
KATSUM I TANAKA

perturbation result of Salzman by about 30%. The
correction part with recoil further reduces the per-
turbation part by about 20%, so the final value of the
non-Foldy term is 5.7 kev for f'=0.08. This amounts
to a total reduction of 45%. Treiman and Sachs found
that the correction part without recoil reduces the
perturbation part by 20%. When the nucleon current
is included, Fried's result is reduced by a factor of 2.75.
If this can be taken as an indication of the eGects of the
nucleon current, it is likely that our value of 5.7 kev
will be reduced further.

The error of our result, as estimated in Sec. III, was
20%. Thus the final value of the interaction is not as
important as the general feature that the contribution

of the non-Foldy term to the neutron-electron inter-
action is considerably reduced by recoil eGects, provided
that the dispersion relations are meaningful. This
result is somewhat encouraging because some doubts
might be cast on the validity of the concept of local
fields at short distances if a large (positive) contribution
of the nucleon current had been needed to cancel nearly
all of a large (negative) contribution of the meson cur-
rent in the non-Foldy part of the electron-neutron
interaction.
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The structure of the transition matrices for all processes that can occur for a class of fixed-source meson
theories is studied. The model consists of a scalar meson field coupled to an extended source in such a way
that any finite number of quanta can be emitted or absorbed at a given time (multiple vertices), but that
all interactions are restricted to be S wave in nature. The general reaction matrix element for m incident
and n emergent particles contains many terms describing sequences of independent processes, which must
be removed before one obtains a proper object for studies of a dispersion-theoretic nature. It is shown that
the ratio of the residual matrix element to a suitable product of source functions possesses those analytic
properties, as a function of the total energy of the system, which permit dispersion relations to be stated.
Other than for the elastic scattering amplitude the latter make reference to values of the amplitude in a
nonphysical energy region. In conjunction with a suitably generalized unitarity condition, however, the
scheme, when viewed as a set of coupled integral equations, can be solved by successive approximations in
terms of a number of arbitrary constants, essentially equal to the number of coupling constants in the
original Hamiltonian (actually one fewer). Nevertheless, it is pointed out that the scheme does not admit
a unique solution, and this is illustrated physically by exhibiting an extended class of Hamiltonians which
yield the same dispersion relations, but which, as a class, contain more coupling constants than make their
appearance in the dispersion relations. Physically, these are connected with the occurrence of resonance
scattering.

I. INTRODUCTION
" T has been conjectured recently' that the set of all
~ ~ dispersion relations may be complete in the sense
that they can be considered in place of the Lagrangian
as the starting point to compute all the observables of
a theory. However, until now, very little has been done
toward exhibiting such a complete set of relations for
any nontrivial theory' or indicating how they can be

*Based on part of a thesis submitted in partial fulfillment of
the requirements for the Ph. D. at the University of Pennsylvania.
Now at the California Institute of Technology, Pasadena, Cali-
fornia.

t Supported in part by the Air Force Research and Develop-
ment Command.' For example, by J. S. Toll (private communication) and by
M. Gell-Mann in Proceedings of the Sixth Annual Rochester Con-
ference on High-Energy Physics (Interscience Publishers, Inc. ,
New York, 1956), p. III—30.

2 See, however, Toll, Wong, and Knight (to be published). For
a general approach to the relativistic problem, see J. C. Polking-
horne, Nuovo cimento 4, 216 (1956).

H=Hp+HI,
where

Hp ——Pi,a*(k)II(k)oi(k),

N f'
HI Q)i„ I p(x)y(x)d——xs-I " J

(&)

(2)

(3)

3The rapidly accumulating literature on dispersion relations
may be traced from the following recent papers: K. Symanzik,
Phys. Rev. 105, 743 {1957);J. S. Toll, Phys. Rev. 104, 1760
(1956);R. H. Capps and G. Takeda, Phys. Rev. 103, 1877 (1956);
R. Oehme, Nuovo cimento 4, 1316 (1956).

used to calculate quantities other than the amplitudes
for the simplest reactions. ' In view of the complexity
of the relativistic problem, we have attempted to con-
struct such a complete set of dispersion relations for a
comparatively simple 6xed-source model, but one which
nevertheless contains nonvanishing amplitudes for
multiple meson production. In particular the model
chosen has a Hamiltonian



COM PLETE SET OF DISPERSION RELATIONS

which describes the interaction of a fixed, spherically

symmetric source p(x) with a neutral, scalar meson field

P(x). The quantities a*(k) and u(k) are, respectively,
the creation and annihilation operations for single
mesons of momentum k, and o&(k) = (p'+k')1 is the
meson energy. E, is a c number introduced to fix the
lowest eigenvalue of JI at zero. This theory contains
only S waves and for X&2 has matrix elements for
multiple meson production.

Our treatment can be considered as an extension of
the original Chew-Low program of applying fixed-
source theory to meson-nucleon scattering. 4 It is inter-
esting to contrast the assumptions of this theory with
those made in the relativistic case. They parallel each
other except that the statement of microscopic causality
in the relativistic theory is replaced here by an explicit
statement of the manner in which the meson field is
coupled to its source. Ke are led to construct relations
for the ratio of the transition amplitudes to a suitable
product of the source functions, motivated to this pro-
cedure by the fact that this ratio manifests an explicit
dependence upon the total energy of the system. Its
behavior in all energy domains, including the high-
energy limit, can be inferred immediately and need not
be assumed as an additional postulate. This advantage
is gained at the expense of actually stating the Hamil-
tonian. We should remark also that despite the great
simplicity of our model the transition amplitudes for
multiple boson processes involve, nevertheless, integrals
over nonphysical energies, which restrict their direct
application to experiment.

In Sec. II we describe the general structure of the
S matrix and define an appropriate transition ampli-
tude. This requires, in general, that we separate off
from a given S matrix element all terms describing a
sequence of independent processes. We then demon-
strate an equation satisfied by this transition amplitude
which is equivalent to the requirement of unitarity on
the S matrix. In Sec. III a complete set of dispersion
relations for this transition amplitude is derived and the
number of arbitrary constants is shown to be one less
than the number of coupling constants A.; in the
Hamiltonian. In Sec. IV we demonstrate an iterative
procedure which, if it converges, will yield a solution to
the set of coupled integral equations consisting of the
dispersion relations and the unitarity expressions.
Nevertheless it is made manifest that without further
definition, the scheme cannot possess a unique solution,
since we are able to exhibit an extended class of Hamil-
tonians which all satisfy the same dispersion relations.
These may be characterized as containing more pa-
rameters than are in evidence in the dispersion relations
and indeed as many more as one desires. They are
obviously connected physically with the occurrence of
resonance scattering.

4 F. E. Low, Phys. Rev. 97, 1392 (1955); G. F. Chew and F. E.
Low, Phys. Rev. 101, 1570, 1579 ('1956).

(pips p. ~S~ kiks k )
—= (q" &(pips p-),q'"'(kiks k-)) (4)

where 0'& ) and 0'&+' are, respectively, the usual5 in-
coming and outgoing wave eigenstates of the complete
Hamiltonian H.

Denoting the ground state of H by%'&, we can employ
the methods and notation of Wick' to write'

q'"&(qiqs "«.) =&(V)[o*(qi)o*(q) o*(q.)q's

+x'"(qiqs «.)j, (5)

where N(q) is the constant of normalization. In order
to solve for x'+&, we use (5) and the fact that H&s=O
to write the left side of the Schrodinger equation,

Hq"'(«1«2 .«,) =2 ~(q')q'"'(qiqs "q.), (6)

in the form

H%&+&(qiqs q,)

= [H, o*(q,) . o*(q,)]q s+Hx~+& (qiqs q,)

r
=2 ~(q')~*(qi) o*(q )q'o

i—1

(7)

+[HI, & («i)'' o*(q.)jq't&+Hx'"(qiqs . «.)

so that by comparing (5), (6), and (7) we immediately
obtain the relation

r

(2 ~(q') —H)x'"(qiqs «.)
7'=1

= [Hi, o*(qi) o*(q.)jq'o

=Z ~*(qi)" ~*(q~i)j*(qs)~*(q~i) a*(q.)q's, (g)

where j*(qs)=—[Hr, a*(qs)j, which is equivalent to

x'"(» « "q.)=(Z~(q')~sr —H) '

r
~Zo*(qi)" ~*(q.-i)j*(qs)~*(q~i)" ~*(q.)q's (9)

k~1

' B.Lippmann and J. Schwinger, Phys. Rev. ?9, 469 (1950}.
6 G. C. Wick, Revs. Modern Phys. 27, 339 (1955).' Extensions of this work to multiple processes have also been

considered recently by S. Barshay, Phys. Rev. 103, 1102 (1956),
and by N. Fukuda and J. S. Kovacs, Phys. Rev. 104, 1784 (1956).

