly, let us neglect the
contribution arising from the electron-plasmon inter-
action. (In so doing, we underestimate k, .) Equation
(4.15) then becomes

AMy 2x'8 co 0

1(~p) o- I'
2 ~ k pp~(pp~+pp~p)

2' 8

p».= 2 II:~(i.)jo- I'
n

(4.16)

2KB

l(pp)p I
~ (4 13)

k'

The first term is the zero-point energy of the new
plasmon. The second term is its interaction energy with
the electrons (evaluated to second order). The third
term represents the energy (evaluated in lowest order)
associated with the interaction (2pre'/k')pl„. p p which
we have redescribed in terms of the plasmons. We
neglected the contribution from U, which we shall show
to be very small. It is energetically favorable to intro-
duce the kth plasmon only if 5E(k) is negative. Ex-

"It must be pointed out that this procedure is not quite the
usual variational procedure of quantum mechanics. We consider
a family of extended systems, one per value of 1P. Then we select
the system which yields the lowest total ground state energy.
{While in the usual technique, one minimizes the energy of only
one system with respect to different approximate trial wave
functions. ) This procedure is extensively discussed by Sohm,
Huang, and Pines.

The right-hand side is the sum of two terms: the
positive self energy, and the negative exchange energy,
both for momentum k„We may obtain an approximate
value for k, by using the free-electron value for the
exchange contribution. (This will be an excellent
approximation in both the tight-binding and weak-
binding case.) We then obtain just the value determined
in SSP,

k,/kp =0.353r,', (4.17)

where ko is the Fermi momentum of a gas of S free
electrons per unit volume, and r, their average spacing,
in Bohr radii ao, defined by

X= (-,'prr, 'ap') '. (4.18)

With the inclusion of the free-electron value for the
plasmon-electron coupling, k, is increased slightly to
the value (k,/kp) 0 4r, '* For den. sitie. s X usually

.encountered in solids, this determination of k, gives a
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(4 ~')' @' (k &)' l(~~i)o-I'
~EU= —2 2 (4 19)

i&i. 2,m' 4'„O'P ~ A (2(o„+(u„p)
AW —l

Since co„o is positive, we overestimate App if we neglect
in the denominator of (4.19). Furthermore,

g„~ (p&~i)o„~ is certainly smaller than N (since it is
equal to N minus an exchange term). Therefore AE~
is bounded by

DEu &cV'(N'/N) (Ar „/48). (4.20)

S' is always appreciably smaller than X. This, together
with the very small geometrical factor, insures that the
energy shift per plasmon arising from U is negligible
compared to Aco„. The situation is in fact even better.
When ~%+I

~ &k„p&+i is subject to the subsidiary con-
dition, which markedly reduces its matrix element.
Replacing pi,+& by P&+i/M&+i, and again calculating
AEp, we find

k'k. ' N" 1 (k.q
N'

EU —— =
I
—IN'—5(o„, (4.21)

120m N 150 &ko) N

where we have used the relation (k,/ko) =0.4r, . Since
many of the ~k+1~ are larger than k„ the actual
numerical coefficient lies somewhere between 1/48 and
(1/150) (k,/ko). "In any case, AEi is negligible.

value of N'/3N much smaller than 1: the collective
modes represent a small fraction of the total set of
degrees of freedom.

Let us now consider U. Let us first assume that we
have taken a k, such that part of the sphere of radius
k, lies outside the first Brillouin zone. We then may
find a pair of vectors k, 1, smaller than k„such that
k+1=K where K is a vector of the reciprocal lattice.
Since pk has a nonzero expectation value for the ground
state C o (corresponding to the periodic variation of the
electron density), this means that U may induce
transitions involving two plasmons, with no partici-
pation of the electrons. This would lead to direct
coupling between different plasma modes. Such terms
would seriously complicate the calculation. We shall
consider only cases for which they do not appear (k,
within the first Brillouin zone). This appears to be the
case for almost all solids. As a matter of fact, even if
such terms exist, they will be relatively unimportant
provided that (p&) Op is small; in such a case, the electron
wave function is very smooth, and may be well approxi-
mated by free-electron wave functions, for which no
such trouble arises.

Knowing k„we are able to evaluate the contribution
to the energy arising from U. A simple perturbation
treatment gives

The quantity co is an unknown parameter, eventually
k dependent, which we shall choose later to be the
corrected plasmon frequency for momentum k. We
want to find a canonical transformation, generated by
an operator 5', which cancels H;„~ to first order, i.e.,
such that

(i/k) LHO+ Hi;, ia, S'g = H;„,. (5.2)—

For the time being, let us neglect the terms arising from
H„, such as (i/k)IH„, S'f We di.scuss such terms in
Sec. 7. One verifies easily that the second-order terms
arising from (Ho+Hi;, iz) just cancel one-half of the
first-order term arising from H;„~. The total second-
order term is, therefore,

(i/25) LH~„i,S'j. (5.3)

This will contain terms quadratic in plasmon variables,
and terms independent of plasmon variables. We shall
choose co in such a way that the quadratic terms cancel
the term pa&a, (a&~' —oP)(i~Q, Q~) in (5.1). It is this
procedure which enables us to improve on conventional
perturbation theory techniques and treat large energy
shifts.

In order to realize our program, let us choose the
following generator 5':

S'= Q (&iI'r*+&iQi), (5 4)

S. TRANSFORMATION TO INDEPENDENT
PLASMON MODES

In this section we give a more careful treatment of
the inhuence of the electron-plasmon interaction by
using a canonical transformation to decouple the
plasmons from the electrons. Such a treatment is
desirable for several reasons. First, as pointed out in
BHP, it is necessary to carry out a systematic approxi-
mation procedure, in which the subsidiary conditions
are treated to the same order of approximation as the
Harniltonian. Such a procedure is most easily carried
out using a canonical transformation. Second, using
canonical transformations, it is possible to deal with
interactions which give rise to a large frequency shift.
The transformation described below is specifically
designed to handle such interactions. Finally, the use
of a transformation enables us to separate easily the
effects of the interaction on the plasmons and on the
electrons.

Let us write the Hamiltonian in the following way:

H=HO+Hi;, ig+H; i,+H„+ Q ((v~' —id')
k&.kc

X (2Qi*Qi) —Q —',N~i', (5.1)
k(kc

where
Hi'ma= E g (&a*&i+~'Qa*Qi)

'0Actually the criteria are essentially identical, because the
inclusion of exchange reduces the estimate in (4.20) by a factor
of k./kp.

where Ak and Bk are unknown operators depending on
electrons coordinates and momenta. Simple algebra
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shows that (5.2) is satisfied if Ao and Bk have the
following representation:

f' —
scorn~ l

(A ) „=MiI I(ps)
(coo—co „')

( —oo

(Bs) .=MsI I(ps) ..
&fov, ~

(5,5)

(K,v",

This definition works as long as co „'/co'. The corre-
sponding transitions (from C to C„) are virtual, and
give rise to the energy shift. On the contrary, (A&)
and (Bo) „are infinite when oo „'=oos: such transitions,
conserving the energy, are real, and contribute to the
finite lifetime of the state C . Unless we use a Wigner-
Weisskopf treatment, the corresponding part of H;„~
has to be handled separately, by a time-dependent
perturbation method. To do so, let us split all electron
operators X into two parts

X=X+Y,
with X defined by

X =X if I(co—Ico „I)I)oi,
l(~ —I~-I) I &~

(5.6)

We may expect that p is related to the lifetime for
plasmon decay. We discuss later its choice in some
detail. We now replace the generator S' by its "principal
part" S':

S'= Q (Ai.,P o+BIQo}.
k&kc

To first order, the canonical transformation then cancels
the principal part H;„~ of the plasmon-electron inter-
action, leaving unchanged the "scattering part" H;„~.

