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and third approximations to the quantity M& are found
in Table I. Again, the fractional change from the first
to the third approximations is of the order 30% so that
one may expect the third approximation to be fairly
reliable. It is also seen from Table I that the experi-
mental value of M& can be obtained by a cuto8 between
5 and 6 p, in agreement with Miyazawa.

We discuss finally the contribution

cVs = (e/4sst) [(P so. stbg)
—1j (4.26)

to the magnetic moment. There is no analog to this
quantity in the theory of the point nucleus, so that we

are left without systematic guidance. Formally, the
calculation is easy; one can use the analog of the nor-

malization equation (4.13) for the total angular mo-

mentum 5; alone. After taking expectation values with
respect to the state (1,1) and multiplying by fo, one
obtains fa.sl as a function of curly brackets {etc) etc. ,
which are calculated by perturbation calculus. The
expectation value itself appears then as a quotient of
two power series like Mo. However, it was not possible
to find a reasonable sequence of approximations. In
view of Miyazawa's unsatisfactory results for this (the
"scalar" ) contribution to the magnetic moment, our
result is not surprising. The model is evidently too
crude to give even correct order-of-magnitude values
for this contribution.
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A dispersion relation is derived for short-range potential scattering in the presence of a Coulomb field,
and on the basis of this result a conjecture is made as to the Coulomb modifications of the Goldberger
relations for pion-nucleon scattering. The new relations contain in addition to Coulomb phase shifts only
amplitudes that are directly measurable experimentally, the assumption of charge independence not being
required. Estimates are made to show that the Coulomb phases that appear explicitly are of no practical
importance.

I. INTRODUCTION

1
' 'T has been pointed out by Puppi and Stanghellini
~ ~ that the experimentally determined meson-nucleon
forward-scattering amplitudes do not quantitatively
satisfy the Goldberger dispersion relations. ' Since if
this discrepancy is real it constitutes the erst concrete
evidence against the validity of local field theory, the
most careful scrutiny of both theory and experiment
here is required.

The Goldberger relations are incomplete in that they
take account only of strong interactions that satisfy
charge independence. The very weak Fermi interactions
may be safely ignored, but the electromagnetic inter-
action, which is only moderately weak, requires a
closer study. Agodi, Cini, and Vitale have estimated
the corrections due to the production of photons both
in the physical and nonphysical region. They find

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.

' G. Puppi and A. Stanghellini, Nuovo cimento 5, 1257 (1957).
' Goldberger, Miyazawa, and Oehme, Phys. Rev. 99, 986 (1955).
'Agodi, Cini, and Vitale, Phys. Rev. 107, 630 {1957).

nothing large enough to account for the Bologna
discrepancy. In this paper we address ourselves to
another possible source of trouble: the Coulomb fmld.

The conventional approach to the Coulomb problem
is to analyze the experimental angular distributions so
as to extract the so-called "nuclear scattering ampli-
tude, " which is defined as the difference between the
complete amplitude and the pure Coulomb amplitude.
Except for some fairly trivial phases this amplitude is
then assumed to be identical with the amplitude one
would obtain in the absence of the Coulomb field.
Actually it is not identical, and at very low kinetic
energies the deviation is large.

Experience with the Coulomb eGect in nucleon-
nucleon scattering suggests that the energy at which

important Coulomb corrections to the meson-nucleon

interaction appear is sufFiciently small that Puppi and
Stanghellini were justified in ignoring them. The im-

portance of the Bologna discrepancy is so great,
however, that this possibility of trouble, even if small,
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should be pursued. One way to study the eGect we are
interested in is to calculate the phase shifts with and
without the Coulomb field on the basis of some model
for the pion-nucleon interaction. This was the approach
used by Noyes. 4 The difFiculty here is that no good
model exists for the S-wave part of the interaction,
which is dominant at low energies, so that the results
of such calculations can never be completely con-
vincing.

In this paper a different approach is adopted. We
make no attempt to find a "pure" meson-nucleon
amplitude to insert into the Goldberger relation, but
instead seek a dispersion relation involving quantities
that are more or less directly measurable. That such a
relation should exist seems a priori likely, since the
electromagnetic interaction as well as the strong inter-
action is microscopically causal. However, we do not
pretend to derive the relation we shall write down. To
do so would require at least the complex procedures of
Sogoliubov' and no doubt in addition theorems not yet
discovered. We shall instead arrive at our relation on
the basis of plausibility arguments, starting with the
nonrelativistic potential scattering problem, in which
fairly rigorous statements can be made.

