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Distortion of the Lattice around an Interstitial, a Crowdion, and a Vacancy in Copper*
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A general method for calculating lattice distortions around
point defects is proposed. Atoms in a su%ciently large region I
around the defect and in a "boundary" region II around region I
are treated as discrete particles. A set of proper elastic solutions
is joined to the displacements of the atoms in region II. The
equilibrium state of the lattice is determined by successive solution
of sets of linear algebraic equations. Actual calculations have been
done with the help of the Illiac digital computer for an interstitial,
a crowdion, and a vacancy in copper. The changes in volume of
the crystal arising from these defects are found to be 1.7, 1.1,
—0.53 and 2.0, j..3, —0.45 atomic volumes respectively for the

two Born-Mayer repulsive potentials we have used. )See Eqs. (7).g
In addition to the distortion of the lattice around an isolated
defect, we treat the distortion around an interstitial-vacancy pair.
The electronic contributions to the formation energies of the
defects considered are estimated in a way similar to that used by
I'umi in the case of a vacancy. However, the change in the eAective
charge of the defect with lattice dilatation is also taken into
account. The formation energy of a crowdion is found to be about
0.6 ev higher than that of an interstitial. The calculated values of
the change in volume are discussed in connection with recent
experimental results on radiation damage in copper.

I. INTRODUCTION

' 'HK nature of the lattice defects produced in noble
metals during radiation-damage experiments at

low temperatures is stil1 an open question. ' At least in
the case of irradiation with electrons it is supposed that
interstitial atoms and lattice vacancies are produced
rather than larger defects such as supercooled displace-
ment spikes. The following questions arise: Where are
the interstitial atoms located in the lattice and how has
the lattice relaxed' Is there a unique interstitial con-
figuration with a formation energy markedly lower than
other equilibrium configurations or are there several
conlgurations (perhaps rather a continuum) with
nearly the same energy of formations

In this paper we treat particularly the distortion of
the face-centered-cubic (f.c.c.) copper lattice and deter-
mine the change in volume of the crystal for two par-
ticular hypothetical models of an interstitial and for a
vacant lattice site. The first interstitial model to be
considered was introduced by Huntington and Seitz';
it is called "8"in their papers and simply "interstitial"
here. In this configuration the interstitial atom lies at
the center of an elementary cube of the f.c.c. lattice.
The second model is the "crowdion" first proposed by
Paneth, ' where the interstitial atom lies in a closest
packed row of the lattice.

Knowing the change in volume caused by one Frenkel
pair (vacancy plus interstitial) when the interstitial is
in one of the assumed configurations, one can determine
the resistivity Ap associated with one atomic percent of
Frenkel pairs from the experimental values for the
change in volume and increase in resistivity of an
irradiated specimen. On the other hand, Ap may be
obtained by using the simpl. e theory of displacement. '

*Assisted by the Once of Naval Research.
~ The present status of the entire topic is surveyed in an article

by F. Seitz (to be published).' H. B. Huntington and F. Seitz, Phys. Rev. 61, 315 (1942).' H. Paneth, Phys. Rev. 80, 708 (1950}.
F. Seitz and J. S. Koehler, in Solid State I'hysics, edited by

F. Seitz and D. Turnbull (Academic Press, Inc, , New York, 1956),
Vol. 2, p. 305.

By comparing the two values thus obtained for Ap with
one another, it may be possible to decide whether one
of the two proposed interstitial configurations actually
occurs.

To the writer's knowledge the only calculations for
crystal distortions due to defects which take into
account the atomic structure of the crystal in the
vicinity of the defect are those of Huntington„' Fues
and Stumpf, ' and Kanzaki. ' Kanzaki's method is based
entirely on the discrete nature of the lattice. His main

point is the adoption of an expansion of the displace-
ments, as in the dynamical theory, in normal coordi-
nates. In the method developed by Fues and Stumpf
the solution of the problem is reduced to the successive
solution of systems of linear algebraic equations. The
distortion of the lattice far from the defect is written as
the superposition of displacement fields of point forces
in the elastic continuum. These solutions are centered
on several atoms near the defect. Huntington deter-
mines the distortion of the lattice around an interstitial
atom in copper by treating atoms in the vicinity of the
interstitial atom as discrete particles and by fitting
proper elastic solutions to the atomic displacements.

The method proposed in this paper contains some
features of the methods of Huntington and of Fues and
Stumpf. The atoms in a su8Rciently large region I
around the defect and in a region II around region I are
treated as discrete particles. A set of proper elastic
solutions is joined to the displacements of the atoms in

region II. The thickness of this "boundary" II between
the nonelastically deformed region I and the elastically
deformed continuum depends on the range of the atomic
forces. The equilibrium state of the lattice is determined

by successive solution of sets of linear algebraic equa-

tions. (The procedure for deriving these equations

differs from that in reference 6.) At each step one

calculates the displacements of the atoms from the

' H. B. Huntington, Acta Meta. 2, 554 (1954).
e E. Fues and H. Stumpf, Z. Naturforsch. 10a, 136 (1955).' H. Kanzaki, J. Phys. Chem. Solids 2, 24 (1957}.
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"equilibrium positions" given in the previous step. In
this way rapid convergence is attained. Application of
the method to concrete problems is much less compli-
cated and requires considerably less numerical eGort
than the methods of Kanzaki and of Fues and Stumpf.