II. STRUCTURE OF THE S MATRIX

The matrix element of S between an initial state of
m mesons with momenta ki, ks, , k and a final
state of e mesons with momenta p~, p2, , p„ is
defined to be
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ki, k4- km where

(prps" p. lQIkrks" k-)

s=l

xj*(k,)u*(k,+,) . "a*(k.)+,)

Fro. 1. Diagram corresponding to the matrix element of Eq. (17).

Substitution of (9) into (5) then yields

P(k)(q&. . .q )

=&(V)[~*(qr) ~*(q.)+a+(2 "(q')+in —H) '
i—1

r

XE ~*(qr) " j*(q")" ~*(q.)+s] (10)
k=1

It is shown in Appendix A that the 4(+& satisfy the
orthogonality relation

+(+e, 2 '(pr) "~(p'-r) j(p')~(p'+r)
)=1

Xa(p„)[&~(p„)+i) H—] 'p a*(kr) "
r=l t=l

)«*(k~t)j*(k~)&*(k'+r). &*(k )+o) (13)

In order to eliminate the explicit appearance of the
elementary creation and annihilation operators by
means of such relations as'

a(q)+s ———["(q)+H] 'j(q)+s, (14)

we must manipulate the right side of (13) so that the
a's rather than the u*'s act on the 0'0's. This task is
readily accomplished by employing repeatedly the

(+ (qlqs' ' q.), +'"'(qr'qs'. q"'))

=&(qP(q') 2 '(r, r')~(qr —qr')

ps

Xp(qs —qs') ~ ~ p (q„—q„,') (ll ) Fro. 3. Diagram corresponding to the matrix element in Eq. (20)

where the symbol P~«'& indicates a sum over all
permutations of the q"s. From (11) it is clear that the
normalization constant E(q) in (10) should be (r!) '.

From (10) and (11), we can rewrite (4) in the form

equalities

'(p) j(p)
E+ig HE (o (p)+—ig H— E+ig —H—

(prps . p„lSlkrks k )

= (0&—
&(prp, p„), %'& &(ktks. k ))

+(g~—l(p p p ) 0'&+& —4i l(k k k ))

(B™)'[ p 8(m '$)8(pl k1)5(p2 k2)
&(&)

n m

xs(p —k„)—2~i'(p u(p;) —p (o(k;))
i=1 j=l

x(p p p. lQIk k k-)]

k1, ky-km

p8

and

'(p), (15)
E s)(p)+ig H— —

a*(k)= j*(k)(») E+i„HE+i~ H— —E—"(k)+ig—H

(E+iq H)a(p)—
E+ig —H

=—[H,o(p)] . +~(»
E+ig H—

+a*(k) (16)
E ~(k)+ig II—

~here the derivation of (15) [the derivations of (14)
and (16) are similar] is the following:

FIG. 2. Diagram corresponding to &he matrix efpment &n Eq. (19).
= [~(p)~(p)+j(p)] . +'(p)

E+iq H—
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so that energy shell, +4o(p,)=+4o(k;). In this case the ex-
pression (13) for (popo p IQIk4ko k ) can ulti-
mately be rearranged in a form that is described as
follows.

LE—4o (p)+ i4t —H744(p)
E+iq —H

+~(y),=j(y)
E+irt H— (44) giggly Myths-oo terms T.—here are (44+444)! of these

which is the content of Eq. (15). terms, each corresponding to a distinct sequence of
Because of the energy-conserving delta function in annihilation of the mesons k& to k and creation of the

(12), we need only concern ourselves with 4o's on the mesons p& to p . A typical term of this type,

I +o,j(y4) (k )
4o(y4)+ig —H 4o(ko) 4o(p—o)+o4(ko)+irt H—

x j(y,) j*(ko)~o I, (»)
4o(k,) —4o(po)+i4t —H 4o(ko)+ig —II

can be represented diagrammatically by Fig. 1, and corresponds to the sequence: absorption of ko, emission of po,
absorption of ko, , emission of y4. It should be noted that the structure of expression (17), as well as those terms
described below, is formally identical with the corresponding expressions for the given order in perturbation theory.

(b) Mttltiple verteoo t-erms. —In addition to terms of type (a) where the vertex operators for single destruction of
k and for single creation of p are j*(k) and j(p) respectively, there are terms which contain multiple creation and
destruction vertices. In analogy to j (k) and j(p), the vertex operator for multiple destruction of k„k&, , k,
and creation of pg, p2, , pg is

I:~(pi), ,ILL~(p4), Lj"(ki),~*(ko)77,~*(ko)7,~*(k.)77

=LL44(p4) ' ' I:La(y4—~) j(p4)744*(k~)77 ' ' 44*(k)7 (1&)

where the order of the bracketing is immaterial as long as the innermost bracket contains the j or j*.
A typical term of type (b),

I
+o,L~(yo), L~(y7), j(yo) 77 j(y4)

(e (po)+co (pp) +~ (po) +i4tt Hoo (ko)——4o (po) —4o (pg) +ig —H

X I ~(yo),j*(ko)7+o I, (19)
40 (k o) 4o (po) +47] H

can be represented by the diagram shown in I'ig. 2. There are as many multiple-vertex terms as there are distinct
ways of placing the p's and k's in the vertices and of arranging the vertices in a definite sequence. Two terms,
however, which differ only by a permutation of the p's and k's within the vertices are not distinct. Also we note
from Eq. (3) that there are no terms with a vertex containing more than X k's and p's.

(c) Delta fttnction terms A typical te.—rm of this type is

1 1
b(pr —ko)b(po —k~) I

+o,j(po)
4o (po) +i4t H4o (ko) —oo (p—o)

—4o (p4)+ inst
—H

XL~(po) j(y4)7 . j*(ko)+o
I (»)

oo(ko)+irt H)—
which is represented by the diagram in Fig. 3. There is a term of type (c) corresponding to every distinct way such
a term can be constructed in which some, but not all, of the k; are contained in the delta functions (i.e., pass by
the source without deflection). The term in which all of the k; are in delta functions is the first term of (12) and is
not contained in the matrix element of Q.

The matrix element (y&po p„I Q I
k,k& k ) is the sum of all the terms of types (u), (b), and (c). Therefore,

if we define (p&p& p IXI k&ko k ) to be the sum of all the terms of types (a) and (b), it is clear that Eq. (12)
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can be rewritten in the form

(pipz P~~S~kikz . .k~)=(zzz!zzl) &f P &(m,zz)&(pi —ki)b(pz —kz) &(y.—k )
P(k)

n tn—2zrz&(Q &o(y;) —P co(kj))L(yizy .P.~Rlkikz . k„)+P b(y; —k,)(yi y„y,-'~R~ki k k;-')

+-', P b(y, —k,)&(y„—ki)(p, p„y;-'p„-'~R~k, k k;-'ki-')+. . .

+L(zzz —1)!j'2 2 b(pi —ki)b(pz —kz) ~(p i—k i)(y p~i P.~R~k )j), (21)
P(p) P(&)

where the notation y ' indicates that the meson with this momentum is omitted from the designation of the state.
Also, we have assumed for simplicity that zzz (zz in writing down the explicit form of the last term in (21).