We now proceed to look at the second-order terms:
they are now given by

z z

[H;.o,S']+ [—II;„o,S']. —
2I

'
I

(5.7)

Using 5.4, we may write them as

z

2 ([Vs+ V~, Ai](Qs, P—i}+[Q~P—i]
4Q k )&kc

X (U~+ Vs, Ai}+2QsQi[Vs+ V&, Bi]), (5.8)

where the square brackets denote commutators and the
curly ones anticommutators. Let us consider first the
term independent of plasmon variables, which is

—
4 Q [(Un+Vs)A a+A i(Us+Vs)]=Kv (59)

k&kc

H,~ is the screened long-range interaction of electrons
which arises through the virtual exchange of plasmons.
A typical term of H,~ is the product of two "one-
electron" operators, such as VkA k, whose matrix

FERMI
~LEVEL

FIG. 1. The different states n for which

(VoA o)on=Zv(Vo)ov(& o)v~

is not zero. In state p, one electron has jumped from (K,v) to
(~+0, v'). There are three possibilities for state oo: (a) the electron
(a+k, v') goes back to (~,v) restoring C o,

' (b) the electron (s+k, v')
goes to (K v ) with v"/v. Then C„has only one electron excited
"vertically"; (c) another electron is excited from (K',p) to
(K' —k, p'). Then C „has two electrons excited.

elements are

(V(A s)o.=g, (V~)o, (A-s),.
The states C „which give nonzero matrix elements may
be separated into three categories:

(a) The ground state Co itself. [Fig. 1(a).] This
corresponds to the expectation value of VkA k, and
gives rise to the screened exchange energy and self-
energy.

(b) The states C„with only one electron excited. In
order to conserve the momentum, C „must correspond
to a vertical transition, from the level p„, „ to the level
iv„, „~ [Fig. 1(b)]. These matrix elements of H,v are
equivalent to those of a one-electron periodic potential.
They just give rise to the screened long-range exchange
potential.

(c) Finally, there are excited states C„ for which two
electrons are excited, with opposite momentum change
[Fig. 1(c)].This is the real "correlation" part of H,„.

Later in this section we shall discuss these various
contributions to H„. Let us now consider the terms
quadratic in plasrnon variables. In (5.8), let us select
first the terms for which I= —k:
z—Q ((QoPa+PsQo)[Vs+Vs, A s]

4$ k&kc

+2QiQ-a[Vs+ Vs, B-s]) (5.1o)

We again separate (5.10) into three kinds of terms:
(a) A part involving the expectation value of the

electron operators, together with the complete plasmon
operators. [Uo+ Vs, A s]oo turns out to be zero; there-
fore there are no cross terms in QI,Po,. Expressing
[UA-,+ Vi„B o)oo in terms of the oscillator strengths,
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we finally obtain

2 fo-(k)
k&~ g ~ M —Mp 2

(5.11)

[In order to shorten the writing, we have neglected the
plasmon dispersion and assumed po(k) =op(l) =lo.j

Let us compare (5.14) with the matrix element of U
for the same transition:

&(&c
M~ —M

We choose lo in such a way that these terms (5.11) just
cancel the left-over terms Up„(k,l) =3EI,M)

Z(~p. [(p~)o.(Pl) n-+(Pl) on(pk) ~ 3
4M —~.-[( ~)o.(Pl) n-+( l) Pn(PP) n-j}

This leads to the following dispersion relation for the
frequenCy lo(k) Of the plaSmOn k

M

Pfp. (k) =N
co (k) conp

(5.12)

[apart from a term involving fp„(k), which is small
(see footnote 23)j.

(b) A part involving the expectation value of the
field operators, together with the off-diagonal part of
the electron operators. These electron operators, being
commutators, are "one-electron" operators since they
connect the ground state 4 p with excited states 4 „ in
which only one electron is excited. The corresponding
contribution may be written

z—[Vy+ Vy, 8 k]os-diagona1.
k&k, 4M

(5.13)

Mph yn+ (Pl+Pl) o.(P.)..3 [(Po+8 ~)n-(—Pl) on
G7+Q)p&

+(Pl+Pl)y (P&)oyj ~ (5 14)

The terms have the same structure as the terms (b)
of H,~; we shall combine them later.

(c) A part off-diagonal with respect to both electrons
and plasmons. This part connects the ground state of
the system with states where two plasmons and one
electronic excitation are present. Therefore, the terms
have exactly the same structure as the "random phase"
terms (I&—k) which we shall consider next. But,
rather than depending on two wave vectors, k and I,
the terms depend only on one, k. Their contribution to
the energy will be 1/N, smaller than the contribution
of the random phase part, and therefore negligible.

The last contribution to the second-order terms is the
random phase part (k+INO) of the quadratic terms.
Here again, we assume that (k+I) cannot be equal to a
vector k of the reciprocal lattice (as in U, this would
introduce a direct coupling between plasmons). Let us
call this term U', and evaluate its matrix element for
the transition emitting one plasmon k, one plasmon I,
and exciting the electron gas from state C p to state C .
This is given by

MPM l
t

Opp~na
Uo (k I) = 2'1 [(po+p&)oy(pl)n

4M 9 t M M~~

In order to compare Up„'(k, L) with Up„(k, l), let us
pick the first term of each. One goes from Up to. Up

'

by the replacements

(pl)o, ~ (pp+P a)o„

(Pl)n ~ (Pl)n

The correction (pa) o& is negligible in a qualitative study.
(It could only change the energy shift due to U' by a
factor smaller than 2.) The important modification
comes from the factor &on„/(po~ —&o). We shall see later
that the treatment is convergent only if the matrix
elements (pq)„„are small whenever nr„„ is of the order
Of magnitude Of &o (fOr inStanCe, betWeen plod and 2').
Then lo„„/(lo„—pl) is smaller than 1 for most of the
transitions, and U' gives a smaller energy shift than U.
We shall therefore neglect it in all subsequent calcu-
lations. It is important to point out that this procedure
is justi6ed even if a large number of the M„„are much
larger than nr (in which case there is a large energy
shift due to H; &). This is another way to state that a
perturbation treatment may work, even with a large
energy shift.