In addition to the distortion of the lattice caused by
an isolated interstitial, a crowdion, and a vacancy we
treat the distortion around an interstitial-vacancy pair.

Ke also estimate the formation energies of the defects
considered. The procedure is closely analogous to that
used by Fumi' for the case of a vacancy. However, the
effect of the lattice dilatation on the electron scattering
is also taken into account.

II. GENERAL METHOD

Essentially this method for calculating lattice dis-
tortion around point defects involves a combination of
the atomic with the continuum treatment of the crystal.
I.et the energy of the crystal disturbed by the defect be
given by U(v&, v&, ), where the v, are the displace-
ments of the atoms from suitably chosen starting
positions. The lattice relaxation is determined by
minimizing V in a variational approach. The displace-
ments from the original lattice positions of the atoms
outside a sufficiently large region (called region I)
around the defect are small and vary slowly from atom
to atom. They correspond to an elastic solution v(r),
where v is the displacement and I' the position vector.
By elastic solution we shall mean a solution of the
elastic differential equations for the displacements. We
expand v(r) in elastic solutions u~(r), , u„(r), which
are members of a complete set, with coefficients

$1) '' )Pn ~

v(r) =y~u~(r)+ +y„u„(r). (1)

Proper solutions u„can be built, for example, from the
derivatives of the fundamental integral of the elastic
differential equations for the displacements. Then the
u, are displacement fields due to dipole, quadrupole,

~ ~, forces centered on the point defect. Only solutions
u„which vary relatively slowly from atom to atom out-
side region I will be taken into account in the expansion
(1).The number n of these solutions depends on the size
chosen for region I and increases with increasing
size of I.

Through relation (1) the crystal energy U becomes a
function of the displacements v~, ~ ~, v; of the atoms

, j inside region I and of the coeKcients y.~,

of the elastic solutions u, . Minimizing U with respect
to these arguments leads to the conditions:

where j+1, j+2, . denotes the atoms outside
region I. In general the forces —BU/Bv„acting on the
atoms depend on the positions of all the atoms in the
crystal. In the case of a nonpolar crystal however it
seems reasonable to assume that the eGects of region I
are negligibly small in a region sufBciently far from I.
We denote this distant region by III and designate the
boundary-region between I and III by II. With this
assumption the atoms of region III are automatically
in equilibrium for all elastic deformations of regions II
and III, because all contributions to the forces acting
upon atoms there arise from the elastically deformed
regions. That is to say the forces —BU/8 v. in region III
vanish. Therefore the infinite sum in Eq. (2b) reduces
to a finite sum containing only terms associated with
the atoms in region II.

Equations (2a), (2b) for the unknowns v.. . v, and

, y„can be reduced to a set of linear algebraic
equations in these unknowns, if one approximates all
forces —BU/8 vby expressions containing only linear
terms in the displacements. In the case of an interstitial
atom in a noble metal the displacements of neighboring
atoms from their original lattice positions are so large
that an expansion of the corresponding exponential core
repulsive forces in these displacements converges very
slowly. This difhculty can be avoided by choosing
starting positions, from which the displacements are
calculated, diA'erent from the original lattice positions
and which lie su%ciently near to the equilibrium posi-
tions. In an actual calculation proper starting positions
can be obtained by trial.

The accuracy of the method is improved as the size
of region I is increased. By successive solution of the
systems of linear algebraic equations arising from
Eqs. (2a), (2b), and (1) it is possible to determine the
equilibrium positions of all atoms to any desired degree
of accuracy, subject only to the limitations imposed by
the size chosen for region I.At each stage the coefficients
of the linear algebraic equations are calculated from the
linear expansions of the forces —BU/Bv„ in the dis-
placements of the atoms from their "starting positions"
obtained in the previous step as "equilibrium positions. "

The main problem in determining lattice distortion
is to find a suSciently good approximation to the
forces —BU/Bv„when expressed as functions of the
lattice relaxation. Fortunately in the case of noble
metals the overwhelming contributions to the forces

(i=1, , j), (2a)

By„&v;+~

BU
u-(*,+ )+ u-(r +2)+.

Bv;+q
(m=1, , n), (2b)

' F. G. Fumi, Phil. Nag. 46, 100'7 (1955).
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FIG. 1. Interstitial
configuration in the
face-centered-cubic lat-
tice. Elementary cubes
of the f.c.c. lattice are
drawn. Q = interstitial
atom. A, 8, F, S, X,
V, C=atoms of region I.
I', U, E, Z, D= atoms of
region II.



