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Conductivity of Plasmas to Microwaves~
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A relation LEq. (13)g between the current-induced part of the distribution function (f~) and the iso-
tropic part (fp), which was previously derived with limiting restrictions, is here shown to be valid at moderate
electric fields for any form of fo, e.g. , for the case where an agency other than the passing microwaves deter-
mines it. The complex conductivity is then computed for a variety of functions fo (8 function, step function,
Maxwellian distribution) and for different assumptions as to the dependence of the collision frequency on
electron speed. The integrals encountered in this work are shown to be computable with good accuracy by
means of a saddle-point procedure which is described.

'HE present study concerns a situation in which
microwaves pass through a neutral plasma con-

taining electrons in quasi-equilibrium with their sur-
roundings; i.e., their distribution in space and in
velocity does not change in time over an interval long
compared with the period of the microwave. The
velocity distribution, however, need not correspond to
the temperature of the ambient molecules and ions,
nor must it be Maxwellian. Under these conditions the
conductivity depends on four things: (1) the number
density of electrons, tp, (2) the frequency cp of the
microwave, (3) the distribution-in-velocity of the elec-
trons, and (4) the functional dependence of the collision
cross section q, or, in another version, the collision fre-
quency v, upon electron velocities. In the following we

give attention to all of these factors, selecting for
treatment in connection with item 3 as special cases a
8 function, a step function, and a Maxwell distribution
for any temperature. Under 4, we assume a linear de-
pendence oi v on electron speed v, or of q on 1/v. The
special cases of constant v and of constant mean free
path X are singled out for special attention.

In earlier publications' ' the full range of variability
among all parameters has not been surveyed. Special
favor seems to have been conferred upon the case of
constant s which, as will be seen again in this study, is
in a sense a trivial one since it always leads to the
Lorentz formula. Reference 1 dealt with the conduc-
tivity of a gas of free electrons colliding with molecules,
on the assumption that the electrons obtain all their
energy from an alternating electric field. This implies a
special distribution function, calculated in that paper.
Here we suppose the presence of another agency, per-
haps of the nature of a dc field generating a discharge,
perhaps an intense photon 6eld or, indeed, a shock wave,
which generates electrons and impresses a characteristic

*Work supported by the Office of Naval Research and the
Yale Laboratory of Marine Physics.' H. Margenau, Phys. Rev. 69, 508 (1946).

~ H. Margenau, Phys. Rev. 73, 309 (1948).' L, M. Hartman, Phys. Rev. 73, 316 (1948).
'A. D. MacDonald and S. C. Brown, Phys. Rev. 75, 411

(1949); 76, 1634 (1949).
~ W. P. Allis, and S. C. Brown, Phys. Rev. 87, 419 (1952).
'W. P. Allis, Handbuch der I'hysik (Springer-Verlag, Berlin,

1956), Vol. 21, p. 383.

prior velocity distribution upon them, a distribution
which is but slightly modified by the passing microwave.
%e shall use the method and the notation of reference 1.

where y =eE/m, f= distribution function, and Df/Dt
is the rate of change of f resulting from collisions and all

other present agencies, including the "prior" one. In
the notation of reference 1,

f(v) =fp(v)+pv. [f,(v) cos~f+gt(v) sincpff, (1)

and in place of Eq. (7) of reference 1 we now write

Dfo/Df =&(fo), (2)

P being some (usually a differential) operator. If the
electrons make elastic collisions with molecules of mass
M having a Maxwell distribution at temperature T,'

18 vp ( 8
P(fp) =——

( mvfp+kT fp-
v'c)v 3A E Bv

(3)

but this is a very special case.
The calculation of Df/Dt is composed additively of

two contribut'ions, one to be denoted by D,f/Dt and
coming from collisions with atoms, ions, and molecules;
and another, called D,f/Dt, made by other agencies.
As to the first, it is noted that D,fp/Dt, D, (v,f,)/Dt,
and D, (v gr)/Dt are all expected to be finite. The same
is true for D,fp/Dt because the other agencies have an
important eGect upon the isotropic part of the dis-
tribution function. But D( fv) t/Dafnd D( gv&) /tD

are zero if these agencies are indiGerent to the slight
asymmetries in v-space which are set up by the micro-

7 S. Chapman and T. G. Cowling, The Mathematica/ Theory of
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GENERAL CONSIDERATIONS

If Ecso&ot is the electric field strength (directed
along x) of the microwaves, the Boltzmann transfer
equation may be written in the form

r)f Bf Df
y cos~t +—=—,

Be Bt Dt
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waves, that is, if they do not tend to destroy them (as
collisions very effectively do). This latter condition will

be assumed to be true.
Let us then compute first D,f/Dt. o Suppose that in a

collision of type r an electron of initial speed v' loses an
amount of energy ~„.The cross section for this process
is q„(v'), the mean free path X„=(nq„) ' and the fre-

quency of r-collisions for one electron v, '=v'nq„(v'). If
the final velocity of the electron of initial velocity v'

after an r-collision is v, the rate of increase of electrons
at v by this type of encounter is

v'nq„(v')f(v') d v',

and the rate of loss at v,

vnq„(v)f(v)dv.