In Eq. (21) we have explicitly exhibited the delta-function singularities of the 5 matrix which arise from processes
in which some of the mesons do not interact with the source. However, since the Hamiltonian H has an eigenvalue
zero it is clear from the description of the terms of types (a) and (b) that (pipz P„~R~ kikz k ) has a delta-
function singularity when a partial sum over the energies of the initial mesons equals a partiut sum over the energies
of the final mesons. Physically this type of singularity arises from processes in which the transition from the state
~kikz k ) to the state ~yipz y„) is not a single transition of order zzz+I but is the product of two or more
lower order energy-conserving processes. In order to demonstrate the S matrix in a form in which all its delta-
function singularities are explicit, we must therefore subtract these singularities from the R matrix. This sub-
traction proceeds as follows.

First we look at a typical term of (pipz P„~R~ kikz. k ), the expression (17) as an example, rewritten in
the form

(+.,j(p )+ -+-- ) (+.z,j*(k.)+ z)
&(~~),&(~~), ,&(«+~-i) to(P4)+zzl E(r„+—i) (a(kz) —a&(pz)+&u(kz)+zg —E(rz)

X . (4',z,j(yz)@,i) (4 i,j*(kz)%'0), (17')
co(kz) —(o(yz)+zg —E(z.z) a)(kz)+zq —E(r,)

where %~; is an eigenstate of H belonging to the eigenvalue E(r~). With the assumption that the Hamiltonian
contains no bound states other than the ground state of the source, the sum over each E(r) includes the discrete
state E(z) =0 and a continuum from zz to infinity. When an E(r) assumes its zero value in the sum, the energy
factor containing this E(r) is of the form

1 ( 1
I
—z~bLZ~(k') —Z~(y;)3,

P~(k~) —P~(p;)+ zg &Z~(k;) —P~(y, ) &

(22)

where 5' means the principal value; and it is therefore possible to decompose (17') into two parts. The first part is
the result of replacing all such grozzzzd state expectation -values of energy factors in (17 ) by their principle values,
and the second part is the remainder of (17'). We observe that each term in the second part is a product of delta
functions and expressions which are "first parts" of processes of lower order; that is, of processes with less than m
initial mesons and less than e final mesons.

If all the terms of types (a) and (b) are decomposed in this same manner, a corresponding decomposition of
(yipz P~~R~kikz k ) is induced. In particular, if we define (piyz p„)T(kikz k ) to be the sum of the
"first parts" of all the terms contributing to (yipz P„~R~ kikz k ), the R matrix can be expressed in terms of
this T matrix by an equation of a rather simple structure. The relation for the case m=m= 2 is

2 2 2 2

b(E ~(y') —2 ~(»)) (Piyz IRI kikz) =&(2 ~(y~) —2 ~(k~)) (Piyz I
2'I kikz)

zzr 2 Q ~(~(pl) ~(kl))~(~(pz) ~(kz))(pil 2
I ki)(pzl 2

I kz)
P(p) P(&)

and the equivalent relation for the general case, although somewhat lengthy, is of the same form and can readily
be constructed. If the general relation corresponding to Eq. (23) is substituted into Eq. (21), an expression for the
S matrix is obtained in which all the delta function singularities are explicitly exhibited. However, it is possible to
state the relationship between the S matrix and the T matrix in a more concise manner. Defining 4 0 to be the state
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of the bare source such that a(q)Co=0, we can write'

(pipz . p~ISIkikz k )

where

= (rz!m!) &I a*(pi)e*(p2) . a*(p )C'0 Normal Product a*(ki)a*(kz) u*(k )Co I, (24)1+i': ) '

oo jE= P dqi .dq dsi ds;a*(qi). u*(q,) (qiq& .q, I TI sis& s;)b(P ~(q„)—P cu(s,))a(si) . a(s;). (25)
] &fj f$ p='1 v=1

The reader can readily verify that the relations (24) and (25) are equivalent to the expression for
(pip& p„ISI kik& k~) which would be obtained by the direct substitution indicated above.

The transition matrix (piy& y„I TI kik& k ) which we have defined can be thought of physically as repre-
senting the actual m meson to e meson transition process. It has no delta function singularity when a partial sum
of the initial energies equals a partial sum of the final energies, since the principle value integral is to be taken about
such points in the energy space. The fact that for these energies the state

I
kik2 k ) can propagate to the state

I piy2 p„) by means of two or more processes of order lower than m+rz is represented by the explicit dependence
(pip& p~ I SI kikz k~) upon the products of lower order T matrices.
It is evident from the definitions of the T matrix and the R matrix that they are identical for values of the en-

ergies in which no partial sum of the initial meson energies equals a partial sum of the 6nal meson energies. Also,
(pipz y„ITIkikz k„) is obtained from (pipz p„IE.Ik kiz k ) by taking the principle value of all the
terms in (pip& p IXI kik& k„) which are singular because of the vanishing of energy denominators when
partial sums of the ~(k,) equal partial sums of the &o(p;). Realizing that all the other terms of
(pipz. p~ I

E
I
kik2 k ) are finite at these energies, we can write

(piyz p ITIkikz k )=(P(yiyz y„IRIkik2 k„) (26)

as an alternative definition of.the T matrix. The "(P"indicates that the principal value of (pip2 p„I8 I kikg k )
is to be taken wherever an integration of the co(p;) and co(k,) is performed through points for which any sum of the
initial energies or(k;) equals any sum of the final energies a&(p;). The definition of the T matrix given in Eq. (26)
will become useful in Sec. III where we extend (pip2 p„I TI kikz k~) into the complex plane.

The preceding description of the structure of the S matrix is independent of the interaction Hamiltonian. How-
ever, in the remainder of this paper we will make use of the explicit form of Hr as exhibited in Eq. (3).

With the Hr shown in Eq. (3), a typical vertex operator which occurs in the terms of the T matrix can be written
as

(~(pi),(",(~(u ),[i*(ki),~*(kz)]),",~*(k.))l

rN P(&i) "P(&.)P(Pi)" P(P~)
P g „(„1).. .[„(]+,)+1]I i"p(,)g(x)d (27)
p=l &J [2~'(o(k,) cv(k,)~(pi) ~(p~)]'

which follows directly from the commutation rules [u(k),a*(k')]=8(k—k') and the expression for Q(x),

Consequently, if we define

1 f
p(x) = ' (a(k)e' '*+a*(k)e ~'*).

(2n.)&" (2(u)&

N t' t'J,—=P X„lz(zz 1) . . (zz
—r+1)

I

—p(x)+(x)dx
p 1

(28)

(29)

a typical term of (pip2 . p„I TI kik2 k ), the term (19) for example, can be rewritten in the form

p(&i)" p(&-)p(Pi)" p(P-)

[2"+"~(ki) ~(k-)~(pi) ~(p.)]'

XI +0,&z ~ ~ ~ J1 J,+0 I. (19')
~(pz)+~(pz)+or(ya)+zrl —H a&(k2) —co(pz) —&o(pi)+zz1 —H cv(kz) —a&(pz)+zit —H )

We caution the reader that E' in Eq. (25) is not the usual reaction matrix, defined, for example, in reference 5, since only a selective
removal of energy-conserving intermediate states has been eGected.
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Ke are led, therefore, to define a G matrix,

L2"+"~(kz)" ~(k-)~(pz)" .~(p-)j'
(~(pz)" ~(p-)IGI~(kz) . ~(k-))=- (pzp, p„ I

7
I
kgkz k„), (30)

z (») ~(&-)u(Pz)" z (P-)

which depends only upon the energies of the incident and outgoing mesons in denominators typical of a usual
perturbation expansion. The structure of the G matrix is seen to be the same as that of the T matrix except that the
energy dependent vertex operators in the terms of the T matrix are replaced by the appropriate J; operators.