The form for our conjectured dispersion relations
turns out to be identical with that of Goldberger, ' so
long as the latter is expressed in terms of real and
imaginary parts of a "forward" scattering amplitude.
What we propose to change is the definition of the
appropriate amplitude. In particular, if the complete
forward amplitude in the presence of the (screened)
Coulomb field is decomposed according to angular
momentum, '

f= P le'" sin8—~ +-(i+1)e'"+sinb~, (3.1)
q2

where k is the laboratory wave number of the pion
and q the wave number in the barycentric system, and
the subscripts (l+) and (l—) refer to states of total
angular momentum l+2 and l—2, respectively, then
the partial nuclear phase shifts b&+~ may be defined as
the difference between the full phase shifts 6~+ and the
corresponding Coulomb phase shifts b~+'. We con-
jecture that the correct "forward" amplitude to use in
the Goldberger relation is then

where the Coulomb phase shifts 0 & are sufFiciently well

given by
0 )=argP (l+ 1+i'), (3.3)

for q= e'/v, with v the laboratory velocity of the pion.

The presence of the Coulomb phase shifts in Kq.
(3.2) produces more complicated expressions for the
real and the imaginary parts of f' than are normally
used, the diGerence being important whenever 20-~ is
comparable in size to the corresponding nuclear phase
shifts. From zero up to 5- or 10-Mev pion energy, 2o-&

is of the same order of magnitude or larger than the
S-wave nuclear phase shifts, so that this energy region
should be studied with care. In particular the zero-
kinetic-energy scattering lengths, introduced by Gold-
berger when he makes subtractions in his equations,
must be re-examined.

We shall find it desirable not to use the scattering-
length concept at all but to make the necessary sub-
traction at zero total energy rather than zero kinetic
energy, thus avoiding emphasis of a point which from
the Coulomb point of view is singular. That is, we
propose to use dispersion relations for the positive- and
negative-pion forward amplitudes in the form

2f' v' t" dv'
Ref'&+& (v) =W— +—P

v&1/2M ~ ~ g v"

Im f"+&(v') Im f'&+& (v')
X + +Ci& vC2, (4.1)

v v V +V

where v is the laboratory pion energy in units of the
pion rest mass and C~ and C2 are two constants. The
symbol "P" means principal value. This is essentially
the form used by Haber-Schaim' to determine f', the
Yukawa coupling constant; it has the advantage of
treating the experimental information on low-energy
S-wave scattering on the same basis as the rest of the
data. The original Goldberger form can be reached
from Eq. (4.1) by straightforward manipulation.

In Part II of this paper the expression (3.2) is derived
for potential scattering in the presence of a screened
Coulomb field. In Part III plausibility arguments are
given for the extension to relativistic field theory, while
numerical estimates of Coulomb effects in the dispersion
relation (4.1) will occupy Part IV.

f'= Qe""D exp—(i8~~) sining
~

q2 l=o

+ (l+1) exp(ib&+~) sinb~~j, (3.2)
'H. P. Noyes, Phys. Rev. 101, 320 (1956).
'Bogoliubov, Medvedev, and Polivanov, Institute for Ad-

vanced Study Notes, Princeton, 1956 (unpublished).
'We do not assume charge independence. The dispersion

relations for negative arid positive meson scattering depend on
crossing symmetry but not on charge independence, as pointed
out by Agodi, Cini, and Vitale in reference 3.

II. POTENTIAL SCATTERING

It has been shown by Khuri that the scattering .

amplitude for all potentials that fall off sufhciently
rapidly at large distances and are not too singular at
the origin satisfy a simple dispersion relation. Con-

7 U. Haber-Schaim, Phys. Rev. 104, 1113 (1956).' N. N. Khuri, Phys. Rev. 107, 1148 (1957).
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sequently, if we assume that the Coulomb potential
vanishes beyond some screening radius r„we can
immediately say that the forward Coulomb scattering
amplitude f'(E) for like charges satisfies the dispersion
relation