So far, we have only looked upon the new terms in
the Hamiltonian. The set of subsidiary conditions is
also modified. The term p~ gives rise to first-order terms
involving both plasmon and electron coordinates. The
o6'-diagonal part of the electron factor plays the same
role as the random phase term in the Hamiltonian. We
may therefore neglect it and replace the electron oper-
ators by their expectation values. The subsidiary
condition then becomes, to first order,

fo-(k)~~'
~

Ilflpl I'1+ 2 —I'a —&o ~+=0—
N nip —lop'

(3fl peal
——,'Bl)4=0 for all k(k, . (5.15)

for all k &k, .

Because of the dispersion relation (5.12), the terms in
I'I, cancel. This insures the self-consistency of our
method: when we eliminate the plasmon-electron
coupling from the Hamiltonian, we automatically
eliminate it from the subsidiary conditions. We further-
more remark that the second-order terms arising from
pI, cancel one half of the term BI„so that the final
subsidiary condition is actually
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We now have completely performed our canonical
transformation up to second order. Let us summarize
the results. First, we note that plasmons and electrons
move independently. The plasmons are free oscillators,
whose frequency is given by the dispersion relation.

(5.12). The electrons have the Hamiltonian

H.i= Ho+H. ,—Q -', 1VMi'
k&kc

may have several roots. In what follows, we assume
that we are dealing only with the highest frequency
solution which is reasonably close to co„. The other
roots will be discussed in NP III, as will the detailed
application of (5.12) to actual solids. "

We now turn to the average screened exchange
energy, given in (5.17). Let us compare it with the
corresponding nonscreened term (including also the
self-energy). This is given by

+A,„.,-+V.„.h«+ V..„", (5.16) G)y
&- ~=4~.Z 2 f-0(&) (5.20)

where the terms have the following meanings:
(a) E, ,h- is the diagonal part of H„and represents

the screened long-range exchange energy (including the
self-energy) .

CO~„p
&,.h"= —4@~„PP f.o(&)

k&k, n
(5 17)

&py&yn
+r(.)o.( ~+I ~)—.-, (5 18)

where the state C„has one electron excited (otherwise
(V,„,i,")0„=0j.

(c) Finally, V„„"is the screened long-range corre-
lation potential, involving the momenta and coordi-
nates of electron pairs. It relates Cp only to states C

where two electrons are excited. The matrix element is

Q) p&GO&&

(V--")0-= Z -'~~' 2 (I ~+6 ~)»V ~).=
k&kc y CO Gag)~-

+ (p-i) 0,(p~+ p~),
QP —o)p~

(5.19)

Furthermore, the electronic wave functions must
satisfy the subsidiary conditions (5.15).

Let us first discuss the dispersion relation (5.12). If,
for a given k, or p is on the average small compared to
or, then co is very close to cu„, the free-electron plasma
frequency (and this irrespective of the intraband or
interband nature of the transition leading to C„). If,
on the contrary, many fo„(k) correspond to a&„o»&a,

the frequency shift is large. For instance, let us assume
that in a metal all interband ~„p are much larger than
&u. Then, only the intraband part is important in (5.12),
and in the limit of low k the frequency co is given by

aP = 4m Xe'/no*.

In some cases (for instance, in semiconductors) (5.12)

(b) V, ,i, is the screened long-range exchange
potential, which can only induce one-electron transi-
tions. It arises partly from H,~ and partly from (5.13).
Its matrix elements are given by

Mk COP&Q»

(V,,),-)0.= 2 P (p~+~~)o, (p a),.
k&k, 4~ ~+~ye,

k&kc n ~p

(obtained by a simple perturbation treatment). Iloth
E,„,h and E,„,h- are the sum of contributions from each
excited state C „.We then see that the screening amounts
to the following:

The contribution from high-frequency transitions
(a& 0»cv) is practically unchanged.

On the contrary, the contribution from low-frequency
transitions (co„o«co) is reduced by a factor (—cv„P/cu').

Finally, the transitions for which co„p co give an
enhanced contribution, due to the resonant exchange
of virtual plasmons. "

The fact that the screening disappears for frequencies
or p larger than co is easily understandable: the "re-
laxation" time needed by the electron gas to screen any
disturbance is of the order of a&

' (since ~ describes the
inertia of electrons when responding to an electric field).
When we consider processes faster than o: ', the electron
gas has no time to respond to the excitation, and there
is no screening. This may be summarized as follows:
those components of the electronic motion for which
M p»G7 keep a mainly individual behavior Las shown in
(5.20)). On the other hand, those components for which

p«&u display very little individual character Lsee
(5.20)$, but on the contrary are frozen into collective
oscillations Las shown in the dispersion (5.12), where
only low-energy components contribute appreciably).

It is interesting to compare the part of the energy
shift carried out by electrons, E, ,q", with the part
taken by plasmons: i2+a&a, h(cu —cv„). Let us assume
that (&u

—~„)&&a&„:then we can write

2& (~ ~n) = (Ii/4~) (~' ~.')— —

Using Eq. (5.11), we obtain the part of the energy shift
carried out by plasmons:

1 67+p
&& i=~&~ p —2 fo.(&)

k&ko + n

~' At erst sight, it would appear that there are as many solutions
as there are co 0, each solution corresponding to a frequency lying
between successive co 0. Since we are using principal parts, such
solutions are automatically discarded. Our use of principal parts
amounts to taking into account the damping of the plasmons,
which automatically removes the spurious roots.

"Except, of course, when co„0 lies between co —q and co+a. Then
the screened energy component is zero. Inside this range, the
electronic transitions do not properly contribute to an exchange
energy, but rather to a broadening of the plasmon line, That is
why we left them out of the canonical transformation.
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The total energy shift due to H;„& is

d E;„p=hEp(+E,„,h"= —-', Acp~ Q —Q fp„(k)
It&k g n

+~+np —~o 2

GO M~p

(5.21)

If we replace po by p0~ in the bracket (which is consistent
with our previous approximation), we see that AE;„p
is just the same as the one found in (4.10), through an
elementary perturbation approach. " Both AE~~ and
E,„,h" are sums of terms corresponding to all possible
electron virtual transitions. Let us call DEn~(k, ts) and

E,„,q"( k, t)zsuch terms. From (5.21), we see at once
that

AEp](k Q)/Epxpg (k&ts) = Mp, p/M~. (5.22)

The high-energy transitions give, therefore, an energy
shift almost entirely carried by plasmons, while the

energy shift due to low-energy transitions is mostly
taken by electrons.

