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Quantum Limitations of the Measurement of Space-Time Distances
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This article deals with the limitations which the quantized nature of microscopic systems imposes on the
possibility of measuring distances between space-time events. It is proposed to use only clocks for measuring
space-time distances and to avoid the use of measuring rods which are essentially macrophysical objects.
The accuracy of reading a clock with a given mass is considered and examples for microphysical clocks are
given. It is shown that the mass of the clock, and the uncertainty (spread) of this quantity, exceed certain
values which depend on the accuracy with which the time interval is to be measured, the magnitude of this
time interval (the running time of the clock) and the size of the clock. The minimum mass uncertainty of
the clock is given by Heisenberg's relation; the minimum mass itself is higher by the ratio of the running
time and the accuracy.

If the possibility of constructing states whose wave functions are Gaussian wave packets is admitted,
the mass and the mass uncertainty of the clock differs only by logarithmic factors from the uncertainties
which follow from general principles of quantum mechanics. The masses are much higher if the possibility
of constructing arbitrary wave packets is not admitted.
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See, e.g., E. P. Wigner, in Jubilee of Relativity Theory, edited
by A. Mercier and M. Kervaire (Birkhauser Verlag, Basel,
1956), p. 210.

1. INTRODUCTION

' 'N ordinary quantum mechanics the space-time point
~ ~ is specified by its four coordinates but no prescrip-
tion is given how these coordinates are to be measured.
This in turn is in convict with the principles of the
general theory of relativity according to which co-
ordinates have no meaning independent of observation. '
The basic measurement of general relativity is the
measurement of distances between events in space-time.
Such measurements make the definition of a coordinate
system possible if they can be carried out without
restrictions. We shall therefore examine the limitations
which quantum mechanics imposes on the possibility
of measuring distances between events in space-time.
Only when this question is answered will it be possible
to treat the problem whether the gravitational field of
atomic systems and of elementary particles is observable
in principle.

Before proceeding with the proposition of a clock,
the possibility of the measurement of space-like
distances with clocks should be pointed out. This is,
in principle, quite simple in classical theory and is
illustrated in Fig. 1. It applies if the distance involved
is small as compared with the curvature of space.
Denoting the components of the unit vector tangent
to the world line by e', the components of the vector
leading from point I to Event 1 become te', those of the
vector from Event 1 to II are t'e'. The components of
the vector leading from Event 1 to Event 2 shall be
denoted by x'. Since I and Event 2 are on a null line,
we have

Multiplication of these equations by t and t and addi-
tion eliminates the terms linear in t or t' and gives

g;, (Pt'+a")e'e"+g;, (rye')x'x"= 0.

Division by t+t', together with the condition that e is a
unit vector, i.e., that g;A, e'e~= 1, gives

g;I,x'x'= —tt';

that is, the absolute value of the distance of the two
events is the geometric average of the time intervals t
and t'. If a clock of arbitrary accuracy existed and if the
recoil of the light signals could be disregarded, it would
be possible to measure space-like distances with
arbitrary accuracy.

The function of the clock to be considered is to
measure the distance between two events, which shall
consist of collisions between material objects and light
quanta. As is well known, and as was pointed out most
clearly by von Neumann, the measurement is not
completed until its result is recorded by some macro-
scopic object. ' If the macroscopic object were part of the
clock, no microscopic clock could exist. The way out of
this difficulty is to transmit the signal of the clock to a
macroscopic recorder (which can be the "final observer")
which is far away from the clock, considered from the
point of view of the average motion of the latter. The
transmitting signal will be considered to be part of the
clock, not, however, the recording apparatus. This
concept forces upon us the most important and possibly
decisive limitation: if the transmitting signal is to be
microscopic, that is, if it is to consist of only a few
quanta (actually, our signals will be light quanta), it
will reach the recording equipment with certainty only
if it does not spread out in every direction. In order to
guarantee this, we confine ourselves to a world which
has, in addition to the time-like dimension, only one