Consider now the typical term of (co(pz) . cv(p„) I Gl co(kz) ~(k )) which corresponds to Eq. (17),

1 1 1
I

q'o, Jz Jz J& Jz@o I. (31)
co(p4)+zrz —H co(ko) —oo(pz)ice(kz)+zz! —H &o(kz) —co(pz)+zzt —H co(ko)+zrl —H )

The complex conjugate of (31) is

1 1
I

q'o, Jz Jz ~1 J,qo I, (32)
(o(ko) —ized

—H zo(kz) ru(po)—i' H— co—(kz) —(o(po)+co(kz) —iz!—H co(p4) —izl —H )

since the J;defined in Eq. (29) are Hermitian. Except for the replacement of iz! by iz! this term—is the same as the
term in (&o(kz) ~ &u(k~) IGI&v(pz) ~ M(p„)) which corresponds to the sequence: absorption of p4, , emission
of kz, absorption of pz, and emission of kz. However, since the interaction Hz contains only 5 waves, the tizne re-
versal invariance of the theory forces all the matrices, including the G matrix, to be symmetric. Consequently it
follows that (cu(pz) co(p„) IGIco(kz) ~(k )* is obtained from (cv(p~) cu(p )IGlco(k, ) a&(k )) by replacing
every iq by its negative in all the terms which contribute to the matrix element of G.

In Appendix 3 we describe how this property of the G matrix is used to derive integral equations for the G
matrix elements which are equivalent to the unitarity condition on the S matrix. For illustrative purposes we again
choose the case m=m =2. In this case, the unitarity relation is

oo 6 (qz) ~(V.))'
~m(~(pz)~(pz) IGI~(kz)~(kz)) = ——2 2 2 dq~ ~q.

2 P(p) P(&) ~=& ~ 2"~(qz) ~(q,)

(~(»)~(») IGI~(qz) "~(q.))* "-'(~(pz) IGI~(q~)" ~(e))*(~(pz) IG&I~(q~+z). ~(q.))*
X iizr

2!p 1 E!(r—l)!

(~(qz)" ~(q)IGbl~(kz)~(kz)) . -'(~(qz)" ~(qE)IG~I~(kz))(~(«+z) ~(q)IG~I~(kz))

P(c) g!2! l'!(r—l')!

, '
(~(qz) ~(q.)~(pz) IG~I ~(kz)~(kz))

+(~(») I
G

I ~(qz). ~(q.))*—
r!2!

-z (~(qz) .~(e)~(pz) IG~I~(kz))(~(ql+z)" ~(q.) IG~IM(kz)) (~(pz)~(pz) IGI~(qz) .~(q.)~(kz))*

i!(r—l)! 2 fr!

+zzr
"-z (~(pz) IGI~(qz). "~(e)~(»))*(~(pz)IG~I~(e z) "~(q ))*

(~(qz) "~(q.) IG&l~(kz))
i!(r—i)!

+complex conjugate, (33)
where the symbol (o&(pz) co(p„) IGSI&o(k&) a&(k )) is used to represent

n n

(~(pz) . . ~(p-) IGI~(kz) . . ~(k ))~(E ~(p') —2 ~(kz)).
i=i j-I

The general case of an arbitrary number of incident and emergent mesons has the same general structure.
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III. DERIVATION OF THE DISPERSION RELATIONS

As previously noted, the matrix element (co(pi) &o(p~) ~G~~(k,) ~(k )) depends upon the initial and final
meson energies only through energy factors of the form (Pro(k;) P—~(p,}+ig H—) '. If we define

~'—=~(li')/~,

i;—=a (k;)/(u, (34)

we can write (co(pi) &u(y„) ~G~a&(ki). co(k )) as a function of the p, , i;, and ~ by replacing all energy
factors [pw(k;) —p+(p;)+iq —H] ' by [(pv, —py;)cu+ig —H] '. We now denote the G matrix by
(pi. p G(&o)

~

i i i ). The next step is to eliminate the explicit appearance of the iq in the denominators by
giving ar an infinitesimal, positive imaginary part. Because of the principal value definition of the G matrix we need
only justify this replacement for nonzero values of the coeKcients (Pv; —Pp, ;).However, this procedure is obvi-
ously correct if the coeKcients are positive while the non-negative property of the spectrum of H insures that there
is no error made if (Pi,—Pp, ) is negative. Consequently, we can extend (yi p~tG~ vi i~) into the complex
plane such that the extended function (pi p„~G(z)

~
vi .v ) [occasionally abbreviated to G„(s)]is obtained

from (pi . .p„~G(cu) ~ii i ) by writing all energy factors in the form [(gv;—Qp;)z —8] ' and such that the
equation

G„„((o)= limG„„((a+a),
~o+

is satisfied.
We now list the properties of G„(s) which are relevant to the derivation of the dispersion relations.

(a) G„(s) is analytic in the upper half-plane. This property follows immediately from the reality of the spec-
trum of H.

(b) G (z) has no poles on the real axis. The origin of the s plane is the only point on the real axis for which this
statement is not obvious. In Appendix C we prove that there is no pole at z=0.

(c) G„(z) has branch lines extending from p to ~ and from —p to —~ along the real axis. This property fol-
lows immediately from the form of the energy denominators in the terms of G„(z) and from the assumption that
H has a continuum spectrum extending from p, to ~.

(d) G„(&o+ig)=G„(co—ip). This fact has been mentioned in the discussion following Eq. (32).
(e) G (~+i&)=G„( ~ ip). Und—er t—he replacement of ~+iq by its negative, every energy factor of the form

[(Pv;—Pp;) (a+i p) —H] ' is replaced by [(Pp,,—Pi,) (~+iq) —H] '. However, such a replacement interchanges
the roles of the initial and final states so that the validity of property (e) is guaranteed by the symmetry of the
G matrix.

(f) An immediate consequence of (d) and (e) is that the real (imaginary) part of G„(a&+i&) is an even (odd)
function of ~.

(g) For suKciently large
~
s~, G„(s) C„z '"N~ where C„ is a finite constant and X„ is the non-negative in-

teger which satisfies the inequality (2X„—1)1V&e+nz & (2A„+1)1V.The use of "1V"here is the same as in Eq.
(3). One verifies this property from a simple examination of the structure of the terms in G„(s).

The properties (a), (b), and (g), together with Cauchy's theorem, indicate that

G„(s)(s—~0)'"--'
dz=0, (36)

where C is the contour shown in Fig. 4. If we now use property (g) to neglect the integral over the infinite arc, we
obtain the expression

(~ ~0)i—2&nm ~~ G (~~) (~~ ~0)2&nm —i

G. (co) =8(X„,O)G„(rap)+ (p de ~

are

whose real part can be written as

(37)

«(~i ~-IG(~)Ivi' v )=8/, „„,0) «(wl'''p.
( (~G)(~01'''~ )

—&o " co or co —or " —v —co co coo
des'

7r J Cd QP

by employing the properties of G„(z) listed in (d) and (f).

Im(pi. p„~G(&o) ( vi .v ), (38)
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8 plane

FxG. 4. Contour Q for the application of Cauchy's theorem to the transition amplitudes G

The Eqs. (38) constitute an infinite set of dispersion relations for the transition matrix G. The relations which
correspond to processes in which the total number of mesons involved, e+m, is less than or equal to N, have as
parameters the real parts of the corresponding G matrices at the arbitrarily chosen energies ~p. However, all the
other dispersion relations contain no arbitrary parameters. In fact, the relations which correspond to process
where m+m is greater than N (i.e., X„)1) are of the form

(&—&0)i
—2iam tl~

~
(~~+~) (&I ~0)2&nm —& ((J &) (~I+&0)2&em

ReG„„((o)= (P de' ImG„((o'), (39)

and for ) &2 the right side of this expression is not manifestly independent of ~p. Therefore, if we choose par-
ticular values of cop for each dispersion relation, and from this choice obtain a solution of the coupled integral
equations consisting of (38) and the generalization of (33), this solution can be considered of physical interest only
if it is independent of every sro chosen in the dispersion relations for n+m) 3N.