Let us now consider the exchange potential V, ,h .
That is the one-electron long. -range exchange potential
which must be included in an Hartree-Fock treatment.
Let us compare (5.18) with the corresponding expres-
sion for the usual "nonscreened" exchange potential":

(V...s)o.= Q -'~1' Z((ps) o,(p-s)
A:&it c

+ (p—s) o„(pz) ) (5 23)

Let us assume again that g is small, and forget about the
operators Ps (it being understood that we always take
the principal part of any divergent term). We then see

that (5.18) differs from (5.23) by factors of the type
(up&pe~ /pp(co+co~ ). If the average a& is much smaller

than co, such factors reduce drastically V,„,h" compared
with V,„-,&, by a factor of order (cop '/pps)&„. On the other
hand, if both ~p~ and co„are much larger than ~, it
would look as if V, ,h" is much larger than V, ,~. This
is an illusion, for (V, ,t,")p„may also be written in the

following way":
M~tt,

(V,.~-)p.= 2 4~~'2 (p ~)p, (pa)~
@&Itc

(5.24)—(p~) pn(p-s) ~-
pp+ polyp,

~ In (4.10) there appeared /p„(k) and not fp„(k). In fact, we
shall see that the treatment only converges if we can choose
q«op. Then fp (k) and f0„(k) are practically equivalent in a term
regular at or„0=co.

24 The equivalence of (5.23) with the usual expressions of the
exchange potential is readily veri6ed expressing explicitly the states
p and e in terms of one electron levels y„, ,

PP One may write the factor cupppp„„/[ar(cp+ar„„)g as (cop„/pp)—cc)0~/(o)+a)~ ). The Grst term, when collected in (5.18}, gives
rise to the expression L(Hp, pp), p p7p, which is zero since the
double commutator is a c number. This establishes the equivalence
of (5.18) and (5.24).

In this expression, it is obvious that (V,„,s")p„ is of
the same order as (V,„,h)p„when the average cp „ is
larger than co. This potential V, ,h" should be dealt
with by a self-consistent method. In the next section,
we shall discuss the influence it may have on the
electron motion.

Finally, let us consider the screened correlation
potential V„„,", given in (5.19).The screening appears
in the factors cop„po~„/(oP —cp„„'). For very weakly
bound electrons ((ppp ')A,«pop), this amounts to a large
reduction of the original Coulomb potential, by a factor
(ppp '/pp')p„while for tightly bound electrons ((pop„')p„

))oP), V„„"is of the same order of magnitude as V.,
This screened correlation potential may be treated by
a perturbation method (the divergence at low k being
removed by the screening). In fact, we shall see later
that the perturbation series does not converge, and
that a more involved treatment is required.

0. DISCUSSION OF THE CONVERGENCE OF
THE PERTURBATION TREATMENT

Let us now consider the convergence of our treatment.
Trouble may arise from two kinds of matrix elements
in II;„~. The first kind are those for which ao„p+M,
which give rise to a large frequency shift, and to a
screened interaction of the same order of magnitude as
the original Coulomb interaction. The simple per-
turbation approach of Sec. 4 in fact suggests that these
terms do not affect the convergence. The second kind
are those for which co p co, which give rise to real
transitions and are therefore related to the plasmon
line width. We got rid of part of them by a cutoG of
width 2q in the spectrum of excited states C . This
leads to the question: is it actually possible to 6nd an

p such that the treatment converges well? It is fairly
obvious that if only a negligible amount of the oscillator
strengths correspond to frequencies ~„p&or, such terms
will be unimportant, and the method will work easily.
What is interesting is the question of whether our
results are valid under more general conditions, and if
so, what these conditions are. In order to decide the
matter, we need a "convergence criterion. " Let us
therefore consider the higher order terms.

The simplest ones are those arising from

~Kipts = 2 z (cpq cp )Qsg—s.

Since this term is canceled by the second-order terms

arising from H;„~, we must be careful about the nu-

merical coeScients of the expansion. The third- and
fourth-order terms turn out to be

[aH„,(s,8'7+ ',
(

—
(

[[AII—g;,M, 8'7,S'7. (-6.1)

The third-order term is an extra plasmon-electron



GENERAL FORM ULATION

interaction which we may write

1«.H; «
—Q——-', («p„'—«p')AiQk.

k&kc
(6.2)

The matrix element (1«H; «)p is smaller than the
original (H; «)p by a factor

In addition there are extra terms quadratic in plasmon
variables, with a factor which depends on the electron
coordinates. As with the second-order terms, we neglect
the part of this term which is o8 diagonal with respect
to the electrons. We are then left with a term
P& &i. —',hop«QIQ o, where the additional frequency
shift 6~2 is given by

1 GO~p QP~
2 2

&op'= ——'(«p '—«p') —Q fo (k) (6.4)
(~2 ~ 2)2

Let us consider the extra screened Coulomb inter-
action (for the case in which «p is appreciably different
from «p„). From (6.3), we see that the high-energy
components of AUI, are much smaller than the corre-
sponding ones of V&. On the contrary, when ~

CO p (d GO CO~ p Ay.

If co is close to co~, this factor is always small, and the
treatment is certainly convergent. On the other hand,
if («p~

—or) pi (an appreciable fp„going with «p„p)&«p)

the factor is roughly of order aP/(oP —«p„o'). In this
case, for transitions for which or„p is much smaller than
«p, (AH; «)p is about as big as (H;„«)p„. But in just such
a case we know that these low-frequency matrix ele-
ments essentially do not contribute to the frequency
shift; therefore, it does not matter whether (AH; «)p

is large or not. On the other hand, (AH; «)p is much
smaller than (H; «)p when «p„p is much larger than op.

Consequently, AH;„& is negligible in determining the
frequency shift if most of the oscillator strengths cor-
respond to co„p much larger or much smaller than co.

We may express that by saying that the coupling
constant An corresponding to AH;„~ is much smaller
than the one e arising from H;„&.

The next order terms are of two kinds. The first
arise from the action of S' on AH;„& .'they are the fourth-
order terms appearing in (6.1), and are of order e'en.
The second kind occurs when one makes a special
perturbation treatment to eliminate AH;„«(with a
canonical transformation generated by 68'). This will

yield a higher order term (i/2I«)[AH;„«, 68'], of order
An. If Ao.((e, the second contribution is negligible.
We therefore only consider the first kind of terms of
order o.hn, whose structure is quite similar to that of
the second-order terms. These include, first, an extra
contribution to H p independent of plasmon variables,
which differ from H„[Eq. (5.9)] only by the replace-
ment of V& by AU&.

t «p~ —GP

(~V.)..= —ll I(V.) . (63)
& —&mn.

the correction (AVi) „ is comparable to (Vq) „.Our
perturbation determination of the low-energy com-
ponents of H,~ is not convergent. The question now
arises: are these low-energy components of H,~ of any
importance' We know from the free electron case that
their role is mainly to introduce the slight long-range
correlations necessary in order to satisfy the subsidiary
conditions. Therefore, our perturbation treatment does
not describe well the mechanism by which the electrons
satisfy the subsidiary conditions, but we expect it to
be accurate as far as the total energy is concerned.