~ J. von Neumann, Mathematische Grundlagen der QNanten-
mechamk {Springer Verlag, Berlin, 1932;also Princeton University
Press, Princeton, 1955), Chap. 6.
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space-like dimension. The principal weakness of this
assumption is that it may be questionable whether it is
possible to separate clock and recorder in a world with
only one space-like dimension. The action of a body in
such a world does not necessarily decrease with in-
creasing distance and the macroscopic recorder may
have a substantial influence in the region where the
clock is situated. This region, however, was to be
freed from the eGect of macroscopic bodies and it is for
this purpose that we wish to construct a microscopic
clock. This di%culty, serious as it may be, will be
disregarded in what follows. Its significance is weakened

by the circumstance that the clocks which we can
construct are not wholly microscopic and the need of
focusing their signals may- not increase their mass too
much.

2. CRITERIA WHICH FOLLOW FROM GENERAL
PRINCIPLES OF QUANTUM MECHANICS

The present section will deal with properties of the
clock which follow from general principles of quantum
mechanics. They will be valid even if one adopts the
most liberal attitude towards the realizability of
physical instruments. Such an attitude underlies also
the investigations of Bohr and Rosenfeld on the
measurability of the electromagnetic field. ' Another
case in which the same general principles impose
limitations on the measuring apparatus is the measure-
ment whether the spin of a particle is parallel or
antiparallel to a given direction. The condition in this
case is' that the angular momentum of the measuring
equipment show a spread of the order h/ill if the
measurement is to give the correct result with a proba-
bility 1—6. The limitations to be found in the present
section are of a similar nature and of a similar origin.

The clcck to be considered shall have an accuracy r
and be able to measure time intervals up to a maximum
T= mr. Its linear dimension shall be not larger than /.
The questions which we wish to answer are (a) what

'N. Bohr and L. Rosenfeld, Kgl. Danske Videnskab. Selskab,
Mat. -fys. Medd. 12, Xo. 8 (1933).

4 E. Wigner, Z. Physik 133, 101 (1952).

SPACE LIKE OIRECTION

FIG. 1. Reduction of the measurement of space-like distances
to the measurement of time-like distances. The absolute value of
the distance between events 1 and 2 is the geometric mean of the
time intervals 5 and t'.

is the minimum mass of the clock; (b) what is the
minimum mass (or energy) uncertainty of the clock
which satisfies the foregoing specifications. The "events"
are arrivals of light quanta; the clock is expected to
measure the distance between such events. It is this
kind of measurement which is necessary to determine
the curvature of space.

Let us consider first the first two conditions. It
follows from these that, in the course of the time T,
the quantum mechanical state of the clock must go
through n orthogonal vectors or, equivalently, that
the wave function q of the clock shall be the super-
position of at least ft stationary states It&, p2,

g(~)=2&4 &

1

The energy values of the stationary states were denoted
by Ace&. The wave function p will indeed go through e
orthogonal states at times v, 2~, , e~ if al, =e '
and otk rdc+2t——rh/nr=&oo+2frh/T This m. eans an un-

certainty in the energy of the order

a= A(co„—coo) = 2trA/r,

and corresponds to Heisenberg's uncertainty principle.
Conversely, it can be shown that p cannot go through e
orthogonal states during a time interval T unless its
energy uncertainty is of the order ffh/T=h/r.

A further condition for the clock can be derived from
the postulate that it shall show the proper time even after
having been read once. This condition is necessary if the
clock is to be used in the way outlined elsewhere for the
measurement of the curvature but is, also apart from this
use, a natural postulate. It follows from it that the clock
must not be deQected too much from its original world
line by being read. This requirement is also the basis of
Schrodinger's observation'; it implies that the mass of
the clock must exceed a certain amount.

The reading of the clock is connected with the emis-
sion of a light signal of duration v and this imparts to
the clock an indeterminate momentum A/cr This.
momentum' would be even greater if a particle of
nonzero rest mass were used as a signal. As a result of
the emission of the light signal the velocity of the clock
acquires a spread of the amount h/Mcr, where M is the
mass of the clock. After a further time interval T2, it
may be at a distance AT&/Mcr from the point where it
would have been without having been read. Hence the
actual distance between the two points in space time,
at the first of which the clock read 2"~ less than at the
time of the emission of the signal, at the second of

'E. Schrodinger, Preuss. Akad. Wiss. Berlin Ber. 12, 238
(1931}.