DISTORTION OF LATTI CE

probably arise from the repulsive interactions between
adjacent closed-shell ions. In our actual calculations we
take into account only these repulsive forces. Region II
then contains only one layer of atoms. The stability of
the lattice arises from the treatment of region III as
an elastic continuum.

BU„VO

p v

with

eiv+ I Viv eiv(eiv ' Viv )$

r'. '1
—e;.(e;. v,„')—exp —(ro—r;„), (5)

P -P

Ieiv= riv/ riv and viv = viv/riv.

For the potentials we use r;„is very much greater than P,
so that we can neglect the second term in (5) in com-
parison with the third.

The elastic solutions are joined to the atoms P, U,
E, Z, D, and the atoms equivalent to these. Equations
(2a) need to be set up only for the nonequivalent atoms

III. LATTICE DISTORTION DUE TO AN
INTERSTITIAL AND A VACANCY

In Fig. 1 the f.c.c. lattice is shown with an interstitial
atom Q in the "interstitial" configuration. The displace-
ments of the lattice particles will have cubic symmetry
with respect to the center Q and the axes parallel to
the crystal axes. A number of typical atoms around the
interstitial atom with nonequivalent displacements
have been denoted by the letters A, 8, F, etc. (2, 8, F'

are first, second, third neighbors).
In the case of a noble metal the most important con-

tributions to the forces arise from the repulsion between
closed shells of adjacent ions. According to the Born-
Mayer theory the repulsive potential between a pair of
ions has the form,

V= Vp expL(rp —r;„')/p]. (3)

Vo and p are the constants of the potential, ro and r;„'
are the distances between neighboring atoms i and v in
the undeformed and in the deformed crystal, respec-
tively. As indicated in Sec. II we start from certain
positions of the lattice particles, which are in general
diferent from the original lattice positions. The radius
vector from atom v to atom i, both lying in their starting
positions, is denoted by r;,. The displacements of the
atoms are designated by v, and v„- respectively. There-
fore, r,„' in (3) is equal to

r,„'=
f
r;.+v;—v„[ =

[ r,,+v;, f, (4)
with

V =V —VtP 4 P»

We expand the repulsive force —BV/Br;„' upon atom i
arising from atom v in a Taylor series in v;„and neglect
terms involving quadratic or higher powers of v;„.
Summing over all next-nearest neighbors v of atom i,
one obtains for the repulsive force —BU„/Bv; acting
upon atom i (U„ is the sum of the repulsive potentials),

A, 8, I', X, 5, V, and C of our region I, since con-
sideration of other atoms yields no further independent
equations. There are no repulsive forces from atoms of
region I acting on the atoms outside P, ~, D in the
elastic region. Therefore, by definition, they lie in
region III, provided one neglects long-range sects
arising from region I. Region II contains the atoms
P, U, E, Z, D, and atoms equivalent to them. In setting
up Eqs. (2b) with terms (BU,/Bv„) u (r„) one can
make use of the fact that the scalar products are equal
for equivalent atoms. There are 24 atoms of the type
P, E, Z, D, and 48 of the type U.

Now we determine the elastic solutions u„ for our
interstitial problem, assuming an isotropic elastic ma-
terial. The general elastic solution can be represented as
the sum of a gradient and a curl. Since we have full

cubic symmetry the curl must vanish and the solution
has the form grad/, P having full cubic symmetry. In
this case P must be a solution of Laplace's equation.
Therefore f can be expanded in solutions with radial
parts r &'+'& and angular parts which are the Kubic
Harmonics of type o, and of order / given by Von der
Lage and Bethe. ' We use only the erst two of these
solutions. They are written in the form,

ui ——(a/2)'r/r',

«s ——(ii/2) '10' grad( (1/r) 'L (x4+y'+ z')/r' —
s ~),

(6)

where a is the lattice constant, and r is the radius vector
from atom Q with length r and components x, y, s with

respect to the cubic axes. By including solution u2 we

can, for example, allow for the fact that atom E will be
pushed outwards by a larger amount than atom P.
With the factor 10' in u2, the displacements of atom P
due to u~ and u2 have the same order of magnitude.
The elastic solutions generated by the Kubic Harmonics
of higher order cannot be used with our special choice
of region I because they vary too rapidly from atom to
atom outside region I.

We finally obtain from Eqs. (2a), (2b), together with

Eqs. (1) and (5), a system of 13 hnear algebraic equa-
tions with 13 unknowns, including the coeKcients y~, y2
of the elastic solutions (6). The equilibrium state of the
lattice is determined by iteration as described in Sec. II.
The linear algebraic equations were solved on the
Illiac. The results for copper shown in Table I refer to
the two Born-Mayer potentials Vi and Vs (see for-
mula (3)j,

Vi= 0.053 expL13.9(ro—r,,')/rp J ev per ion pair,
(7)

V.„=0.032 exp[17(rp —r;„')/rpj ev per ion pair.

