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Polarization and Angular Correlation in the Production and Decay of
Particles of Spin -', and Spin —,
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Some relationships describing the angular correlation and polarization effects in the production and
subsequent decay of particles of arbitrary spins are given. They are specialized to the cases of production
and decay of particles of spin ~ and $. Expressions for the angular distribution and polarization of the
decay products are reduced to tractable forms involving the physical vectors of the problem and a minimal
number of parameters describing the production and decay interactions. The information that may be
obtained from the analysis of the angular correlations of the decay products is discussed.

case of spin--,' particles is discussed here. Consequences
of noninvariance with respect to time reversal in the
decay of both spin-~ and spin-~ particles are also dis-
cussed.

In the analysis of polarization phenomena statistical
mixtures of states must be considered, and a density
matrix formulation is convenient. The spin-space
density matrix %.(8$) is defined by the relation

l. INTRODUCTION
' 'HE angular distribution of the x meson produced

in hyperon decay provides information regarding
the hyperon spin. If this spin is one-half then there is a
probability of one-half that the -decay direction will lie
in one of the two polar quadrants defined relative to the
line of Sight of the hyperon. The measured value of the
fraction of decays into the two polar quadrants is
0.55~0.021. The statistical probability that the meas-
ured value would differ as much as this from a true
value of one-half is 1.7%. In view of this indication
that the spin of the hyperon may not be one-half, it
becomes of interest to determine the detailed conse-
quences of the hyperon's spin begin greater than one-
half. The purpose of this paper is to examine, for the
case of spin ~ and spin 2 hyperons, the correlation
between the direction and polarization of the decay
nucleon and the directions defined by the production
process. The case in which the hyperon production
process is the capture of a E particle from orbital states
has been treated by Treiman and Gatto. ' ' We consider
here the case in which the hyperons are produced in
high-energy sr-P collisions. This is a generalization of
the work of Adair, 4 who considered the special case of
production at angles near zero or 180 degrees.

It is assumed throughout our paper that the m meson
and E meson are spin-zero particles. The strange par-
ticles are assumed to be single particles and not parity
doublets. ' Conservation of parity is not assumed in the
decay process. For the decay of spin-~~ hyperons the
consequences of a violation of conservation of parity
have been discussed by Lee, Steinberg, Feinberg, Kabir,
and Yang. ' The generalization of these results to the

~ This work was performed under the auspices of the U. S.
Atomic Energy Commission.

' Alvarez, Bradner, Falk-Vairant, Gow, Rosenfeld, Solmitz, and
Tripp, University of California Radiation Laboratory Report
UCRL-3775 (unpublished). These authors consider the results
quoted to be only rather weak evidence for a hyperon spin )—',.

s S. B.Treiman, Phys. Rev. 101, 1216 (1956);R. Gatto, Nuov
cimento 3, 1142 (1956).
4, R. Spitzer and H. P. Stapp, University of California Radiatio
Laboratory Report UCRL-3796 Rev (unpublished).

4 R. K. Adair, Phys. Rev. 100, 1540 (1955).
~ T. D. Lee and C. N. Yang, Phys. Rev. 104, 822 (1956).
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(A)e, =Tr AW(8y),

where (A)eo is the expectation value of the spin operator
2 if the measurement is made on particles moving in
the direction 8&. The matrices A and lt(8P) are square
matrices of dimension (2S+1), where S is the spin
quantum number. It is convenient to introduce a
complete orthonorrnal set of matrices in this space.
We use the matrices T„@defined as follows':

2 +1
(S't 'I T,&

I
S"t ')=

I I
C„-„„8"&s'

L2S'+»
(1.2)

( 2Q+1~ '*

I
CB-0(s'tt', tt"tt),

E2S'+1)

where the six-index symbols on the right are the usual
Clebsch-Gordan coeKcients. ' The matrices T.@ are real
and their Hermitian conjugates T„ are their respective
transposes. By use of the completeness property of the
T„o the tt(8@) may be expanded in the form.