In any event, the behavior of the plasmons depends
only on average properties of the electrons. The only
convergence requirement for them is that d,opo/pp' be
much smaller than 1. When co co„, the requirement is
approximately

GOGO&p

Q fo,.(k) «1V,
OP —Cu„p

(6.5)

IHfieldl»= & p@~,
&&A:c

j. GO&pe&

IH,.I
oo

————.'~.2 —2f.o(k)
~&&c X '+ CO EO p

(6 6)

. where E, represents the energy of the bottom of the

the convergence criterion for which we were looking.
If «p is much smaller than «p„, Eq. (6.5) is not sufliciently
restrictive, and we must use (6.4). It is obvious that
the treatment will diverge only if an appreciable amount
of the fp„(k) correspond to frequencies «p p of the order
of co.

The same criterion may be obtained quickly from a
study of the higher order terms in the subsidiary con-
ditions. In order to have convergence, the amount of
field variable brought in by the second-order terms
must be much smaller than the original I'~ term with
which we started. When taking the average over
electronic coordinates, we find again the condition (6.5).

Up to now, we have considered only the higher order
terms arising from AHg;, iq. There is also a contribution
arising from H„. The only easy way to calculate it is
to replace all electronic commutators by their ex-
pectation value (which is equivalent to a Hartree
approximation). One then finds another extra electron-
plasmon interaction, which has the same structure and
order of magnitude as AH; ~. The previous discussion
still applies. But it is di@.cult to decide whether this
"extended random phase approximation" is a sensible
one. Let us advance a simple tentative physical argu-
ment: the terms arising from H„will be negilgible if
H~ itself is negligible compared to Hp and Hi;, id (in
other words, if H,~ acts like a small perturbation on the
motion of the system). An easy, if not very precise,
way to test this consists in calculating the expectation
values of these three operators.

l
Hp

l pp 1V(E,+-,'Eo),
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valence band, and Eo is the total width of the occupied
bands. (We used the coefficient —,

' occurring for free
electrons, but the order of magnitude is still right for
other solids. ) Since cu and cu„are generally of the same
order of magnitude, we may replace cv„by s& in

~
H,~ ~

Oo.

We then see that ~H„~ op will be much smaller than

( Hfield ) 00 if most of the oscillator strengths correspond
to co„o either much larger or much smaller than or. In
this case, we do not expect the higher order terms arising
from H,~ to influence appreciably the plasmon behavior.

In many solids, the average energy of an electron,
(E,+53Eo), turns out to be of the order of the plasmon
en«gy &~ T"en IHoI o»s o«««(&/&') IH~ ~el «.
In such a case, the long-range screened Coulomb energy
is very small compared to the one electron energy: we

expect H,~ to perturb only slightly the electron motion.
The higher order terms arising from H,~ also do not
influence the electron behavior. The fact that H,~ is a
small perturbation on the electrons suggests that in a
Hartree-Fock treatment, one might neglect V,„,~-, or
at most treat it as a perturbation.

To summarize this study, let us say that our per-
turbation method works satisfactorily if the large
majority of the fo„(k) correspond to very large or very
small co„o. Especially, it still works when many co„o are
very large (giving a large frequency shift)." In this
case, the low-energy matrix elements of II,~ converge
slowly: it does not matter, for their influence on the
motion of the system is very small. This confirms the
results of our simple treatment of H;„~ carried out in
Sec. 4. We furthermore have shown that when these
convergence conditions are realized, H,~ is only a small
perturbation on the electron motion.

One may wonder why the perturbation method is
good when there is a large frequency shift. In this case,
there are many electron transitions for which co o))co.
Our approximations amount to neglecting the effect
of the plasmons on these high-energy individual modes,
since the plasmons are frozen at such high frequencies,
and cannot follow the electron motion. This is just an
adiabatic approximation, of the type used by Sardeen
and Pines'~ in their collective treatment of the electron-
phonon coupling. It is the counterpart of the low-energy
approximation (~„o(&co), in which the electrons cannot
follow the plasmons (as for instance in the free electron
plasma discussed in BP III).

'7. EFFECT OF SHORT-RANGE CORRELATIONS
ON THE PLASMONS

In the last two sections, we completely neglected the
terms arising from H„ in the canonical transformation

"It is important. to point out that there may exist plasmons for
which the frequency shift (co —a„) is very large. The existence
criterion (4.14) implies that the harmonic average of co„o must be
smaller than cv. This may be realized with only a few fo corre-
sponding to very low ~„0.' then the arithmetic average, which
determines (cu —co„), may be much larger than co. That is, for
instance, what happens for the plasmons of conduction electrons
in semiconductors.

2 J. Bardeen and D. Pines, Phys. Rev. 99,- 1140 (1955).

generated by 8'. The structure of such terms is quite
similar to those appearing in U, or the higher order
terms arising from U, in that they give rise to coupling
between different Fourier components of the Coulomb
interaction. In V, a typical term involves Q&Q&p~&,
where / is &k„while the corresponding term from H„
involves Qqp~pq ~, where 7)k, . The terms from H„are,
thus, much larger, because the density fluctuations
which appear are not screened. In addition, their
domain is not restricted by Ã'&E. Hence, if we extend
the notion of the random-phase approximation to cover
all coupling between density Quctuations of diGerent
momenta, the random-phase approximation will fail
because of the coupling arising from H„rather than
that of U. The 6rst-order terms arising from H„are

The term (7.1) corresponds to an electron-plasmon
interaction in which two electrons scatter, with emission
or absorption of a plasmon. In the general case, it is
extremely difficult to evaluate its effect. However, let
us consider the special simple case in which almost all

cv„o are much smaller than or. Then, we may expand
(8')0„ in powers of co„o/ar.

Sp.'= P kg
&(&c

&no &~o2 ' 3

From this, it is trivial to go back to the operator form
of 8',

i[Hp,pg]8'= —Q 3EI, P I,
&&Ice AM

Since we know Ho, we may evaluate explicitly the
successive commutators in terms of the potential V(r,),

(7.3)

In order to calculate the term (7.1), we take the com-

mutator of pI with the successive terms of 5'. The
leading terms are independent of the periodic potential,
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U(r, ). The first term of the expansion is

H; i"'= Z Z ~i~~' — p~ pi ~ ~)~ ~. (7.4)
k'&ac &&ac

Changing Ii' into (—It' —It), one sees that (7.4) is
actually of order k. The second term of H;„& is seen by
direct inspection to be also of order k. The extra
electron-plasmon interaction consists therefore of (a)
two terms of order k, giving rise to a shift of co pro-
portional to k', and negligible for low enough k's; (b)
higher order terms, independent of k, but smaller than
the original H;„& by a factor (~0~'/oP)Ay. In the limit of
very weak plasmon electron coupling, (wo„'/oP)„„«1,
the frequency shift arising from these terms is certainly
negligible. This result comes from the fact that in such
a case H„ is a relatively small perturbation on the
electron motion. When making the canonical trans-
formation, the terms arising from H„are therefore
negligible compared to those arising from Ho. The free
electron plasma affords an example of such a situation.
I.et us remark that when k becomes large (of order k,),
the eGect of H„may become important. But then the
whole treatment loses its validity.