Vj was proposed by Huntington" and V2 by Huntington
and Seitz. ' (Vs is given in the corrected form reported
in reference 10.) The displacement vectors of the atoms
A, 8, V, and V are designated by (n,0,0), (b, b, b), —

9 F. C. Van der Lage and H. A. Bethe, Phys. Rev. 71, 612
(1947).

"H. B. Hnntington, Phys. Rev. 91, 1092 (1953).
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TABLE I. Lattice distortion, volume change of the crystal, and formation energy for an interstitial, a vacancy, and a crowdion in
copper. Results are given for Born-Mayer potentials U& and U2 PEqs. (7)]. In the 6rst column are shown the results obtained by
Huntington. ' (Displacements of the atoms in units of a/2, where a is the lattice constant. Volume changes in units of 0=a'/4=one
atomic volume. All energies are in ev. )

Interstitial
V1

Vacancy
vi vs

Crowdion
vi

Components of displacements

CoeKcients of elastic solutions

Total volume change he
Volume change Av'

0.210
b

y1 0.052
y3 0.052
~1
'V3

0,320
Y2

3.01
2.01

0.246—0.013
0.048
0.052
0.017
0.016
0.177
0.072

1.67
1.11

0.257—0.008
0.053
0,057
0.020
0.018
0,213
0.105

2.01
1.34

—0.023 —0.019—0.002 —0.002

—0.054 —0.046

—0.53 —0.45—0.35 —0.30

A
I

y,
'

x'
CI

I
I

C3
2:I

Pl
V2'

I
V3

0.599
0.395
0.218
0.043
0.031—0,041
0.354
0.046
0.124

1.10
0.73

0.605
0.413
0.237
0.049
0.039—0.048
0.416
0.047
0.130

1.25
0.83

Closed-shell repulsive energy AU„
Electron energy AE, &

Formation energy Ey

2.3
0.2

2.1
0.5

2.6

0.9

0.9

1.0 '

1.0

3.6—0.4

3.2

3.4—0.2

3.2

a See reference 5.

(y&,O,ys), and (s&,0,es), with components referring to the
cubic axes. The displacements of atoms X, S, C are
not included in Table I; they are found to be quite
diferent in direction and magnitude from displacements
proportional to u~. For purposes of comparison the
table contains the results obtained by Hunting ton'
using repulsive potential V». Huntington s calculation
difI'ers from ours not only in the general procedure
employed, but also in the following respects: He joins u&

to atoms X, S, V, C; higher order solutions than u~ are
not considered; displacements of atoms 8 are neglected
and the displacements of atoms I are restricted to the
directions given by the radii vectors from atoms A to I

Table I also contains the values of the change in
volume of the crystal caused by an interstitial. These
values are calculated from the coefficients yi of the
elastic solution u& by using a formula due to Eshelby"
which takes into account the eGect of the image dis-
placement field produced by the surface tractions,

~s= 2wytDL3(1 —v)/(1+ v)],

where v is Poisson's ratio, 0= a'/4 is one atomic volume
in the f.c.c. lattice, and v in copper is taken to be -', . In
addition to the total change in volume A~ the table
contains the volume Av'= 2~yiQ which is displaced
through any closed surface, containing the defect, in
an iePmite matrix.

The change AU„of the closed-shell repulsive energy
given in Table I is measured relative to the repulsive
energy of the regular lattice plus the "interstitial" atom
lying at the surface. Only repulsive "bonds" of the
atoms of region I were considered in calculating DU„.
The change in energy of the exterior of region I is
determined by calculating the elastic energy from the

"J.D. Eshelby, J. Appl. Phys. 25, 255 (1954).

elastic solutions. This contribution is found to be always
smaller than 2.5% of DU„.

The procedure for calculating the crystal distortion
due to a lattice vacancy in copper is in close analogy
to that used in the case of an interstitial. Region I is
defined to include the first and second nearest neighbors
of the vacant lattice site. The elastic solution u~ is
joined to the next-nearest atoms to region I. The
results are shown in Table I. The displacement vectors
of a first and a second nearest neighbor lying in the
positions (1,1,0)a/2 and (2,0,0)a/2 are represented by
(X,X,O) and (8,0,0) respectively.

c"'l
F}I $ Cl
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FIG. 2. Crowdion configuration in the face-centered-cubic lattice.
Elementary cubes of the f.c.c. lattice are drawn. The axis through
G' and G is the crowdion axis. 0=center of inversion. A, 8, Y, X,
C, Z and A', -, Z'=atoms of region I. F, G, Il', G', ~ =atoms
of region II.