Suppose now that we pick the arbitrary parameters which appear in the dispersion relations for e+m &N to be
all evaluated at zero or at infinite energy. In either of these cases it is easy to see from the energy dependence of the
G matrices that these parameters depend only upon e+m and not separately upon I and m nor upon the p; and v;.
Consequently the set of equations arising from either of these choices for the &oo (e+m &N) have only N —1 inde-
pendent parameters, one corresponding to each value of n+m in the range 2 &e+m &N. The fact that the number
of independent parameters cannot depend upon our choice of the cop, insures us that this is a general property of
the dispersion relations (38). This result is not surprising. It undoubtedly is a reflection of the existence of N
arbitrary constants X; in the Hamiltonian and of the well-known result that for N=1 the interaction (3) has no
dynamical consequences,

IV. QUALITATIVE DISCUSSION OF SOLUTIONS

We now turn our attention to the problem of solving the coupled integral Eqs. (33) and (38). We consider first
the possibility of choosing the coupling constants ); to be of an appropriate order in a small parameter e and then
of solving the equations by iteration. Neglecting questions of convergence, such a procedure is easily found. In
particular, if we choose each X; to be of order e', we obtain immediately from the form of the equations that to order
c', ReGii(&o) =ReGii(~o) and that all other matrix elements of G are zero. To order e', ReGii(~) =ReG$$(Mo),
ReG»(a&) =ReG2i(co) =ReGi2(a&0), and all the other matrix elements are zero. If this approximation to ReGii(a&)
is inserted into the generalization of the unitarity expression (33) for ImG&&(&u), we obtain ImG»(s&) to order c .
Substitution of this quantity back into the integrand of the scattering dispersion relation then yields ReG»(co) to
order c4, etc. This procedure can be continued indefinitely to obtain all the matrix elements of G up to any order in

&, and, in particular, is not hindered by the nonexistence of arbitrary constants in the dispersion relations for the
higher order processes. The reason for this latter statement is that for e+m) 3 the unitarity condition (33) relates
such processes in leading nonvanishing order to a product of lower order matrix elements already determined in
the sequence. Since the two cases m+m=2 and v+m=3 are exceptions to this rule, the corresponding matrix
elements of G are forced to be zero by the iterative procedure if the dispersion relations for these matrix elements
contain no arbitrary constants. It follows, therefore, that for E= i all the G matrix elements are zero, and for
X=2 only the scattering amplitude is nonvanishing. %e should remark also that this method is only possible
because the unitarity condition (33) is valid for all energies from p to co. Since this energy range contains sub-
regions which are nonphysical for processes other than scattering, it was necessary to derive (33) from the explicit
structure of the G matrix. To simply assert the unitarity of the 5 matrix would not. have been sufficient unless the
implied relations could somehow be extended to energies below the production thresholds.

By virtue of the dispersion relations, the real part of each matrix element at one energy is related to an integral
of its imaginary part over all energies from p to . Consequently, for this iterative procedure to yield a solution,
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it is necessary that the expansions of the matrix elements in powers of c converge uniformly over this full energy
domain. It is reasonable that this type of convergence occurs if the solution does not exhibit a resonant behavior.
Put another way, we conjecture that the iterative procedure picks out the solution (if there is one and only one)
which does not lead to resonance processes.

It must be admitted that our Eqs. (33) and (38), almost certainly do not possess a unique solution. This has
been shown rigorously for the simplest cases of linear' or quadratic" coupling of the meson field to its source.
Indeed we shall here demonstrate the nonuniqueness in a more physical manner by exhibiting an extended class of
Hamiltonians, "obviously diferent in their physical consequences, which nevertheless satisfy the same sequence of
dispersion relations which we have derived from the Hamiltonian in Eq. (3). We may consider, for example, the
Hamiltonian X=Xp+Xr, where

(o~~ 0 l (+~)
Xp =2 ~*(k)~(k)~(k)+ (+~*+~*)

(

k ( 0 spa~ E+ii)
(40)

~g~~" g~a") (+~)
X.=Z(+~*+a') I

J
p(x)P(x)dx

(gga" gaa") k%'aJ
(41)

The free field Hamiltonian, Xp, differs from the one in Eq. (2) in that it describes a source capable, in the absence
of interaction, of existing in two states, the ground state of energy co& in which 0 &&&=1and %&W&=0, and an
excited state of energy co& in which 0'&*0'&=1 and 4&*%'&=0.However, if co&—co&&p, , the excited state is unstable
against meson emission when the interaction Bl is included, and, in this case the total Hamiltonian has the same
spectrum as the one in Eq. (1).Similarly, by further complicating the structure of the source, we can generate an
infinite class of Hamiltonians of this form, all having the same spectrum as the Hamiltonian in Eq. (1). From the
spectral identity and from the obvious structural similarity, it follows that all these Hamiltonians are described
by the same set of dispersion relations (39) and by the same equations of unitarity (33).However, physically it is
clear that the solutions for each of these Hamiltonians must be diferent, since the transition amplitudes will

exhibit resonances at energies near the excited states of the unperturbed source. This situation at least suggests
that the iterative solution, if it exists, does describe the original theory represented by the Hamiltonian (1). We
should remark also that this is the only Hamiltonian of the infinite class which contains essentially (see Sec. III)
the same number of coupling constants as there are arbitrary constants in the dispersion relations. The extended
class of Hamiltonians will be studied further in a subsequent publication.

APPENDIX A

In this appendix we prove the orthogonality relation (11)."We shall derive the relation explicitly for the%'&+&,

but it will be clear from the proof that a completely equivalent derivation holds for the 0 (—). For conciseness we
use abbreviations exemplified by the following:

+&+&(k )=+&+i(k, k„),

a(k„)=u(kt)a(ks) . a(k„),

to(k )=P cp(k;),

(A.1)

with a similar convention for the primed variables below.
Neglecting the normalization constants X(k) and hali'(k'), we have from (10) that

/

(+'+' (k„)P &+' (k„'))= (+pa(k , )+i+„&(k ))+„'(to(k ) p„p(k—) i„t'i)—'(4p(a('k, „),Hr j+I+& (k„')), (A.2)

and using (10) to expand 4&+& (k„') in the second term of (A.2), there results after slight rearrangement

(+p,(a(k„),Hr)%'&+i(k„')) = (+p, LPa(k ),Hrj, a*(k„'))4'p)

+(a(k ) Pp La(k ),Hr)%'p)+(+p, La(k ),Hrj(to(k„')+iii —H) '(Hi, a*(k ')$4p). (A.3)
' Castillejo, Dalitz, and Dyson, Phys. Rev. 101, 453 (1956l.
"A. Klein, Phys. Rev. 104, 1136 (1956).
"The model which we consider here is similar to the one which was used for a similar purpose by F. J. Dyson, Phys. Rev. 106, 157

(1957).
'~ This proof is a generalization of the one given by Wick (reference 6, Appendix C}for single-meson states and the P-wave interaction.
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Now, applying the relation
a(k„')@o=—(pz(k ')+H)—'[a(k„'),Hr]@o, (A.4)

to the second term in (A.3) and substituting the result into (A.2), we obtain

(e &+&(k ),e'+'(k„') )= (e„a(k.)e'+'(k„') )+(~(k )—~(k„')—iq)
—'Hap, L[a(k ),H,],a*(k„')]op)

—(+o,[Hr, a*(k„')](po(k„')+H) '[a(k„),Hz]%'o)+('Ifo, [a(k ),Hz](op(k~')+inst —H) '[Hr, a*(k„')]Op)]. (A.5)

If (10) is used to expand%'&+' (k„) in the first term of (A.5) and if the result is re-expressed with the use of (A.4)
and substituted back into (A.5), we have

(@&+&(k„)P'+'(k„')) = (@p,[a(k„),a*(k„')]Op)+ (+p, [Hz, a*(k'„)](z»(k„')+H)-'(pi(k„)+H) '[a(k„),Hz]@p)

+(4'p, a(k )(op(k„')+ig —H) '[Hz, a*(k„')7+p)+(pp(k )—pi(k„') —iq) '[(4'p, [[a(k ),Hz], a*(k„')]+p)
—(@p,[Hz, a*(k„')](pp(k ')+H) '[a(k ),Hr]+o)+(+o, [a(k ),Hz](op(k„')+iir —H) '[Hr, a*(k„')]4'p)]. (A.6)

Equation (15) can now be used to transform the third term in (A.6). The result is