6 If this momentum uncertainty is compensated by the emission
of another quantum of equal momentum uncertainty into the
opposite direction, the position of the clock will be displaced by an
indeterminate amount, due to the uncertainty of the center-of-mass
of the two light quanta. For a discussion of this point, see for
instance, D. Bohm, QNaitum Theory (Prentice-Hall, Inc., Engle-
wood Cliffs, New Jersey, 1951), Chaps. 6, 7, and 22.
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which it reads T2 more than at the time of the emission
of the light signal, is (see Fig. 2)

L(Ti+Tg')' —(AT2/Mc'r)' jl
(ATg/Mc'r)'

=T,+T,'—,(3a)
2(T,+T,')

where

T2'= $T2'+ (AT2/Mc'r) 'j'*=T2+ ,' T2(A/-Mc'7)' (3b)

Hence the actual distance (3a) differs from the time
difference T&+T2 shown by the clock, in the approxi-
mation considered, by Cond|tion for

Equation g
Condition for
Equation (4)

2(Ti+T2) EMc'7 ] (3)

Fxo. 2. The emission of a light
signal con6ned to a time interval r
produces a recoil in the motion of
the clock. As a result, the clock
will proceed along the arrow
marked T~. The true distance
between the tip of this arrow and
the original position of the clock,
at the bottom of the figure, divers
from the indication Ti+T~ of the
clock.

The inaccuracy of the clock will be within the limit r
if (3) is less than 7. If one considers the erst factor to be
of the order of magnitude T, this gives

M) (A/c2r) (T/7) ~. (4)

An even higher limit is obtained if one stipulates that
the position of the clock shows so little spread that the
time at which a light quantum strikes it shall be
predetermined within a period ~. This condition can
also be stated as the requirement that the position of
the clock shall not introduce a statistical element into
the measurement of time. It requires that the spread X

in the position of the clock shall be, throughout the
time interval T,

X (c7-.

Again, the use of a signal with nonzero rest mass would
give a more rigorous limit. The spread in the velocity

'Il T~

Mcv

FIG. 3. The left side of the figure illustrates the condition that
the clock shall remain, in spite of the recoil illustrated in Fig. 2,
within the distance cv from the point where it would have arrived
had it not emitted a light signal. The right side of the figure cor-
responds to the requirement that. its reading shall de'er by less
than r from the correct distance of two points through which it
passes. The corresponding minimum masses are given by (6) and
(4).

of the clock is of the order A/MX, so that the uncertainty
in position, after a time interval T, becomes

X+AT/MX, (Sb)

and this should still be smaller than cv.. For given M,
(Sb) assumes its minimum for

X= (AT/M)l, (S)

and this is also the order of magnitude of the expression
(Sb) itself. This will be smaller than cr if

M) (A/c'r) (T/~).

Note that the uncertainty in the momentum of the
light signal, A/cr, is well below Mc, no matter whether
(4) or (6) is adopted. Hence the use of the approximate
expressions in (3a) and (3b) was justified.

The difference between the expressions (4) and (6)
can be formulated also in the following way. The more
stringent requirement (6) demands that the wave
packet of the center-of-mass of the clock be con6ned,
throughout the time interval T, to a region of the size
cr The less stri.ngent requirement (4) guarantees only
that the wave packet is suKciently confined for the
space-time distance, between any points of the wave
packets an interval T removed from each other in
space time, to be equal T within an accuracy r. This
allows a spatial spread of the wave packets of the order
c7(T/7)&, that is, a much larger spread than c7 (see
Fig. 3).