IV. LATTICE DISTORTION AROUND A CROWDION

Ke consider a crowdion lying in a closest packed
(110)-row of the f.c.c. lattice. In Fig. 2 the atoms
O', X', II', 2', 2, Y, X, 6 lie along the axis of the
crowdion, atom A', for example, being the extra atom.
Atoms at the corners of rectangles centered on the
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crowdion axis and lying in (110)-planes are labeled
Ii', C', 8', 8, C, F. The point 0 that was-occupied by
atom A before the interstitial atom A' was introduced,
is a center of inversion in the deformed lattice. The
lattice would also be in equilibrium if one put the extra
atom A' at a point where the crowdion axis is cut by
one of the rectangles drawn in Fig. 2. In this case the
extra atom itself is a center of inversion. In general
these two configurations will have diferent formation
energies, one being the stable and the other the saddle-
point conaguration.

Ke have treated only the configuration shown in
Fig. 2. The deformed lattice is invariant with respect to
reflections in (110), (110), and (001)-planes passing
through the point 0. In our calculation region I was
defined to include the atoms A, I', X, 8, C, Z, and atoms
equivalent to them. Of the three elastic solutions which
are joined to the next-nearest atoms to region I, two
correspond to two "double forces without moment""
acting at the point 0 along the (110) and (001)-axes,
respectively. (In a "double force" the distance between
the points at which the two forces of opposite direction
are applied is infinitely small. ) The other elastic solution
corresponds to two point forces in the directions (110)
and (110) acting"at the original lattice positions of
atoms X and X', respectively. This solution is more
appropriate than that corresponding to a douMe force
at 0 in the (110)-direction, because the crowdion is
much extended along its axis. Higher order elastic
solutions corresponding to quadrupole, , forces are
neglected. The elastic solutions for the two double
forces in an isotropic elastic material, "designated by
u2' and u3', are written in the form,

uq'(r) = (a/2)'(1/r)'L2(1 —2v) cos8e~

+ (3 cos'8 —1)r/r]. (9)

Here ) =2, 3. The quantities eq are the unit vectors in
the directions (110) and (001), respectively. The
quantity r is the radius vector from 0, 8 is the angle
between r and e)„and v is Poisson's ratio. The other
elastic solution denoted by u& is the superposition of
the solutions u(r) for the two point forces, "with

u(r) = (a/2w) (a/2)'(1/r)L(3 —4v) e+cos8r/r$, (10)

where e is the unit vector in the direction (110) and
(110), respectively, and r is the radius vector from the
original lattice position of atom X and X, respectively.
The quantity 0 is the angle between r and e, and m is the
distance between the original lattice positions of the
atoms X and X'.

The lattice relaxation was again calculated in the way
described in Sec. II. The number of linear algebraic
equations is 13, the unknowns being the components of
the displacements of the atoms A, 7, X, 8, C, Z and the
coeKcients y~', y2', and y3' of the elastic solutions u~',

"See, for example, A. E. H. Love, Mathematical Theory of
Elasticity (Cambridge University Press, New York, 1952).

u2', u3'. Results for potentials V~ and V2 obtained with
the help of the ILLIAC are included in Table I. Only
components of the displacements of atom A with respect
to 0 and of atoms F, X, C, and Z' with respect to their
original lattice positions are shown. The displacement
vectors are represented by (rr', 0,0), (y',0,0), (x',0,0),
(ct', cs', cs'), and (O,s',0), with components referring to
axes in the (110), (110) and (001)-directions. At large
distances from 0 the elastic solution u~' corresponds to
that of a double force at 0 in the direction (110).The
factor (a/2to) is introduced in Eq. (10) so that the
coeKcient y&' of u&' can be compared directly with the
coefficients y2' and y3' of the solutions u~' and u3' for
double forces.

The change in volume of the crystal due to a crow-
dion depends both on the shape of the crystal and on the
position of the crowdion in the crystal. The values for
Ae and Ae' shown in Table I refer to a crowdion lying
at the center of a sphere whose surface is free or lying
inside an infinite matrix. The relation he= Ae'3 (1—v)/
(1+v) originally derived by Eshelby for the case of the
elastic solution u& and surface of an arbitrary shape still
holds in this particular case.

It should be pointed out that in calculating the
change AU„ in the repulsive energy only repulsive
"bonds" of the atoms of region I were considered.