(4'&+&(k ) %~+~(k ))= (4p, [a(k ),a*(k )]Ifp)+(Vp, [Hz, a (k )]((u(k )+H) (pp(k )+H) [a(k ) Hz]%'p)

+(pp(k )—z»(k„') —iq) '[(+p,[[a(k ),Hz], a*(k„')]4'o)—(@o,a(k )[Hz, a*(k„')]@p)
—(@o,[Hi, a*(k„')](p»(k„')+H) '[a(k ),Hr]+o)] (A 7)

Collecting the first two terms in the square bracket and employing the equality (A.4), we obtain

(@~+&(k„)pH '(k~')) = (+o,[a(k ),a*(k„')]+o)+(pp(k~') —p»(k )—ig) ')+o,[Hr, [a(k„),a*(k„')]]+p)

y (ep, [Hz, a*(k„')]I[a(k„),Hz]ep), (A.8)
where

(pp(k„')+H)(p»(k„)+H)

1

pp(k„) —po(k ') —iq (pp(k )+H pi(k ')+H)
(A.9)

and therefore

(+&+&(k„)P&+'(k„'))=(Vp,[a(k ),a*(k ')]4p)+(p»(k„') —pp(k„) —ig) '(+p, [Hr, [a(k ),a*(k„')]]+p). (A.10)

In order to show that (A.10) is equivalent to (11), we note that

where

[~(1„),a*(k„')]=&(m,e) P S(1„—I „')yP S(k,—I,') a*(k„,') a(k. ,),
P (R')

6(k„—k„')=5(k,—k, ')5(k, —k, ') 6(k —k '),

a*(k„ i') = a*(ki+i') a*(ki+o') a*(k„'),

a(k () =a(ki+i)u(ki+p) u(k„),

(A.11)

(A.12)

and where P indicates a sum over all such possible terms.
Denoting

n 're

Q (u(k, ') and P (u(k, )
i=i+1 i=i+1

by po(k„&) and po(k i), respectively, we obtain from substituting (A.11) into (A.10) that

(0&+&(k„)P&+&(k„'))= (Togo)b(me)g S(k„—k„')

+P S(ki—ki')(4'o, [a*(k~i')a(k i)+(po(k„ i') —pi(k„ i) —ig) '[Hr, a*(k„ i') a(k i)]]+o), (A 13)

and since by (A.4) the operator in the square bracket can be put into the form,

1 1 1
[Hr, a*(k i')] +

(po(k. i')+H)(p»(k i)+H) p»(k„, ') —op(k, )—iq pi(k, ')+H po(k, )+H I

X[a(k i),Hz]=0,
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it follows that
(@&+&(k ) iy&+&(k„'))= p 8(m, N)6(k„—k '). (A.14)

P (k')
I

The replacement of the normalization constants and the elimination of the abbreviations gives directly Eq. (11).

APPENDIX 3
We now indicate how to derive the expression for the imaginary part of the matrix element of 6, choosing for

illustrative purposes, the example of two mesons in both the initial and final state. In the domain of physical
energies this relation is equivalent to the unitarity condition on the Smatrix. The treatment of this case is sufhcient
to indicate how the corresponding relation for an arbitrary matrix element can be obtained.

From the discussion following Eq. (32) in Sec. II, we can write

Im(oi(pi)~o(po) ~G~oi(ki)~o(ko))

1 1 1
=(») '2

I +o,Ji A A JP'o
I

oo(ki)+oo(ko) —oi(pi)+ig —H oi(ki)+oo(ko)+ig —H cu(k,)+ig H—
1 1 1

A Jiq'o ), (8.1)
oo(k,)+~(k,)—oi(pi) —iq —H oi(ki)+oi(ko) —iit —H oi(ki) —ig —H

where the symbol g indicates a summation over all the terms which contribute to (a&(yi)oi(p&) ~G~oi(ki)a&(k&)).
According to the principal-value definition of the G matrix, it is assumed that &o(ko) Woi(pi) W&o(ki) Ws&(yo) Woi(ko)
and of course that ~o(pi)+oi(po) =&u(ki)+oi(ko).

If we now add zero, in the form

1 1 1
P(1—1)

~
qo,J, J1 A— Jiq'o

(

oi(ki)+oi(k, ) oi(yi)—ig H— oi—(ki)+oi(ko)+iq —H oi(ki)+ ig —H

r 1 1 1
+I q'o, A

oi(ki)+o~(k, ) —co(p,)—ig —H io(k, )+or(ko) —ig —H oi(ki)+ill —H ) (8.2)

to the right side of (8.1), there results

Im(~o(pi)oi(po)
~
G~oo(ki)oi(ko))

1 1
= —~ 2 ~

q'o, JB(~(ki)+~(ko) —~(pi) —H)A JPo [

co(k,)+oi(ko)+ig —H ~o(ki)+zq —H

1
+( q'oA Jib(oi(ki)+oi(ko) —H)Ji Ji+o

i

oi(ki)+oo(ko) —oo (p,)—ig —H &a (ki)+ig H)—
1 1

+( +oA J1 Jl~(oo(ki) —H)Jiyo
~

. (8.3))co(k,)+oi(k,)—oo(pi) —ig —H &u(ki)+oi(ko) —ig —H

Considering the first term on the right of (8.3), we note that because of the delta function the only terms in the
sum Q which contribute are the ones for which the vertex operator Ji at the extreme left corresponds to single
emission of p2 or to single emission of pi. If we denote by P» the sum over all the terms for which the emission of
po occurs last, this contribution to the first matrix element on the right of (8.3) can be written as

oo r
' dqi. dq, (q'o, Jiq" '(qi. . .q,))~(~(ki)+~(ko) —~(pi) —Z ~(q,))

i=1

1 1

X~ +' '(ql'''q) Jl Ji Ji~yo ~. (8.4)
oi(ki)+oi(k, )+ig—H oi(ki)+i' —H )
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But
r r

(«0 ~1+ '(qi q.))~(~(ki)+~(ko) —~(pi) —Z ~(q')) = (+' '(qi' ' ' q ) ~)+0) ~(+(p2) Z +(q')) (8 5)
i=1 i=1

~»(po) &
' (qi q I

&
I
po)* r

&(~(P0)—2 ~(q')) (8.6)) «)(p ) i=1

«(vi) «(v ) r

(~(po) IGI~(qi) "~(q.))*~(~(po)—& ~(q~))
Lr!2"~(q,)" ~(q„)l~ i=1

where (8.6) follows from (8.5) by comparing the structure of the E matrix defined in Sec. II to the result of em-
ploying the relations (14), (15), and (16) to (+( )(qi q„),J)%'0) after%'(-)(qi q,) is expanded with the use of
Eq. (10).Equation (8.7) is obtained from (8.6) simply by utilizing the definition of the T and G matrix.

In a completely analogous manner, it follows that
r 1 1

2 ~(~(ki)+~(ko) —~(») —& ~(q'))I «" '(qi. q.) ~i A'po I

u2 (o(ki)+(o(ko)+i)) H—o)(k,)+i)) H— )

(8.7)

r r

S(~(k)+~(ko) —~(pi) —Q ~(q))(qi q,pi I

&
I »4) = (qi «,pi I &I kiko)~(~(ki)+~(ko) —~(pi) —p ~(q))

i 1 i=1

im P— ('«i' ' qipil alki)(«)+i "q
I
~lk )

p(o) p(o) i 1 l!(r—l)!

&&~(~(ki) —~(pi) —2 ~(q.))h(~(ko) —2 ~(q')) (8 9)

We can therefore rewrite (8.8) in terms of the G matrices as follows:

p b(~(k )+~(ko) —~(pi) —2 ~(q,))I +' '(qi q.),Ji A &i«'0
I

u2 0)(ki)+0)(k2)+i)) —H 0)(ki)+i))—H )

«(e) .«(v ) r

(~(qi) ~(q.)~(pi) I
G

I ~(ki)~(ko))&(~(ki)+~(ko) —~(pi) —2 ~(q~))
I:2'r'~(qi)" ~(q.)j'- i=1

r—1

( (q) (qi) (p)IGI (»))( (qi+)". («,)IGI (k))
)'(0) r (0) i=i )!!(r—l) !