M P (" Imf'(E')
Ref'(E) = ——V,+—

~ dE'
2s s."p

E' E—(5.1)

where V, is the volume integral of the potential, 8 is
the relative kinetic energy, and M is the reduced mass.
Similarly, if there i.s a short-range nuclear interaction
present in addition, which gives rise to no bound states,
the scattering amplitude for this case obeys

At. first sight the last line, which tells us to remove the
Coulomb scattering from the total cross section (but
to leave the Coulomb-nuclear interference), looks like
a simple prescription to apply. It can be used, however,
only if the difference (do/dD) —(do,/d8) can be extra-
polated to the forward direction without ambiguity;
in practice this means that except at high energy the
alternate expression in terms of phase shifts must be
used. Thus we need to know the Coulomb phase shifts
8&' explicitly to correct both the real part of the forward
scattering amplitude and the imaginary part.

Provided that we are at a high enough energy to have
kr,))I, and do not have to analyze for partial waves
such that l& kr„ the Coulomb phase shifts are

M P
t
" Imf(E')

Ref(E)= ——( U,+ U~)+— dE', (5.2)
2n. 7r" p

E' E—where

8(' o( g
——ln(—2kr, ),

where V~ is the volume integral of the added nuclear
potential. Therefore we can define a "nuclear" scattering
amplitude f~=f f',—w—hich [subtracting Eq. (5.1)
and (5.2)j obeys

M P 1

" Imf" (E')
Ref~(E)= ——V~+—' dE' . (5.3)

2~ ~~p E' E—
If the charges are of opposite sign, there will be a

sum of terms R /(E E), where E—,' are the bound-
state energies of the (screened) Coulomb 6eld, ap-
pearing in both Eqs. (5.1) and (5.2), but if the nuclear
potential introduces no appreciable level shifts in these
states, the poles do not appear in Eq. (5.3). One may
perhaps worry that the coefficients R,' may be changed
by the presence of a short-range interaction even
though the energy levels are not. It can be shown,
however, that these coefficients are even less sensitive
to modifications of the potential at short distances
than are the binding energies.

We can also define "nuclear" phase shifts by b&~

=8~—6~', and hence

(2l+1)
f~(E)=P ([exp(2i8~) 1j—[e—xp(2'(') —1$}

2ik

g=+ePM/k and a~=argp(1+l+irl) (.5.8)

Were we interested in energies or angles such that these
conditions would be violated, we would have to ex-
plicitly evaluate 8~' for the charge distribution under
consideration and use the dispersion relation (5.3)
together with (5.4). However, such is not the case in
the present application to pion-nucleon scattering, and
all explicit reference to the screening may be removed,
as we now show.

Note that at the energies and for the partial waves
of interest the effect of the screening is simply to
multiply the scattering amplitude fN by an energy-
dependent phase factor, and that this factor—although
it has an essential singularity at the origin —is analytic
in the upper half of the complex k plane and approaches
unity for large k. The behavior at the origin is physically
incorrect, since for low enough energy the 5 phase must
go as a(r, )k, where a(r, ) is the scattering length for our
screened Coulomb field. Consequently, it can do no
harm to displace the essential singularity below the
origin by an amount kp 1/r, . Then the function
exp(2iS) (fN —V~), with

(2l+1)
exp(2ih~') exp(i8P) sin8P, (5 4)

in[2 (k+ikp) r,jS=e'M
k+ikp

(6.1)

where k is the wave number. Note that instead of the
usual identification

is analytic in the upper half-plane and goes to zero as
k becomes large. Hence we have

we have

sin'b) k
Im f(E)=P (2l+1) =—o,.t.((E),

k 2~
(5.5)

Reepie(E)[fN(E) U

P t
" Ime e(z'&[fx(E') V—
dE (6.2)

sin(8P+28~') sin8P
Imf~(E) =P (2l+1)

k But e"~—1 satisfies the same conditions, so that one
obtains

k ( do. (8) do, (8)=—
~l dQ

4m~ dQ dQ
(5 6)

P ( Im(e"e (~'& —1) V~
Re(e"e(e' —1)U~ ———~' dE' (6.3)
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and by subtracting Eq. (6.3) from (6.2) we see that the
dispersion relation (5.3) is also satisfied by the quantity

(2l+1)f'=e"sf~= Q e""exp(ill) sinbp, (6.4)
k

where 0-~ is the usual Coulomb phase for:-l((kr, and
otherwise is 5i'+S.