V. FORMATION ENERGY

The procedure for calculating the change in the
electron energy when an interstitial or a vacancy is
created .in a monovalent metal is closely analogous to
that used by Fumi' in the case of a vacancy. However,
the eGect of the change in volume Ai' of the metal
arising from the strain 6eld around the defect is also
taken into account. The metal is represented as a large
spherical box in which the positive charge of the ions is
distributed uniformly and the electrons are free. In
order to create a vacancy an ion is removed from the
center of the sphere and spread over its surface, whereas
in the case of the creation of an interstitial a charge
equal to one ion is removed from the surface and
brought into the center. Then a change Av' in the
volume of the sphere is produced by applying the
elastic solution De'r/4sr'. The change in the energy of
the conduction electrons is calculated in two steps. In
the first step the electrons are distributed uniformly
over the contracted or expanded metal containing the
vacancy or the interstitial, respectively. Upon com-
paring the total kinetic energy of the electrons with the
total kinetic energy in the normal metal, it turns out
that the energy of the electrons has altered by

Here Z= —1 for a vacancy and Z=+1 for an inter-
stitial, 0 is one atomic volume, and Ep is the Fermi
energy. In the second step the change in energy hE,&"
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caused by the redistribution of the electrons is deter-
mined. In the case of a spherically sy:zrnetric self-
consistent potential V(r) around the defect, AE.t" is
given by

with

gg2
pic

j'

~Z(&)~~,
J

(12)

(13)

In these equations k& is the momentum of the electrons
at the Fermi level, and tit(k) is the phase shift of the
radial l waves for a free electron having energy h'k'/2m*.
Fumi has shown that the potential V(r) can be elimi-
nated with the help of the Friedel sum rule if one uses
the Born approximation to calculate the phase shifts.
The Friedel sum rule" states that

Z(kp) =Z', (14)

where —eZ' is the "displaced charge" around the
defect, Z' being the number of electrons locally at-
tracted or repelled from the defect to give complete
screening of the Coulomb potential (e is the positive
elementary charge). Fumi's result for AE,&" in the
Born approximation, which was originally applied to a
vacancy, can be generalized easily to the case of a
defect with a displaced charge —Z'e. The result is

AE,i"= —~~ EpZ'. (15)

It would be wrong to set Z' equal to +1 or —1 in
the case of an interstitial or a vacancy, for the change in
volume Dv' of the metal alters the displaced charge in
the defect region. If —Ze is the displaced charge when
there is no volume change A~',

Z'= Z—(Av'/0). (16)

This can be seen in the following way. The displaced
charge is equal to the negative of the net excess charge
which remains in the defect region when the electrons
are distributed uniformly over the metal. Around the
defect draw a sphere of a radius sufIiciently large that
the elastic solution dn r/4~r' is valid outside it. It is
clear that if the net excess charge inside this sphere is Ze
before volume change, the net excess charge inside the
expanded (or in the case of a vacancy, contracted)
sphere is Z'e, since the amount of positive charge inside
the expanded sphere is unchanged whereas the charge
of the uniformly distributed electrons inside this ex-
panded sphere has altered by —d, tt'e/Q.

Combining Eqs. (15) and (16), we have,

(17)

"J.Friedel, Phil. Nag. 43, 153 (1952); J. Friedel, in Advances
im Physics, edited by N. F. Mott (Taylor and Francis, Ltd. ,
London, 1954), Vol. 3, p. 446.

From Eqs. (11) and (17) one obtains for the total
change in energy AE, & of the electron gas,

(18)

Fumi found that if he approximated V(r) for a
vacancy by a square-well potential with a radius equal
to rq, the radius of the Wigner-Seitz sphere, a more
exact calculation gave AE,t"——0.57Er instead of 2Er /3
as it is obtained from Eq. (17) for Ae'=0. However,
a self-consistent calculation by Huntington" has shown
that the displaced charge around a vacancy extends
over distances much larger than r8. We repeated Fumi's
calculation, taking the radius of the square-well poten-
tial equal to 2rz and values of Z' in the Friedel sum
rule (14) given by Eq. (16), and found the values of
DE.&" to be nearly the same as those given by Eq (17.).

The values of AE, t calculated from Eq. (18) are
displayed in Table I. The Fermi energy in copper was
taken to be EI ——5.1 ev. This value is derived using an
effective mass of m*=1.38 which was deduced from
measurements of the heat capacity of copper reported
by Rayne. "

VI. LATTICE DISTORTION AROUND AN
INTERSTITIAL-VACANCY PAIR

Blewitt et al." found that the ratio of the energy
released and the decrease in resistivity during the
annealing of copper bombarded with neutrons near
10'K appears to be much smaller than might be
expected on the assumption that interstitials and
vacancies annihilate one another. A possible explanation
of this "energy paradox"' might be that interstitials and
vacancies come so close together, without actually re-
combining, that the resistance due to the associated
pairs is much less than that due to the dissociated
pairs. To check this proposal one must first find the
stable pair configuration with the smallest distance
between the interstitial atom and the vacancy.