)&8(0)(ki)—0)(pi) —p 0)(q,))h(0)(ko) —p (o(q;)) . (8.10)
i=1 i=i+1 J

The first term on the right of (8.3) can now be obtained by substituting Eqs. (8.7) and (8.10) into (8.4) and
summing the result over both permutations of pi and po. This latter step gives the contribution from both sums

pi i and g) 0. The result of this manipulation is that

r 1 1
q 0)+i& ((0(»)+(0(4)—(0 (pi) —H)A

(0 (k,)+((koo) y)'i) Ho) (k—i)+i)) H—
(«(qi) «(v.))' (~(po) IGI~(qi) ~(q,))*

dqi dq,
~(~) ~(P) ~1 0 2"0)(qi) (o(q„) r!

(-(q,) -(q,)-(p,) IG~I-(k,)-(k,)) -i (~(qi) ~(q))~(pi) I
G~

I
~(ki))

2!r 1

I:2'~(pi)~(ki)~(ko) 3' r

(qi "q.pil&lkiko)~(~(ki)+~(ko) —~(pi) —Z ~(q')), (8 8)
(~ )'«(&i)«(&0)«(P)) i=1

where in this case there is a distinction between the R and T matrix because there exists more than one meson in
both the initial and final state. In particular, we have from the appropriate generalization of Eq. (23) that

where the symbol G8 is defined following Eq. (33) in Sec. II.

(~(q)+i) ~(q,) IG&I~(ko))
X

(r—l)!
(8.11)
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We can now do the same thing for the other two terms in (B.3) and finish the derivation by adding these results
to (B.11).However, in order to obtain an expression for the imaginary part of ((0(pi)(0(p2) I 6 Ice(ki)(0(k&)) which
is manifestly real, we formally average the result of this derivation with the result obtained by an identical pro-
cedure except that the expression (8.2) is altered by replacing each ir] by its negative. If we perform this averaging,
we obtain Eq. (33).

APPENDIX C

In this appendix we prove that the function G„(s) has no pole at z= 0. Eliminating the subscripts e and m, we
define Gi(z) as that part of G(s) which arises from single vertex terms [i.e., terms of type (a) in Sec. II). The
major part of this appendix consists of the proof that Gi(s) has no pole at the origin while the 6nal paragraph indi-
cates how the proof can be extended to all the G(s). We should also note the following changes in notation from
those used in the text: the energy ratios ) &, ) 2,

. , ) and pi, ]in, , p, „are denoted here by f(1), f(2), , f(m)
and —f(m+1), f(rn+—2), , —f(m+e) = f(I) —respectively.

We now prove the following theorem: The function

(—f(m+1), —f(m+2), ' —f(++I) IG(s) If(1),f(2), f(m))

J )[or(N —1)]Ji[r (I—1)r (I—2)] Ji[r (2)r (1)]Ji[r (1)07

p(f) E[r(l)],E[r(2)], ~ ~,E[r(u—i)] [(f(1)+f(2)+ . .+f(e 1))s——E[r(u —1)]]. .[(f(1)+f(2))s E[r(2)]]

&&[f(1) —E[ (1)]], (C 1)

has no pole at s=0. The symbol P(f) indicates a sum over all permutations of f(1) to f(N) and Ji[r(j )r(j 1))—
—= (r(j) I JiI r(j 1)), w—here

I r(j)) is an eigenstate of IJ with eigenvalue E[r(j)).
Poles at s=o could only arise from terms in the sum over the E[r]'s in which some (or all) of the E[r]'s take on

the value zero. In the terms where r of the E[r]'s are zero, z "is a common factor. Therefore, terms of this type
could conceivably lead to poles of order r, r—1,r—2, . or 1.To show that none of these possibilities actually occur,
it is sufhcient to prove that the coeKcient of s " and the first r—1 derivatives of this coe%cient all vanish at 2'= 0.
That is, defining C„(s) to be the coefficient of s " in the terms of (C.1) in which r of the E[r)'s are zero, we must
show that

dl
lim C, (s) =0 for 0 (l (r—1.
z~0 d~l

(C.2)

We now de6ne C,(S,+i,S„.S2,Si, s) (where S„+i=u—P -;S;), as that part of C„(s) which arises from terms
in which the Sith, (Si+S2)th, , and (Si+S2+ ~ . .+S„)th E[r)'s from the right in (C.1) are zero, and remark
that it is sufhcient to prove

lim —Q C„(S„+i,S„, ,S2,Si, s) for 0 &l &r—1,
z~0 dZl I'(S)

(C 3)

for all possible choices of the S~ to S„+~.
From (C.i), we have that

C„(S„+i, ,Si, s) J,[o.(g-i)) "J,[ (z„+1)0)

&(I) s[r(~)] . '&[r(~—i)] f (f(1)+. +f(N —1)s—E[r(N —1)]] . .[(f(1)+ +f(Z„+1))s—E[r(Z,+1)]]
1 J&[or(Z„—1) J,[r(Z,)O]

X— X
[f(1)+ +f(Z„)] [(f(1)+ .+f(Z„—1))s—E[r(Z,—1)] [(f(1)+~ +f(Z„ [+1))s—E[r (Z„ i+1)]]

Ji[or (Z2 —1)] Ji[r (Pi+1)0]
X X X

[f(1)+ +f(& -i)) L(f(1)+" f(&2—1))s—E[r(&2—1))] "[(f(1)+".f(~i+ 1))s—E[r(&)+1)]]
1 Ji[or(Z) —1)7 Ji[r(1)0]

X X (C.4)
[f(1)+" +f(»)] [(f(1)+" +f(&i—1))s—E[r(&i—1))" [f(1)»—E[ (1)]]
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where p&—=p 1S, and the prime on the energy sum indicates that E[v(Z1)], E[~(Z1)], , E[~(Z„)) are all
zero and therefore not summed. For each S; there is in (C.4) a corresponding product of S,J1 matrix elements and
S;—1 energy denominators. Also, in the chain rule expansion of the 3th derivative of (C.4) each term can be labeled
by indicating which factors are difFerentiated. Therefore, we let

Cr[S&+1(sr+1 &Sr+1 &

' ' ' Sr+1 )&Sr(Sr &Sr »' ' ' Sr )»' ' ' Si($1 &$1»' ' ' $1 ")]&

denote the contribution to

lim (d'/dz') C„(S„+,,S„,. ,S„s),

which comes frpm the term in the chain rule expansion of this derivative, where for each 5;, the factors differenti-
ated are the s,', s,', , and s&&'&' from the right (in (C.4)) of the product of energy factors corresponding to S,.
gt js clear that a number of the s;~'s can be equal for different k's if the same factor is difFerentiated more than once.
Also, since we are interested in derivatives only up to order r—1, it follows that

t'+X

Q p, =/&r —1. (C.S)

In order to prove (C.3), we need only show that

p C,[S„+1($,+1', s+1" ) S„($„', .&Sr")& S,(s,' S,")]=0
p(8)

(C.6)

for all p; which satisfy (C.S) and all possible choices of the S, and si . First, however, we remark that in the ex-
pansion of (C.6), the sum over the energies and the product of Jmatrix elements are a common factor to the whole
expression. Therefore, calling this factor g, we define D„,

Dr[S„+1(sr+11& Sr++~')&Sr(sr &
'S„""), ,Si($1,. $1"1))

—=(8) ' 2 C.LS.+1($.+1' s.+1" '),S.($.', s."'), Si($1', »"')], (C.7)
P(S)

sp that the proof of the theorem is completed once it is demonstrated that D„ is zero.
Noting that

dl
lim —(as —E)—1= —t 1E-(i+iiai

ds

we obtain from the structure of (C.4) that

D.LS' ('.', " ""),S.(.', '"), ,S.("' "-))

E &[f(&.+S.+1""')+ +f(1)] [f(~.+s.+1')+ .f(1))
p'(f) p(8)

1
X— x[f(zr—1+s. ")+ +f(1)) . .[f(&r 1+s„)+ . .+f(1)7

I f(&.)+ +f(1))