Neither of the two conditions, (2a) or (6), makes use
of the requirement that the physical dimensions of the
clock shall be limited. Nevertheless, the energy levels,
of the quantum mechanical system which we are
considering to be the clock, are extremely closely
spaced: if the uncertainty in the energy is to be of the
order (2a), the spacing of the energy levels is A/T. One
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I IG. 4. Schematic pic-
ture of a potential which
confines a particle to a
region of space of very
small extension I and
has a great number of
very closely spaced en-
ergy levels. A particle
in such a potential
might consitute a clock
of very small size, great
accuracy, and long run-
ning time. Its realiz-
ability is open to ques-
tion.

usually associates a small spacing of the energy levels
with a loosely bound system, such as a very soft
oscillator. This, however, need not be the case if an
arbitrary form of the potential energy is considered
admissible; a potential of the form shown in Fig. 4
will have e closely spaced levels. One can adjust the
constants of the system in such a way that the spacing
becomes A/T and a wave function of the form (2),
again with a&=e ', will have the property that the
distance of the particles changes, in the time element
~, from one trough to the other. In this way, the distance
of the particles can be considered as the pointer of the
clock. Furthermore, one can adjust the constants of the
system in such a way that a collision with a light
quantum have hardly any probability of changing the
state of the clock. However, in order to read such a
clock in any simple way, one would have to use a light
quantum of length l/e and hence energy uncertainty
&=she/l, i.e., for l=c7 an n times higher uncertainty
than Heisenberg s principle demands. This, and similar
other attempts to construct a clock of small extension,
indicate that the requirement of a small size does
impose further conditions on the properties, in particular
the energy spread, of the clock-and-signal system, even
though we were unable to derive these solely from the
general principles of quantum theory. We shall now
proceed to the description of a clock which consists only
of noninteracting particles and the realizability of
which is, in principle, hardly open to question.

3. EXAMPLE OF A SIMPLE MICROSCOPIC CLOCK

We have considered several types of clocks with a
running time T and accuracy r. These include:

(a) An ensemble of atoms in an excited state. The
time elapsed is obtained from the fraction of the atoms
which have decayed.

(b) An ensemble of oscillators of frequency 1/2T,
originally all in the state 2 l($0+/~) where $0 and f~
are, respectively, normal and first excited states. The
time elapsed is obtained as the transition probability
into the state 2 *'(fo+f~). In order to determine this
transition probability with a high accuracy, the number

of oscillators must be very large. Since the transition
probability varies with time as cos'(~t/2T), the
measurement of the transition probability gives a
measure of t.

(c) An ensemble of oscillators with frequencies 1/2T,
1/T, 2/T, 4/T, , 1/r in similar states as the oscil-
lators in example (b) . The time elapsed is again obtained
by measuring the transition probabilities into the
original state.

(d) A single oscillator of frequency 1/2T in the
state given by (2) with az=e '*. The time is obtained
by measuring the position of the oscillating particle.

The discussion of all these examples gave conditions
equivalent with (2a) and (6) if the necessity of reading
the clock' is taken into account. However, the realiza-
bility and the possibility of "reading" of all these
devices is open to some doubt and their physical
dimensions cannot be easily obtained from general
principles. The last example, a single oscillator, is.
most nearly free from these objections but its analysis
showed that the potential between the oscillating
particles played only a subordinate role. We prefer,
therefore, to analyze the motion of two (or, as we shall
see, actually three) particles with respect to each other
and to measure the time elapsed by measuring ratios
of their distances. In this way we free ourselves from
the question of realizability. The discussion of (d) leads
to the same conclusions as the following discussion.
While the requirements (2a) and (6), since they follow
from accepted principles, are certainly valid but may
have to be supplemented, the requirements to be
obtained below are certainly sufficient but may have
to be relaxed if a more clever device for the measure-
ment of time intervals is found.

It was noted before that, in example (d), the time is
obtained as the distance of the oscillating particles from
each other. A distance, however, is not a relativistically
invariant concept and can, therefore, not be transmitted
by a signal. For this reason, the clock must show the
time by means of a quantity which is, at least in the
approximation which is to be used, relativistically
invariant. Such a quantity is the ratio of two distances
and Fig. 5 shows the principle of the measurement
proposed under the neglect of quantum effects. There
are three material bodies, two of which are at rest with
respect to each other, while the middle one moves
toward the body at left. The time is indicated as the
ratio of the distances between 1 and 2 and between
1 and 3. It is transmitted by three light quanta which
travel together toward the clock but each of which is
refiected by another one of the particles. No matter
where the final observer is situated, and in what state
of motion he is, he will obtain the same ratio between
the time intervals of the passages of the three light
quanta as long as these time intervals are short as
compared with the radius of curvature of space-time.
The same condition is necessary throughout the travel
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given by (9). Hence the energy spread of the clock
proper is

e,= nAe/t= 2AN/T = 2A/r. (11a)