This conclusion is true only if most of the co„o are
very small, i.e., if the frequency shift (co—cu„) is small.
In the case in which many co„o are much larger than or,

the plasmons may be very strongly influenced by the
short-range electron collisions. In its present shape,
our treatment then fails. We may overcome this
diS.culty by changing our representation. Rather than
taking the eigenstates C „ofHp as a basis, let us choose
the eigenstates Cir of (Ho+H„). These states Cia are
many-body wave functions, where the short-range
electron correlations are rigorously taken into account.
One might object to this representation, saying that
it involves many-body eigenstates, which we do not
know how to calculate. In fact, these eigenstates C~
are just the true, physical ones. We saw in the preceding
section that we quite generally expected H,~ to have a
negligible inQuence on the electron motion. Then the
final electron Hamiltonian is simply (Ho+H„), and
our C~ describe the actual wave functions of the

system. The oscillator strengths f0~, the energy differ'-

ences coo~, are just those which we can obtain from
experiment. Although it does not allow easy theoretical
evaluation, the representation in terms of the C~ is
best 6tted for comparison with experiment.

In this representation, the calculations go along
exactly as in the former one, but for the fact that we no
longer have to worry about H„. The only condition
imposed on the representation is that it give rise to an
f-sum rule. This requires that p& commute with the
potential (U+H„) which is obviously true. (It would

no longer be so if we replaced H„by an approximate
Hartree-I'ock potential. ) All results are formally the
same as in the preceding sections. Their validity is

subject only to the following two conditions:

foM(k)~'

~ mo + Mmo

Condition of existence:

(7.5)
QPM ~p

Condition of convergence: P (foiii)A, (k) «g.
M o

Such a treatment is rigorous. To be able to handle it,
we must approximate the C~. One may, for instance,
try to treat H„by a Hartree-Fock method. The f-sum
rule is then only approximate. The validity of such a
procedure has to be studied in each particular case.
When H„happens to be a small perturbation (when
(d o is much smaller than a&, for example), the 4~ are
very close to our old C„(eigenstates of Ho alone). It is
then much simpler to keep the one-electron repre-
sentation in terms of the 4 „, and, eventually, to treat
the effect of short-range collisions by perturbation
methods.

8. DAMPING OF PLASMONS

1
8'i=,'m(v„2—P jo„(k)8(or cop„). —

+ n

"In deriving (8.1), we assume that we do not run into any
difhculty by using a description of "one electron" states of high
excitation energy (co 0 co). Difhculties may, in fact arise 'through
H,~ and the subsidiary conditions for such highly excited states.

In this section, we consider the damping of plasmons
and calculate the line width. We also discuss the con-
dition of convergence of the treatment, and study the
validity of the cutoff g which we introduced to get rid
of the in6nite terms in 5'.

For free electrons, there is no direct damping due to
H;„~, because for the BP choice of k, all co„o are smaller
than cv. As was pointed by BP, the damping arises
mainly through short-range collisions of two electrons.
One may evaluate the corresponding lifetime, and one
6nds it very long for long-wavelength plasmons. In
actual solids, this effect will still be present. If we use a
many-body representation in terms of the eigenstates
C~ of (Ho+H„), this will appear as a special case of
the direct 6rst-order transitions arising from H;„&.
When the effect of H„on the electronic motion is small,
we prefer to work in the representation in terms of the
one-electron eigenfunctions C of Ho alone. The effect
of the short-range collisions must then be treated
separately but we expect it to be small, since H„ is
relatively a small perturbation. Therefore, in both cases,
we have only to consider the direct 6rst-order damping
arising from H;„~.

The major part of the damping arises from the term
~;„~ which we left untouched during the perturbation
tree, tment. Standard time-dependent perturbation
theory gives the probability of having a plasmon k
decay from the first excited state to the ground state,
with excitation of the electron gas from state C o to any
state C
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In such a process, a collective plasmon decays into an
individual-particle excitation of the same momentum.
While a plasmon is an organized electrostatic wave of
polarization, which involves simultaneously many
electrons, an individual particle excitation involves
only the change of wave function of one electron. (If
we use a many-body representation, incorporating JI„,
we do not excite one electron, but rather a small group
of them, localized within a radius k, . Such an excited
state is, nevertheless, quite different from a plasmon. )
The decay of the plasmon corresponds to a process in
which a given electron (or a small group of them),
rather than propagating the electrostatic wave by a
slight displacement, suddenly absorbs the whole energy
of the wave with a drastic change of its wave function.
The long-range order is destroyed, and the collective
plasmon disappears.

In order to express simply all the preceding results,
let us study more closely the distribution of excited
states 4 „for a given value of the momentum change k.
In a one-electron representation, C„corresponds to
excitation of an electron from level y„,„ to level q„-+I„,, „.
The frequency co„p will then form bands, labelled by
the pair (v, v), with ~ 0 depending on x within each
band. This distribution of ~„p will have the same struc-
ture in a many-body solution. I et us denote by
Be„„(x)/BQ the density of states C„ in the band (v, v')

at point a, and per unit cu„p. To a given value 0 of M p

will correspond a finite number of states C„ I several
from the same band if co„o(x) has extrema]. I.et us call
these states 4 g, , where o. labels the different degenerate
states. All our results may be expressed in terms of the
kernel

which may be written in more condensed form

(8.2)

(g(Q,k) is piecewise continuous with respect to Q.j For
instance, we have:

)t g(Q, k)dQ = 1,
0

f-sum rule (8.3)

Glv

g (Q,k)— dO) 1, existence criterion"o Q(ar v+Q)

t'" "g(Q,k)dQ
t
"g(Q,k)dO 1i

GP Q ~ GP Q M

(8.4)

dispersion relation (8.5)
In the absence of a completely satisfactory treatment, we propose
to assume that the resolution of the foregoing difhculties will
yield a result close to (8.1).We return to this question in NP III.

1 KM&
g(~).

OPT 2 GO

(8.7)

We are now able to discuss the convergence of the
perturbation treatment in the range cv„p co, and to
determine the suitable cutoG width, p. The quantity p
must satisfy the two requirements:

(a) It must be small compared to ~. Otherwise, H;„~
would give rise, not only to a line broadening, but also
to an appreciable shift of the plasmon frequency, co.

(b) It must be such that the convergence criterion
(8.6) be satisfied.

The main contribution to the integral (8.6) comes
from 0 close to co. We therefore calculate the integral
replacing g(O) by g(co). Using (8.8), we find easily that
the convergence criterion is roughly

gr))aP/(neo, '). (8.8)

Generally, co and ~„are of the same order of magnitude.
Then the treatment is convergent if

1/r&&g«~. (8.9)

We must therefore choose g larger than the line width
1/r. This is physically obvious: the divergences arise
from real transitions. To get rid of them, we must
choose q such as to cut off most of the plasma line
"area, "and therefore take q larger than the line width.