Since the Klein-Gordon equation leads to the same
radial equation as the Schrodinger equation, if we
interpret g as e'/v and / in the centrifugal term as
[(l+—',)'—e']'*——', (and the nuclear interaction is a
world scalar), we can immediately extend our results
to this case, if these modihcations cause no difhculty.
The modi6cation of 0& is clearly trivial, but the phase
factor no longer goes to zero for large k. However if S
is multiplied by iE/(k+iE), wher'e E is much larger
than any wave number of interest, we have restored
this property without destroying the analyticity in the
upper half-plane, and the proof still stands.

III. EXTENSION TO RELATIVISTIC
FIELD THEORY

The general procedure by which one might hope to
approach the Coulomb problem in local field theory is
quite analogous to the foregoing. First one would
consider a hypothetical scattering problem, for particles
of pionic and nucleonic mass but having only an electro-
magnetic interaction, and attempt to derive a forward
dispersion relation. Probably one would want to give a
small but nonzero mass to the photon in order to avoid
the necessity of screening and to facilitate the extension
of the scattering amplitude into the complex plane. The
line of approach initiated by Bogoliubov' and de-
veloped further by Bremermann, Oehme, and Taylor'
would presumably be appropriate here, although
further development of the theory of many complex
variables may be required.

If this erst hurdle is overcome, the problem of
deriving a forward dispersion relation in the combined
presence of strong and electromagnetic interactions
will present no additional difhculty, and if one takes a
difference, the desired type of relation should follow.
Of course, as pointed out by Agodi, Cini, and Vitale,
the nonphysical region, —1(i &+1, is now filled with
contributions from intermediate states containing
photons, but such efkcts are to be classified as radiative
rather than Coulomb in nature and require a separate
discussion, in practice if not in principle. The position
and nature of the single-nucleon poles in the nonphysical
region are determined by kinematical considerations,
the only electromagnetic effect here being a unob-
servable renormalization of the Yukawa constant.
Finally, there are Coulomb bound-state poles in the

fl Bremermann, Oehme, and Taylor, Phys. Rev. (to be pub-
lished).

case of s, p scattering, but just as for potential
scattering, these will be removed- to a very good
approximation when the difference is taken between
the full amplitude and the electromagnetic amplitude.

In the physical region for u& 1, it is hard to think of
any possible modifications of the Goldberger relation
which could occur, and the crossing relation tells us
what to do for v& —1. Ke are therefore led to the
conjectured relation (4.1) to be obeyed by the ampli-
tude (3.2). Of course the Coulomb phase shifts are
accurately given by Eq. (3.3) only for low pion ve-
locities but at high velocities they are negligible in any
case. If it is necessary to introduce a screening radius,
we expect that it will be possible to remove the screening
phase just as was done for potential scattering.

IV. NUMERICAL ESTIMATE OF COULOMB
PHASE-SHIFT CORRECTIONS

where the phase shifts for positive pions are real at low
energies, but those for negative pions must be taken to be
complex in order to account for charge-exchange scatter-
ing and radiative capture. (The superscripts (+) distin-
guish between positive and negative pions. ) Here in order
to estimate the order of magnitude of the correction we
may use the usual charge-independent real phase shifts

here I 1 or 3 io so that we have

N(+) g N3

exp(ihi+~' &) sinai+~& '= i~exp(ibi+~') sinbi+N'

+-,' exp(ibi+~') sinhi+~'.
(8 2)

We see that for each term of the form exp(i8i) sinai in
the uncorrected scattering amplitude, the (additive)
correction to the real part is

—2 sino i sin(bi+0 i) sinai

and the correction to the imaginary part is

2 sino. i cos(5;+O.i) sinai.

(8 3)

(8.4)

Evidently these corrections, being proportional to
sino-&, are important only when the Coulomb phase

' It should be said that we are not at all convinced that it is
safe to assume charge independence in testing the dispersion
relations. However, all we are doing in this section is estimating
the order of magnitude of explicit Coulomb phase-shift eRects.
Any assumption about the nuclear phase shifts that gives them a
reasonable size should suKce for this purpose.