This is the same value (2a) which was obtained in the
preceding section and corresponds to Heisenberg' s
relation. It is smaller than the energy uncertainty (10)
of the signal by the factor l/cT. It may be of interest
to note that the signal is within the area of the clock
only for the period t/c so that it contributes, on the
average, within the period T and while it is in the area
of the clock, only the amount e, to the energy un-
certainty. Nevertheless, the total energy uncertainty
of clock plus signals is larger than is demanded by
Heisenberg's principle (2a) and is given by (10).

The fact that a realizable clock is subject to more
severe limitations than could be obtained on the basis
of general principles was foreshadowed already in the
discussion of the arrangement of Fig. 4. The idealization
of this arrangement related only to the clock proper
and made it possible to reduce only the mass of the
clock. proper. Since it did not relate to the signaling
system, the total energy uncertainty already corre-
sponded to (10).

4. COMPOSITE MICROSCOPIC CLOCK

The large discrepancy between (11) and (6), and
between (10) and (2a), suggests the construction of a
more complicated clock which, with the same mass and
with the same mass uncertainty as the clock of the
preceding example, can measure time more accurately
or is able to run for a longer period. The principle of the
clock to be described next is similar to that of example
(c)—and of actual clocks. It will have, instead of the
single pointer, several pointers: one of these dis-
tinguishes time elements of the order r but has a period
m~r, where e~(n, so that it cannot distinguish the
times t and t+Nir, t+2iiir, etc. In order to distinguish
between these times, one has a second pointer with an
accuracy of the order n&7. Even this may be periodic,
with a period m~7.)e~v- so that the two devices together
may not be able to distinguish between t and t+riir.
However, together, they can measure the time with an
accuracy 7-, over any time interval of length e2v. There
may be, then, a third pointer with an even longer period
but with an accuracy of the order of only e&r, and so on.
The last pointer must have a period T or 2T and an
accuracy of the period of the preceding pointer. The
total number of pointers will be denoted by k; they play
the roles of the pointers of ordinary watches. Naturally,
the reading of a clock of this construction is more
complicated than the reading of the clock of the
preceding section because each pointer has to be read
separately. It is clear, nevertheless, that the use of
several pointers may result in a substantial saving in
mass and mass uncertainty.

It would be natural to "lock" the different pointers
to each other, that is, to govern the motion of the

second pointer by the 6rst pointer, and so on. For this,
we found no simple device. It should be noted, further-
more, that while "accuracy ~" allows the possibility
of an error of the order of magnitude ~ in the reading
of the 6rst pointer, with a probability of about -„ it
does not allow a similar error in the second pointer.
Such an error would lead to an error of the order n~z
in the time and is, therefore, not permissible. Hence
the probability of a false reading of the second pointer
must be 1/n& or less. Similarly, the probability of an
error in the indication of the third pointer must be
1/n& or less. The total mass, and the mass uncertainty,
will be the sums of the corresponding quantities for all
pointers and all signals.

Every pointer will be a particle moving back and
forth between the particles 1 and 3 of Fig. 5. When a
particle reaches one of these particles, it will suer
an elastic collision and to be returned. Particles 1 and 3
will attract each other su@ciently to compensate for the
average momentum transferred to them; their mass
can be the sum of the masses of all the pointers without
changing the order of magnitude of the mass of the
clock. A new element will enter the calculation, how-
ever, by. the need for constructing wave packets which
will remain, for a period T, with a high probability
1—8, within a region of length ). The characteristics
of such a wave packet cannot be obtained from the
uncertainty principles any more. However, a well known
solution of the Schrodinger equation for a free particle,