From (8.9), we draw the general conclusion that the
treatment presented in this paper works only for narrow
lines. In fact, when the line is broad, it becomes difficult
to define its center, and a precise frequency cv is not
meaningful. For each characterization of plasmons
(energy-loss experiments, etc.), it is then necessary to
carry out a special Wigner-Weisskopf treatment in
order to get the observed spectrum. This will be done
in a later publication.

To summarize the conditions of validity of our
treatment, let us say that the method works if Qg(Q)
is much smaller than 1 when Q is of order of magnitude
co. This insures both a narrow line and a satisfactory
convergence of the frequency-shift calculation.

9. INFLUENCE OF THE ION CORE ON
THE PLASMONS

We are now able to discuss our neglect of the core-
valence exchange and correlation eGects. The core
electrons are characterized by very large excitation
frequencies (co o»&o). If we want to include them in the
plasma treatment, we must therefore use the "many-
body" representation which we just defined. Further-

p Cd (o'0' ~00 co 0
g (Q,k) dQ+ g (O,k) dQ & 1,

(~2 Q2) 2 J (~2 QR) 2

convergence criterion. (8.6)

The relative width of the line is 1/&or= W/a&, which is

simply expressed as
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more, in order to treat correctly the exchange between
core and valence electrons, we must treat in the same
way all the electrons, and perform the same canonical
transformations on core and valence coordinates. We
therefore write the initial Hamiltonian in the following
way:

(9.1)H=Kp+ Q —,'Mi'Ei, R i,
k&kc

0„'=4'.V.o.e'/m, (9.2)

where S&,~ is the total number of electrons. This is far
too large, but is drastically reduced when one eliminates
the plasmon-electron interaction. Let us call X„ the
eigenstates of Xp (which are many-body wave functions
describing all the electrons), and denote by fp„and (op&

the corresponding oscillator strengths and energy
differences. The f-sum rule is now

Q, fp, (k) =Xi.t
The dispersion relation then becomes

fp„(k) 1Vioi m

M —
Gop 0 47M

(9.3)

(9.4)

Since we are using a many-body representation, we

can no longer speak of pure "core" excitation or pure
"valence" excitation. However, the co„p will always fall
into classes —-a class of very high cu„p corresponding to
excitation of a core electron with a small admixture of
valence excitation, and a class of reasonably small Q)&p

corresponding to the reverse situation, mainly valence
excitation. To the extent that we may separate these
two categories, we may write the dispersion relation
as follows:

fp„(k) fp„(k)
+ 2

fg p(vai) QP —Mp p(core) GP —
COp

= 1, (9.5)

where the indices "core" and "val" refer to the above
two classes of states X„.

In such a treatment, the spurious transitions of
valence electrons to occupied core levels disappear,
since we take rigorously into account the exclusion
principle. [In fact, the corresponding terms in (9.5)
are canceled by the terms corresponding to transition
of a core electron to an occupied valence level. ] Neg-
lecting the core-valence exchange and correlation
amounts roughly to neglecting the "core" terms in (9.5).

where RA, is the density fluctuation of all electrons

+i= (Pk)valence+ (Pk)core&

and where BCp includes the kinetic energy of all electrons,
the potential of the periodic array of nuclei, and the
short-range interaction between core-core, core-valence,
and valence-valence electrons.

One then introduces the plasmons as if all electrons
were free, and obtains a frequency Q„given by

This will be a good approximation if

4s.e' fp„(k) «1.
m ~(««) oP —

copq

(9.6)

In NP II, we shall see that (9.6) means that the core
has a very small polar'izability; this result confirms our
qualitative discussion of Sec. 2.

The present treatment of the eGect of the core on
plasmons yields the right results. But it is unsatisfactory
in several ways. First, it seems unphysical to introduce
such a large plasma frequency as 0„,and to cancel most
of it in a latter stage. Second, we obtain a screened
interaction H,~ which has a very unsymmetrical form.
We expect the long-range core-core Coulomb inter-
action to be unscreened so that it should appear in the
form

2 ' ir (Pa)core (P i)core. —
k&kc

(9.7)

On the contrary, we obtain an B,~ which is roughly

—Q e~i'{rJIP a+0 ifJs),
&&&c

(iik)mn [(Pk)core]mn jPimny

(P—u)mn [(p li)core jmnX—pimn

(9.8)

10. CONCLUSION

Let us summarize what we have accomplished in this
paper. First, and most important, by our series of
canonical transformations we have shown that there
may exist a set of E' plasrnons which, under suitable
circumstances, represent well-defined elementary ex-
citations of electrons in solids. We have discussed in
considerable detail what are the conditions for the
existence of the plasmon as an independent excitation
in solids. The first condition (our "existence ' criterion)

In fact, the expressions (9.7) and (9.8) are equivalent. .

(They have the same expectation value, and the
differences in the o6-diagonal terms do not matter, for
tightly bound electrons are not sensitive to long-range
correlations. ) However, this is again an esthetically
unpleasant result.

We need therefore a treatment satisfying the fol-
lowing- requirements:

(a) Use of the representation where Kp is diagonal
(in order to treat correctly the short-range correlations).

(b) Introduction at the first stage of plasmons rea-
sonably close to the actual ones.

This may be obtained with a "symmetrized" treat-
ment, where one introduces directly the true field
variables, previously obtained from a study of the
equations of motion. This method is mathematically
more elegant, but. more formal, and leads to a compli-
cated discussion of the approximations. It will be
published elsewhere.
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is that the electrons be su@ciently free to take part in
an electrostatic excitation. In other words, we require
a highly polarizable gas, which means that a sizeable
fraction of oscillator strengths correspond to transitions
in which co„p((G0&. Our dispersion relation also shows
that only the low-energy oscillator strengths are
important in the determination of the plasmon energy.

The plasmons are not completely independent ex-
citations, since a plasmon may decay into an individual
electronic excitation. In Sec. 8 we have derived an
expression for this damping, which confirms the result
obtained by Wol6 and Kanazawa. However, we should
like to emphasize that such a result depends on the
assumption that neither the subsidiary condition, nor
H,„, alter markedly the individual electronic excited
states for which or„o co„.This question is still q.ot clear;
we return to it in XP III.

We have developed a satisfactory description of the
plasmons only if our series of canonical transformations
is convergent. Our "convergence" criterion is that the
majority of the oscillator strengths correspond to co„o

much larger or much smaller than or„. This criterion
also guarantees a narrow plasma line, which, however,
may be shifted very much from the free electron one.
Where both the "existence" and "convergence" criteria
are satisfied, then, we expect to find well-defined plas-
mons, with a lifetime which is long compared to 1/&u.

We have stated that we expect to find both of these
criteria satisfied in a wide variety of solids. It is of
course desirable to have an experimental check on this
point. We postpone the comparison of our theoretical
expectations with experiment to NP IXI, because it is
desirable to introduce the concept of the dielectric
constant before carrying out the comparison.

Where our existence criterion, but not our con-
vergence criterion, may be satisfied (as in the transition
and noble metals), we still expect to find plasmons. The
plasmon "lines" will be broad and the energy sub-
stantially shifted from Ace~. Under these circumstances,
we are simply not able to describe their properties
accurately.