1
X X X x[f(s,»)+. . .+f(1)7x[f(s,i)+. . .+f ]) (c g)

[f(~.-1)+" +f(1)] [f(&1)+ .+f(1))

where A is an unimportant constant factor. In each term of the double sum indicated in (C.S) (except those terms
which correspond to"permutations of the S's in which Si is replaced by S;), the product of p; numerator factors
cprresponding to S; have a denominator factor to their immediate right. This denominators'can be written as
[f(R)'+. . +f(1)'), where, in the permutation of the f's which characterize the term, f; is replaced by
f; (j=1 to u). With this notation we define the, meaning of contain by saying that in such a term of (C.8), S;contains
fs+,&, fs+,&, and fs+s; and if the term is one in which $1 is replaced by S;, then S;contains f,', f,' . , and fs .
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We now define the function D„',

D„"[S,+i(s„+.,', s„+p~'),S„(s„', s„""), ,Si(si', si"')]

2 vLS.+i,' I f(S.+i) I 7 "v[Si' If(Si) I 7
I'(f) &(~)

X [f(&,+s,pi" ')+ +f(1)] [f(&,+s.+i')+ +f(1)]

x [f(~—. i+s."-")+ +f(1)]Lf(~ -i+s ')+. +f(1)7
[f(~ )+ +f(1)7

X X X Lf(s "')+" +f(1)]Lf(s ')+ +f(1)], (C 9)
[f(Z —i)+' ' +f(1)] [f(Zi)+' '+f(1)]

where v[S;; I f(S,) I 7 is an arbitrary function of the f s coltoi,ned in S;.
By induction we shall now prove the following lemma: The function D„' de6ned in (C.9) is zero independently

of the functional form of the functions v[S;;
I f(S~) I 7 as long as there is at least one more f sum factor in the de-

nominator than there is in the numerator (i.e., with the restriction (C.S)). Since D„ is the special case of D„' when
all the v's are unity, the proof of the lemma constitutes a proof of the theorem [see remark following Eq. (C.7)].

If l is the number of f sum factors in the numerator, we first assume that the lemma is true for l & lp —1 and show
that this implies its validity for /= lo. Finally we complete the proof by proving the lemma for l=0. For the case
l=lp/0, the numerator contains an f sum factor which is of the form [f(Z& i+s&')+ +f(1)] in the term of
(C.9) written out explicitly in the square bracket. Therefore, if we write

[f(Zi i+st')+ +f(1)]=[f(&i i+si')+ +f(&i, i+1)]+[f(&i—i)+ +f(1)], (C.10)

the function D„' can be thought of as the sum of two functions, one arising from each of the two terms in (C.10).
Since all the f s in the first term of (C.10) are contained in Si, it is possible to incorporate this term into the defini-
tion of v[Si, I f(Si,) I 7 with the result that the function arising from this is a D„' with l= lp —1 and is zero by the
inductive hypothesis. The remainder of D; can be thought of as the sum of r+1 functions such that the 6rst of
these is the sum of all the terms in which Si lies to the far right in the expansion of (C.9), and each of the r other
functions are distinguished by specifying which S; lies to the immediate right of S&. The first of these r+1 functions
is zero since when Sq lies to the far right there is no second term in the decomposition (C.10).For each of the re-
maining r functions a numerator factor cancels against an identical denominator factor and the result is a D
function with one less l and One less r. Consequently, each of these r functions are also zero by the inductive
hypothesis.

To complete the proof we must show that D„'=0 for the case of l,=0. Hence, we must show that

v[S„+i,f(N),f(e 1), ,f(Z,+—1)]v[S„;f(Z„), ,f(Z„ i+1)] v[Si, f(Zi), ,f(1)] =0. (C.11)
I'(f) &(~) [f(zp)+ .f(1)7[f(zp 1)+.. +f(1)] .[f(zl)+. . +f(1)]

Denoting the expression in the square bracket of (C.11) by (S„+i,S„, ,Si},we rewrite (C.11) in the form

[(S„+i,S„,Si}+fS„,S,+i, ,Si}+ +(S„, ,Sp,S„pi,Si}+fS„,Si,S,pi}]=0, (C.12)
&'(&) &u')

where P'(S) indicates the sum over all permutations of Si to S,.
Ke have

Q (S„,S„+i, ,Si}
~u')

v[S. f(~),",f(~.-i+Sr+i+1))v[S.+i, f(~.-i+S.+i), "f(~ -i+1)7 '[Si f(~i)," f(1)7~ ~ ~

(C.13)
I'(f) [f(&.-i+S.+i)+ .+f(1)][f(&.-i)+ .+f(1)7 [f(&i)+ . +f(1)]
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and using the fact that P i"f,=0 on the denominator factor at the left, there results

P {5„,5„+i, ,Si)
&(f)

~[5. f(~), "f(~.-i+S.+i+1)7~[5.+i f(~.-i+S.+i), f(~.-i+1)7. 'LSi f(~i), ",f(1)7
(C 14)

I f (~)+f(~ 1)+ ' ' '+f(& —+Si'+ +1)7I f(& —)+ ' ' '+f(1)7' ' '[f(&i)+ +f(1)7

Now, since we are free to permute the f s within the summation sign without affecting the result, we perform the
following rearrangement which transforms the numerator of (C.14) into the same form as the one in (C.11):

f(N) f(~—5.+ ) =f(~.), f(& —i+5+i) ~ f(")
f(~.-i+S.+i—1) ~ f(N —1),

f(Z, i+1)~ f(N S„+i+—1)=f(Z„+1),

(C.15)

with all the other f s remaining unchanged. Equation (C.14) can now be written as

P {5„,5,+i, . . . ,Si)
&(f)

LS.+»'f( ) f( —1) f(&.+)7 [S.'f(&.) . , f(&.-+1)7 [5»'f(& ), , f(1)7
(C.16)

[f(&.)+ "+f(&.-+1)7[f(&.—)+ . . +f(1)7 [f(& )+ +f(1)7

All the other terms of (C.12) can be rewritten in a similar manner. Each time S„+i is shifted one more place to
the right, we express one more term in the denominator (from the left) as a sum of f's beginning with f(N) and then
affect the permutation of the f s which makes the numerator identical to the one written out explicitly in (C.11).
The result of these manipulations is that

Q [{Sr+i,S„,Si)+. +{S„,. ,Si,Sr~i)7
I'(f)

= 2 ~[5.+i f(&), ,f(&.+i)7~[5.if(&.),f(&.-i+1)7 &[Si f(&i), . f(1)7
I'(f)

X
[f(~.)+ +f(1)7[f(~.—)+ +f(1)7[f(&)+" +f(1)7

[f(~.)+ +f(~ —+1)7[f(~.—)+ "+f(1)7 [f(»)+ +f(1)7

[f(&r)+ .+f(&r i+1)7[f (&„)+. .+f(&r 2+1)7[f(&r 2)+ . .+f(1)7IJ(Zi)+ . .+f(1)7

. . .+( 1)r—i

[f(& )+ .+f(&.-i+1)7 [f(&.)+ "+f(~i+1)7[f(~i)+ +f(1)7

(—1)' (C.17)
I:f(~ )+. +f(~-i+1)7 [f(~.)+ "+f(1)7

It is not dif5cult to verify that the expression in the square bracket of (C.17) is zero.
The extension of the proof to include multiple commutations expressions can be accomplished without difhculty.

First we define G„,i...(z) to indicate the contribution to G(z) arising from terms in which there are r single com-
mutator vertices, s double commutator vertices, 3 triple commutator vertices, etc. Now if we attempt to apply the
above proof to G„&...(z), it is immediately observed that the structure of the product of S;—1 matrix elements
which correspond to S; is in general different for every permutation of S& to S„+&which changes the position of S;.
However, if the J operators are rearranged appropriately each time S& to S„+& is permuted, this structure is not
changed. If we now redefine P~&s& to mean the sum over this double rearrangement, the proof that G„i...(z) has
no pole at the origin follows by complete analogy to the one presented for Gi(z).