(n/ir) & t' ——,'x'
cp= exp[

(n+iAt/M) ' (n+iAt/M )
(12)

shows that the particle will remain with a proba-
bility 1—6 in the interval of width ) if

& —lnh.
n2+ A2 T2/M2

(13)

The maximum of the expression on the left is assumed
for n=AT/M which is then the best choice for the
wave packet in question. It gives for M the condition

M) 8AT( —in')/X' (13a)

Except for the factor (—in'), this is equivalent to (5).
However, the logarithmic dependence of M on 8 is just
the essential feature. It means that con6ning the wave
packet in such a way that its average spread is

(13b)

can insure that the particle is within an interval A. with
a probability 1—8. The momentum spread of the wave
packet (12) is

Ap=A/n'= (AM/T) ~= (2A/X) (—2 in') '*, (13c)

if the mass is chosen close to its lower limit (13a).
This is not the minimum of the momentum uncertainty;



MEASUREMENT OF SPACE —TIME DISTANCES

it would be possible to reduce it by choosing a higher
mass. However, Dp will be used only for calculating
the energy uncertainty and the resulting expression
will already be at least of the same order of magnitude
as the uncertainty in the energy of the light quanta
which transmit the signal.

The preceding expressions apply for each of the
particles which act as pointers. In order to obtain their
wave functions, the packet (12) has to be given a
suitable velocity e. This can be done by substituting
x—vt for x in (12) and multiplying this with

exp LiMvx/A ——,'iMv't/ft). (14)

This has no e6ect on. either Dx or hp. The reQection
on the particles 1 and 3 which constitute the frame
of the clock can be taken into account by the method
of images, that is, by adding to the wave packet
obtained by the multiplication of (12) by (14) similar
wave packets, but with opposite sign, obtained by
reQection on the x=&l lines, and the images of these
images, and so on. These operations will also leave
the preceding equations essentially unchanged. If
pointer j has a period of n, r (hence nI, ——2n), its average
velocity will be

Similarly,
Ax;=(ln; i/n;)(ln2n; g)

'* (16b)

e,g= 4A/r, (17b)

while the energy uncertainty of the light signal which
transmits the reading of this pointer is

e„=Ac/Dx, = (Acn;/ln; ~) (ln2n, ~) l. (17)

For /= cr, this is about mj times greater than e„but not
too different from e,i. This shows that if the clock is
confined to a region in space which corresponds to its
accuracy, the reading requirement does not increase
its energy uncertainty substantially. The mass (16a) of
the pointers is, at any rate, greater than the mass of the
quanta needed to read them.

The choice of the e~, e2, ., eA, remains to be made.
The simplest choice is to set m~= 2, n2=4, , n, = 2&'+',

and k= log2e. Kith this,

hp;= (2An;/ln) ~) (2 ln2n; ~)&. (16c)

The last expression gives for the energy uncertainty
of the pointer j

e„=v)Ap, = (4A/rn, ~) (2 ln2n, ~) l, (17a)

v, =2l/n;r,

and the accuracy of its reading must be

(15) SAT
M=PM;= 4(ln2+ln4+ +ln2n)

)2

I7j —2Sj &V &
7 1—V. (15a)

'A, =v,r)=ln; g/n;; Xg ——2l/ng. (15b)

In order to assure this accuracy with a probability of
the order —,', it would suKce to confine the wave packet
of its pointer to

32AT AT
ln2(1+2+. +0+1)= (inn)' (18)

)2 )2

The last expression is correct only apart from numerical
factors which appear to be considerably in excess of 1.
The uncertainty of energy, for the same clock, becomes

However, the reading of pointer jmust be correct with a
probability 1—8j, where

while
4= &ex+ &ca+ ' '+ &c/) =4'/r) (18a)

c,= e,~+e,~+ +e, q = (Ac/1) (inn) &. (18b)
8)=1/2n; g, 81=1/2.

It follows that the mass of pointer j is at least

(16)

(16a)

These expressions are already reasonably close to the
lower limits (6) and (2a) so that a further substantial
reduction seems impossible. At the same time, the
idealizations used in the construction of the clock are
not such as to raise too serious doubts concerning its
realizability.