We have treated in detail the configuration in which
the vacancy lies at the position I' relative to the inter-
stitial atom Q (see Fig. 1).The calculation of the lattice
distortion follows the general procedure described in
Sec. II, As starting positions in the first step we choose
the equilibrium positions of the atoms around an iso-
lated interstitial atom at Q. Atom Q and most of the
atoms equivalent to atoms 3, 8, I" are allowed to relax
(atom V itself is absent), whereas the atoms farther
away from Q are considered as fixed. Consideration of
these more distant atoms would give only small correc-
tions. We obtain sets of 15 linear algebraic equations
which have been solved on the ILLIAC. The result is
that there exists no equilibrium state of the lattice for

'4 H. B. Hnntington, Phys. Rev. 61, 325 (1942)."J.A. Rayne, Australian J. Phys. 9, 189 (1956).
' Blewitt, Coltman, Noggle, and Holmes, Bull. Am. Phys. Soc.

Ser. II, 1, 130 (1956).
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the pair con6guration considered: the atom A moves
into the vacant lattice site at F.

The interference effects in the electron scattering
arising from possibly stable interstitial-vacancy pairs
with a distance between the defects larger than that
between atoms Q and I' are estimated in the Born
approximation. The scattering potentials are approxi-
mated by square-well potentials. By using Friedel's sum
rule the strengths of the potentials can be expressed in
terms of the eRective charges of the defects. It turns out
that if one uses reasonable values of the well-radii and
takes the distance between interstitial atom and vacancy
to be at least as large as the distance between atom Q
and atoms X and C respectively, the decrease in re-
sistance is always less than about 10/o of the resistance
of the dissociated pair.

It should be pointed out that the configuration with
the vacancy at 8 and the interstitial atom at Q may be
stable. However, in order to reach this configuration
during annealing, the system must pass through an
unstable con6guration which leads to recombination.

VII. DISCUSSION

The values of the change in volume of the crystal
due to an interstitial, a vacancy, and a crowdion in
copper, shown in Table I, have been determined by
taking into account only the repulsion of closed shells
of the ions. With our present knowledge it does not seem
possible to decide which of the two proposed Born-
Mayer repulsive potentials V& and Vs /see Eqs. (7)j is
the better one.

A further uncertainty arises from the neglect of other
types of forces. The error introduced may not be
negligibly small, as can be seen from the following.
The volume change arising from an interstitial has been
calculated by taking into account the dependence of the
electron energy hE.& upon this volume change. LSee
Eq. (18).g By minimizing the sgrm of the closed-shell
repulsive energy AU„and the electron energy DE,&

with respect to the lattice relaxation we obtain approxi-
mate volume changes of 1.5 and 1.80 for the two Born-
Mayer potentials instead of about 1.7 and 2.00 as
derived by minimizing AU„alone. (0=one atomic
volume. ) In addition to this effect there may be others
because, even if it is correct to assume that contribu-
tions to the formation energy other than AE, & and 6U„
are small compared with these two, it is possible that
the derivatives of small contributions with respect to
the lattice relaxation are comparable in magnitude with
the derivative of AE,i.

A third possible source of error is the use of elastic
solutions for an isotropic continuum. In the case of
copper one should consider the elastic anisotropy.
Elastic solutions u, can be constructed, for example,
from the approximation to the fundamental integral of
the anisotropic elastic differential equations given by
Kroner "

"g.Kroner, Z. Physik 136, 402 (1953).

It is reasonable to suppose that the deviation of the
actual lattice distortion from that derived from the
closed-shell repulsion alone will be relatively small in
the case of an interstitial or a crowdion, because the
exponential repulsive forces are large and vary much
more rapidly with interionic separation than other
possible forces. In the case of a vacancy, where the
distances between adjacent ions are nearly the same as
in the normal lattice, the error may be large. In fact,
Huntington" and Seeger and Bross" conclude that there
is no lattice relaxation around a vacancy. Huntington
Ands that the electrostatic forces between the shielded
vacancy and its erst neighbors are repulsive and
balance the Born-Mayer forces. However, one should
also take into account the eRect of the electron energy
hE, ~ [Eq. (18)j upon the lattice relaxation. It turns out
that the corresponding forces on the first neighbors,
which are directed towards the vacant lattice site, are
large enough to outweigh the electrostatic repulsive
forces determined by Huntington. Now Seeger and
Bross consider only the effect of BE„t' [Eq. (11)j upon
the lattice relaxation; according to their calculations
this acts to prevent a contraction of the lattice. We
have seen in Sec. V, however, that the derivative of the
contribution AE,i" to AE, ~ with respect to the volume
change is of opposite sign and larger in magnitude than
that of AE,i'. From this it appears probable that there
is a contraction of the lattice around a vacancy.

In the following, the calculated values of volume
change are used in connection with experimental results
on radiation damage. Simmons" has measured the
lattice expansion of copper held near 10'K during
bombardment with deuterons. He derives a ratio of
resistivity change to relative volume expansion that is
equal to 2.3)(10 4 ohm-cm, We shall assume that the
deuteron damage consists of Frenkel pairs with inter-
stitials in an "interstitial" conhguration. Resistivities
arising from one atomic percent of interstitials, vacancies
and pairs are designated by Ap;, Ap„and Ap, respec-
tively. Taking 1.5Q as a lower limit and 1.670 as an
upper limit for the volume change due to an intersti-
tial, —0.530 for the volume change arising from a
vacancy, one obtains from the experimental result a
pair resistivity hp in the following range,

2.2& Ap &2.6 pohm-cm.