What of the electrons? The electrons are found to
interact through a screened Coulomb interaction. They
are further subject to a set of subsidiary conditions
which reduce the number of independent electronic
degrees of freedom from 31K to (31' 1P). The sub-—
sidiary conditions may also alter somewhat the ex-
citation spectrum of the individual electrons. They do
not, however, influence the calculation of the ground
state energy of the solid, since for this state they are
automatically satisfied.

Thus, for a solid for which plasmons are a well-defined
elementary excitation, we may expect to be able to
calculate the cohesive energy, and the position of the
energy levels, for instance, by solving the Hamiltonian,
Hs+H„+H, n. We may further anticipate that H, n

will not influence the energy levels appreciably; its
low-energy matrix elements are strongly screened,

while the high-energy matrix elements, which are not,
will not be effective. (Tightly bound electrons are not
sensitive to a long-range interaction. )

We accordingly propose Hs+H„as the basic electron
Hamiltonian in "well-de6ned plasmon" solids. (Li, Na,
Be, Mg, Al, Si are a few examples of such solids. ) One
still has a complicated many-body problem. However,
the simplification arising from the appearance of H„
rather than the full Coulomb interaction in the Hamil-
tonian may be considerable. For instance, in doing a
Hartree-Fock calculation, the exchange contribution
will be markedly reduced in magnitude. One might
accordingly hope that calculations which have displayed
extreme sensitivity to the form chosen for the exchange
potentiaP' will lose that sensitivity when the proper
screened exchange potential is introduced. A sensible
approximation for the above solids might be to carry
through a Hartree-Fock calculation for Hs+H„, then
combine it with the free electron value for the corre-
lation energy to get the cohesive energy and energy
levels for the system. (A variational choice of k, could
be made, unless an experimental value" is available,
in which case the latter would, of course, be preferable. )
A calculation of just this kind has been carried out
recently by Heine" for Al; in this fashion he has
achieved considerable success in obtaining the experi-
mentally observed properties of the electrons.

We saw in Sec. 7 that our c'alculation was best
carried out in a representation where (Hp+H ) was
diagonal, since then we automatically include correctly
the correction to plasmon behavior arising from H„.
When most of the co „are much smaller than oi~ (very
weakly bound electrons), we can also use a represen-
tation in which Ho alone is diagonal, since we are then
able to justify the neglect of the terms arising from H„.
Our ability to do this is essentially limited by the extent
to which H„represents a relatively small perturbation
on the electron motion. H„may give a large shift of the
total energy, and our treatment using the eigenstates
of Ho alone may still succeed. As far as its success is
concerned, we require only that H„change slightly the
matrix elements (p&)„s and the energy differences N„p.
When these quantities are strongly affected by H„, we
must switch to the many-body representation, and try
to approximate the influence of H„on the (pl,)„s and
the ~ 0 in some other way.

As long as k, is smaller than any vector K of the
reciprocal lattice, the screening does not aGect the
Fourier components of wave vector K of the Coulomb
interaction. We know that such components give rise
to the usual Hartree potential. Therefore, the screening

only aGects the exchange potential. If, however, k, lies
outside the first Brillouin zone, a new situation arises.

"See, for instance, J. Callaway, Phys. Rev; 97, 933 (1955).
'o H. Watanabe, J. Phys. Soc. Japan-ll, 112 (1956); for a

discussion of yet another method of determining k„see R. A.
Ferrell, Phys. Rev. 107, 450 (1957).

n V. Heine, Proc. Roy. Soc. (London) (to be published).
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We have seen that in such a case there is a direct
coupling between plasmons of different momenta. It
moreover leads to a physically absurd Hartree po-
tential: while the component of wavelength K of the
electron interaction is screened, the component V~ of
the periodic potential of the nuclei is not. Since it is
physically obvious that the electrons shield the nuclei
as well as the electrons, the result is incorrect. For the
variational choice of k, discussed in Sec. 4, it is
marginal whether such a situation will arise in practice,
even in multivalent solids for which it is most likely.
It is not difficult to take into account the direct coupling
between plasmons of different momenta, and such a
calculation will be outlined in NP IV. Finally, we
remark that if V~ is small, no diS.culties at all will

arise, since one then has essentially the free electron
case.

In conclusion, we remark that in this paper we have
determined the conditions under which plasmons can
be regarded as well-defined physical entities. No prob-
lem arises with the subsidiary conditions, as far as the
plasmons age concerned, because the plasmons do not
appear in them. The ground-state energy of the electron
system is likewise unaGected by the subsidiary con-
ditions. At this stage we have not clarified the nature
of the remaining electron excitatioris; we consider the
problem in the next two papers of the series.

One of us (P.N. ) wishes to acknowledge the grant of
a Jane Eliza Procter Visiting Fellowship during the
year 1955—1956, and a John B. Putnam Fellowship
during the year 1956—1957.

(X~)-=g-(»)- (A2)

where g „is an unknown quantity, depending on both
states C„and 4

APPENDIX

We want to find an operator Xy which describes a
physical variable of wavelength k, oscillating at a well-

defined frequency or. We must therefore have

Xi,= (i/h)[H, Xi,]=iooXi, (A1)

Any operator describing a longitudinal motion of wave-
length k must be deduced from p~, which has the same
translational properties. Let us therefore try

@(& O~mn)gmn(») mn

4xe'
(»)-&(1(i~)o.I'(g.o

—go.)} (A4)
k2 p

(A4) is trivially solved and gives the following result:

4 " »-oI (»)o-I'
1=

k A ~ 6) M&o

4~e' fo (&)
(A5)

SZ '+ QP co~a

gmn &/(OO limn) y (A6)

where c is an arbitrary constant.
(A5) is just the dispersion equation for the plasmon

frequency, proposed by Mott, which we obtain in Sec.
5 by another method. (A6) gives g „,and therefore de-
termines the oscillating variable XI„-. If co is much
smaller than co, we see the X& is roughly proportional
to p~, which confirms the result of Sec. 3. If, how-
ever, a large part of the co „are larger than co, X~ dif-
fers appreciably from pj, . This determination of the
true Xl, constitutes in fact the starting point of the
symmetrized treatment mentioned at the end of Sec. 9.

Let us remark that this determination of the dis-
persion equation is valid for any longitudinal mode.
If there are several modes of wavelength k (analogous
for instance to the optical and acoustical longitudinal
phonons), their frequencies must correspond to diBerent
roots of the gwine dispersion equation (A5). In NP III,
we shall verify this property for the two kinds of
plasmons occurring in an impurity semiconductor.

If we put this value of Xl, in (A1), we get a set of
equations for g „, which are too complicated to be
solved rigorously:

2%8
&(~—~-)g-(c ~)-=Z

k"

+p-+ps, Xs]) .. (A3)

If, however, we make the random phase approximation,
and replace the commutator Lpi, ,Xi], by its expection
value, Eqs. (A3) are considerably simplified, and
become