Hence the net increase at v as a result of r-collisions is

(Df&
~

dv=n$v„'q„(v,')f(v„')dv„' vq„(v)—f(v)dv j (4).
EDt j,

This formula can in principle be used for the evaluation
of (D,fp/Dt)„and then, by summing over all r, D,fp/Dt
could be computed. When furthermore D,fp/Dt, avail-
able only when the agencies producing the electrons are
specified, is added to D.fp/Dt, the operator P(fp) de-
fined in Eq. (2) is obtained. But we shall not need

P(fp) and dispense with this dificult calculation.
In place of it, we use (4) to calculate

(D,(v.fi))
f

dv
Dt )„

In the absence of E, we see from the Boltzmann equa-
tion and from (2) that P(fp) =0. Indeed if P(fp) has
the special form (3), fp is Maxwellian. Let us write

P(fo') =0 (10)

6 r"
fi= v P(fp )d'v.

Vv o

(12)

But from (8) and (9), with the legitimate neglect of
fp' against fp',

PB p

fi= ——
V BV

(~+~') (13)

Equation (12), which is not useful here because P is
unknown, relates fi to fp', which is likewise unknown.
For present purposes, Eq. (13) is the important one.
It has the same form as in reference 1; but we have
now shown that its validity is wider than was previously
demonstrated, and that it links fi, the function deter-
mining the conductivity of the electron gas, to any
prior distribution function fp' which satisfies the condi-
tions here explicitly stated.

The current density is

f
I=nev, =net~ v,'(fi cosp)t+gi sino)t)dv

The electric field adds to fp' a small perturbation fo'so
that

0—0 0 ~ (11)

The function fi can now be computed from Eqs. (7)—(9)
in two ways. According to (7),

=n[v„'q„(v„')v'fa(v„)dv„' vq„(v)v,f—i(v)dv j,
and sum this expression over r. At this point it will be
assumed that q„(v)=q„(v) is isotropic, so that for every
r there occur pairs of equally likely collisions with posi-
tive and negative v,„'.The sum over the Grst term on
the right is then zero, and the equation reads

D(v*fi)/Dt= —nvq(v)v*fi(v) = —».fi,

provided

net I' v cosp)t+co sino)t Bfp'

j 'vd v
3 BV

ney ~8 (v coscot+p) sino)t
v' ~4nfpodv, (15)

3 a olv( p'+p)' )

j~&v'fo'dv= 1.

because P„q„=q. In the same way we lind

D(v,gi)/Dt = —»,gi.

The procedure employed in reference 1 leads to the
following equations:

py2 r 'U

f,=v'v'—P(fo)d-v)

CO

gi= fi-
V

From the last result it is seen at once that the Lorentz
formula holds for arbitrary fpo, provided only v is con-
stant with respect to v; for then

eeyI= (v coso)t+p) sinopt).
CtP+ v

(16)

For the sake of completeness we mention here that
Lorentz derived this formula as a solution of the
diGerential equation

md'oo/dt'+F =eF cosp)t,

p =—~fi—&)gi.
V BV

(9) choosing for the frictional force on the electron F= vms
When this is solved for nev„Eq. (16) results.
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SPECIAL DISTRIBUTIONS

A. All Electrons Have a Single Energy

If all electrons have the same speed v', fp'= (4m") '
)&8(v,v'), in terms of the Dirac 8 function. In view of
Eq. (15), for any fpP,

I= net (J~ cosset+ J2 sinu@),

kr t 8( vv'
A=— fp'—

)3~ ' Bv(Q)+v)

kr t cj ( v'
Jp=—~ ' fp'—

~

3 " Bv &oP+v')

When the 8 function is introduced one 6nds

v' (Bv) cop —v p

Jg ——(co'+v") ' v'+
3&vv& ~'+v" '

f8v
Jp=a)(oP+v") ' 1—pv'v'i —

i aP+v
& av)

Primed quantities are evaluated at v'. Henceforth in
this section we drop the primes but retain this
understanding.

J~ and J2 take simple forms for special cases of
interest. When Bv/Bv=O we are led back to (16), but
for the case of constant mean free path, where s

=constant)&e,

I(A=const) =
Q)2 p2 2

The natural assumption is to take ~~=0, in which case

Jl
%2+ v22

and J~=
& +vP

We are thus led back once more to the Lorentz formula
(16); the collision frequency appearing in it must,
however, be taken to be that of the fastest electrons.
Worth noting also is the fact that this is quite inde-
pendent of the manner in which v depends on e.

vN4~oo

exp( —u') du,
(a'+v'

Jl
3v'~~ p

(22)

Jp= co, exp(-u') du.
3+v p pp +v

(23)

They do not depend on T except through v, which is a
function of v. The variable u is defined as u= v/vp with
vp= (2kT/nt)', so that v= v(u, vp). A good approximation
to J& and J2 is furnished by the saddle-point method.