From the results of the quenching experiments of
Bauerle and Koehler" on gold, one derives

hp, =1.4 p,ohm-cm,

if one assumes that the volume change due to-a va-
cancy in gold is the same as that determined for copper.
On theoretical grounds, Ap, for copper and gold would
be expected to be closely similar for similar lattice

A. Seeger and H. Bross, Z. Physik 145, 161 (1956}."R. O. Simmons, thesis, University of Illinois, 1957 (unpub-
. lished)."J.E. Bsuerle and J. S. Koehler, Phys. Rev. 107, 1493 (1957),
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strains. From these values of hp and d,p„one deduces
that hp; lies in the range

0.8&Ap;& 1.2 pohm-cm.

Using the volume changes calculated in the case of
repulsive potential V~, one obtains resistivities larger
than those determined above for potential U&, namely
3.1&kp&3.6, Ap, = 1.7, and 1.4&dp;& 1.9 pohm-cm.

Recently Harrison" calculated values for the re-
sistivities of interstitials and vacancies of Ap, =0.15
and hp, =0.6pohm-cm. His values are derived by
assuming strains around the defects which diGer from
those obtained here. Nevertheless the order of magni-
tude of the resistivities would probably be the same
when calculated from Harrison's theory using the
strains found by us. Comparison of these low values of
the resistivities obtained by Harrison with the values
found above might be interpreted as indicating that
the deuteron damage in copper does not consist of
interstitial-vacancy pairs. There are, however, other
theoretical values of Ap, and dp, which lie inside the
ranges obtained above from the deuteron irradiation
experiments. The electron irradiation experiments
reported by Corbett et al."provide further evidence for
these higher resistivities. If the results of these experi-
ments are interpreted by the simple theory of displace-
ment4 under conditions in which the latter is reliable,
it appears probable that Ap&1.88 pohm-cm. '

Crowdions have been proposed by several authors
for a variety of reasons. (See, for example, Lomer and
Cottrell, " and Blewitt et al.") Using the values of the
volume change obtained for the crowdion configuration
treated in Sec. IV (see Table I) instead of those due
to an interstitial in the above considerations of deuteron
damage, one obtains resistivities for one atomic percent
of crowdions of nearly zero and 0.2 pohm-cm, respec-
tively, for the two repulsive potentials.

The formation energies calculated for a vacancy in
copper (see Table I) are somewhat lower than the
experimental value, which lies near 1.1 ev. The reason

"W. A. Harrison (to be published).
"The entire topic is surveyed by F. J. Blatt, in SoHd State

Ehysr'cs, edited by F. Seitz and D. Turnbull (Academic Press,
Inc. , New York, 1957), Vol. 4, p. 321. See also L. M. Roth, thesis,
RadcliGe College, 1956 (unpublished).

~3Corbett, Denney, Fiske, and Walker, Phys. Rev. 104, 851
(1956).

s4 W. M. Lomer and A. H. Cottrell, PhiL Mag. 46, 711 (1955).
'~ Blewitt, Coltman, Klabunde, and Noggle, J. Appl. Phys. 28,

639 (1957).

for the discrepancy might be that the volume con-
traction around a vacancy is somewhat smaller than
that determined from the closed-shell repulsion alone.
The electron energies AE, i for crowdions shown in
Table I are calculated from Eq. (18) which is derived
for a spherically symmetric defect. Upon using these
values of AE, &, the formation energy of a crowdion is
found to be about 0.6 ev higher than that derived for
an interstitial for both repulsive potentials. It should be
emphasized that all values for the formation energy are
very rough estimates. It appears that it would be very
difficult to decide definitely from more detailed calcu-
lations whether the interstitial or the crowdion con-
figuration is preferred energetically.

We see from the above considerations that it is not
yet possible to decide from the calculated volume
changes, in combination with the experimental and
theoretical results considered here, whether interstitials
or crowdions are actually produced by charged-particle
irradiation. This is due mainly to the uncertainty in
the theoretical values of the resistivities of the defects
considered and of the volume change arising from a
vacancy.

We should point out a further consequence of the
calculations. It has been suggested that the sharp drop
of about 40% in the radiation-induced resistivity near
35'K during the annealing of copper which had been
irradiated with deuterons at about 12'K" is due to
the trapping of interstitials in vacancies. (Compare the
discussion in Sec. VI of the stored energy measurements
made by Blewitt et al."in the case of neutron damage. )
However, in Sec. VI we estimated that the decrease in
resistivity due to the association of interstitials and
vacancies, without their actually recombining, is always
less than about 10%.It therefore appears probable that
this explanation is not correct.
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