If the argument in Sec. III is accepted, the only
change introduced into the pion-nucleon dispersion
relations by the presence of the Coulomb field, outside
of tiny corrections associated with the mesonic-
hydrogen-atom level shifts, is to replace the forward
scattering amplitude by

k
f'&+& =—P exp(2io i&+&)(l exp(fbi '"') sinai

q2

+(3+1)exp(ibi~~&+') sinai+~&~'7, (8.1)
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becomes substantial in absolute value, that is, at very
low energies where the nuclear phases may be approxi-
mated by

(8.5)N I—g I~2l+1lg —E+ g

Considering first the correction to the real part of the
forward scattering amplitude, we find that so long as
fr~ itself is also small, the fractional correction is

2 sino& sin(5&+o &)

=2o&(a& rqs&+'+o&)
cosSi

iq e'
o&(+& —~i 1 p+ g

v=& P) k

(9.1)

(9.2)

10

If instead of using Eq. (4.1) we had made our sub-
traction at zero kinetic energy, that is, had used the
dispersion relations in the Goldberger form

2k'f' 1 k' t." dv'
Ref(+& (v) =a

v&1/2M 1—(1/4&Vs) m "& k"

(using the pion rest mass as our energy unit). Since
e'/k is only 0.05 at 1.5 Mev, not rising to 0.5 until the
energy is less than 15 kev, and the scattering amplitude
is never measured directly at such a low energy, this
approximation in effect can always be used. Further,
since the 5-wave scattering lengths are —0.1, 0.17
and the largest P-wave scattering length is 0.235, we
see that the Coulomb correction to the real part of the
amplitude can be safely ignored.

Turning to the imaginary part of the forward
scattering amplitude, and using the dispersion relations
in the form (4.1), we can again show the correction to
be small. From Eq. (8.4), the fractional correction at
low energies is

(9.3)

which becomes comparable to unity for 5 waves at
about 5 Mev and for P waves at about 20 Mev. How-
ever, the contribution to the dispersion integral in Eq.
(4.1) from the region below 50 Mev is generally less
than 1%. Consequently, except for fine details such as
finding the precise energy at which the real part of the
forward scattering amplitude vanishes, the Coulomb
phase-shift effects must be negligible. We have verified
this fact by direct calculation.

this circumstance would not have been quite so obvious.
In fact, because of the k" in the denominator of the
dispersion integral of Eq. (10.1), the Coulomb cor-
rection appears to be enormous. However, the region of
v' affected is so close to the lower limit that we can
clearly take the denominators v'~ v outside the integrals
as 1&v, and since the integrals are multiplied by
k'= v' —1, we see that this Coulomb contribution
effectively changes the constants C&' and C2' to Ci"
and C2". Of course, since the Bologna analysis identified
these constants with "scattering lengths, " one must
check to see if the use of the data was correct. To make
this check, note that at 2 Mev, for example, the
Coulomb correction, Eq. (9.1), to the real part of the
forward scattering amplitude is still negligible, while
the integral and the f' term of Eq. (10.1), being
multiplied by ks, contribute less than 1% to the right-
hand side; thus the identification of Ci" and C2" with
scattering lengths can indeed be made to the required
accuracy. Except for this redefinition of the constants,
then, the Coulomb corrections to Eq. (10.1) are no
greater than to the form (4.1).

V. CONCLUSION

In a sense the conclusions of this paper are negative.
We have been unable to find any Coulomb corrections
to the pion-nucleon dispersion relations larger than 1%
or 2%. However, there is also a positive aspect. If our
conjectured modification of the Goldberger relations is
correct (as we hope can ultimately be proved), one can
stop worrying about the difference between a "pure"
scattering amplitude, generated only by charge-
independent strong interactions, and the actual ampli-
tude that is measured. It is possible to use the measured
amplitude directly as a test of microscopic causality.

It must be emphasized again that we have not shown
(nor do we believe) that the failure of charge inde-

pendence leads to negligible effects. The amplitudes
used in the dispersion relations in a convincing test of
microscopic causality must be obtained from experiment
without the assumption of isotopic spin conservation.

Puppi and Stanghellini' avoided the use of charge
independence to a considerable extent but not com-

pletely. " It remains to be seen whether the Bologna
discrepancy will persist when an analysis entirely free
from the charge-independence assumption is carried
out.

X
Imfi+&(v') Imfi+&(v')

~+
i
+Ct'& vCs', (10.1)

v v V+V

"For example, they used the Orear scattering lengths (J.
Orear, Nuovo cimento 4, 856 (1956)g, which depend on charge
exchange as well as elastic scattering measurements.