Let

=g~(u), =—gp(u).
~'+ v'

C. Electron Distribution is Maxwellian

The assumption of a Maxwellian distribution

fp' (nt/2——prk T) *'

exp�

( rnv'—/2k T),

with an arbitrary temperature T fits many physical
conditions. Under it the J integrals have the form

y L(4ap+ av') v cosset+ (co'+ 'pvp)co sincvtj. We wish to compute

If the microwave frequency is low, or the pressure high,
or the electrons are very fast (v'= v'/X'))co'), the current
remains in phase with the microwave Geld and is given
essentially by a dc formula

E= ~~ e t &")du,
0

with f(u) =uP —4 lnu —lng.

The maximum of f occurs at up which is determined by

2 eeyXI=- cosort,
3 v

g'(u, ) 4= 2Np ——.
g (up) up

(24)

di8ering from (16) by the factor pp. Under the reverse (1) If the logarithmic derivative of g is sntall, then in
condition (slow electrons), the limiting form is identical first approximation up=v2. In the next approximation,
with that of (16): which suQices here, we 6nd

I= (net/~) singlet. (20) ,g
up =2+2

B. Electrons are Uniformly Distributed
in Energy

If fp 3C/47r when v——~(v(vp and is zero outside
this range, with C= (vpP —v&') ', the integrals (18)
become

t' vv'

J,=ci [; Jp ——C~]
EaP+v') .g &((u'+v'))

We shall also need the second derivative:

(g'& '
f"(u) =2y-

u' g (g)

,g gf"(up) 4 2——
g

(26)

(27)
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in the same approximation, and the g-symbols in the
last line are evaluated for m=&2.

On writing

f(N) =f(»)+-'f"(«) (&—No)'

the integral becomes

(2) When the mean free path, X, is constant the
ratio g'/g is not small at the saddle-point, Eq. (26)
must be computed without approximation, and the
result (29) is not correct. To be sure, this case has been
treated exactly by Altshuler and Molmud, ' for it leads
to known functions.

One Ands

E=e I'"'& expL —gf" (»)(I—iso)')dl

2'
~
—f (~0)

-f"(»)
(2m')' ( g)=

I

—
I expl —2—2 '- l(4g+2'g')

&f"J 4 g)

,g'i (='(2~)' expl —2—2 *-
I I

2g+-~2g'+lg"
Ig)& 8 )

because of (25) and (2/).
Moreover,

(28)

C
Ji= 34(7r) &—L1—C' —C' exp(C') Ei(—C') $

(30)

J2=——{(-',—C')+ (ir) '*C' exp(c')L1 —C (C)j},
3 co

8 2 l C mi' exp( —ui')
Jg=—

3 fi (Qi) i0 C +Bi
(31)

Here N~, is a function of C:

where Ei(x) and C (x) are the exponential integral and
error integral, respectively. ' Our saddle-point method
leads to

g] v 07 v
=Sy j

gi v co+v

gy v 6) —v

gi v OP+ v

9) $

2~p= I' c4+ 7C'+-
I
—c'+2,

4i

gq
—2vv

=$2j
g~ ~+v

g2 2vv

gg %+V

if higher powers of v'/v than the first are neglected. In
the following, the s and t functions here de6ned are
understood to be evaluated at N=eo, i.e., v, v', and v"
are given their values at

i =~2i 0
——2(&&/m)'.

Returning now to (22) and (23), we find

Finally,

where

fi"(Ni) =4NP 14+ +2— —
I 2 (C2+ii 2)2

8[ 2 &C'u24 exp( —iii')
J2=——

3 fi"(«) . ~0 C'+Ng'

2«'= (C4+6C'+1) &—C'+1,

20 C' —3N '
fi"(iii) =4«' —14+—+2

(C'+I ')'

(32)

8( 9 y ( sq
~i=-I 2'+-~+2 '&

I expl —2——
I

3 ( 4 ) & V2I aP+v'

8( 9 ) ( s2) co

~.=-I —:+-"+2-:
I -pl ——

I

3 ( 4 ) 0 v2) co'+v'

Expressions (31) and (32) agree with (30) within 2/o
over the entire ranges of the parameters. This is being

(29) recorded here, not because of the utility of the saddle-
point method in this particular problem, but because it
will be employed for other more complicated relation-
ships between v and e which are now under study.

The error in the use of the saddle-point method may be
judged from the fact that for constant v the numerical
coeKcient of J~ and J2, which should be 1.000, is
actually 1.020.

S. Altshuler and P. Molmud {unpublished). This work came
to the author's attention after the present calculation had been
completed.
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