(1.3)

The coeKcients tr„@(8&) and cr„o(8p) de6ned by the
above equations are complex conjugates owing to the
Hermiticity of the density matrix. They are scalars that
determine the density matrix and give the state of
polarization of the system. In virtue of the orthonor-

o ' P. A. M. Dirac, The Principles of Qnantnnt 3Ilechanics (Claren-
don Press, Oxford, 1947), third edition, p. 130;L. Wolfenstein and

n J. Ashkin, Phys. Rev. 85, 947 (1952); U. Fano, Revs. Modern
Phys. 29, 74 (1957).

Our normalization is different from that of other authors; see
C. Kckart, Revs. Modern Phys. 2, 305 (1930).

9 J. M. Blatt and V. F. Weisskopf, Theoretical 1VNclear I'hysics
(John Wiley and Sons, Inc. , New York, 1952).
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mality condition,

Tr T„@V'„@'=bye8„„, (1 4)

the o.„&(8$) and a„&(8$) may be expressed as

n„@(8$)=Tr lt(8$) T„@, a„@(8$)=Tr 'll(gp) T„&. (1.5)

We shall be interested in processes in which the
initial states are described by the spin-orbit variables
(5',p', O',P') and the final states by the spin-orbit

variables (S,p,g,p). If the initial system is a plane wave
nioving in the direction 8'g' with a spin quantum
number S', then the parameters n„&(5,8$), which
describe the spin-space characteristics of the reaction
products that emerge in the direction 8$ and in the
state with spin S, are given in terms of the parameters
n„@'(5',O'P'), which describe the spin-space charac-
teristics of the initial plane wave, by the fundamental
equation"

EI(8$)rrao(5 8$)= 2 P Rsr;, s'r-'rRsr "; s r. "r (2J+1)(2J'+1)[(2L+1)(2L'+1)(2L"+1)(2L"'+1)g'*
4+ gl II ttl, ttt gJI

hht) Xt
Y~x(gy) Y,x'(g~y~)C r r "AC r"'r's'( 1)I+r'+s g ~,Q'(g giy~) (2Q&+1)i

Xg(2Z+1)'Cqr, sz@C r ro's'zX(L"LA, J'JZ,SSQ)X(L"L'A',J'JZ, S'5'Q'). (1.6)
Zg

The X coeS.cient is the one defined by Fano, " the
Yr. (8@) are the usual spherical harmonics, ' the
Ezz,. z I, are reaction matrix elements determined by
the specific nature of the reaction, and the coefficient
E is a normalization factor. If the initial system is a
plane-wave state with momentum k', and X is taken as
(2z./k')', then I(8&) is the differential cross section. The
value of I(8@) may be determined by the condition
[implied by Eqs. (1.1), (1.4), and (1.5), together with

the requirement that the expectation value of a pure
number is equal to that number)

o.s'(S,gy) = (25+1)—l.

The above formula relates directly the expectation
values of operators in the initial and final states. It is
sometimes convenient to consider the reaction matrix
itself. According to our definition, " the matrix element

(Sp
~
(R(8&; O'P')

~

5'y'), when multiplied by (2'/k') (e/v'),
where v' and v are the initial and final relative velocities,
gives the reaction (or scattering) amplitude f„s(8$)
when the initial state is a plane wave of unit particle
density in the spin state X„'.If the s axis is chosen to
lie along the outgoing direction the matrix (R(8&; 8'p')

may be expressed in the form,

(R(00; 8'$') =P u, &($,00) 7.'„@,

'0 For a detailed derivation of this equation see reference 3,
where several special cases of interest are also given. We have
assumed that 5+5' is integral. A formula essentially equivalent
to Eq. (1.6) has been derived by A. Simon, Phys. Rev. 92, 1050
(1953).

"U. Pano, National Bureau of Standards Report NBS-1214
(unpublished), p. 48. Algebraic formulas and tables of the X
coeScients are given by H. Matsunobu and H. Takebe, Progr.
Theoret. Phys. Japan 14, 589 (1955).The phase and normalization
of our X coeKcient are the same as those of the U coeKcient of
Matsunobu and Takebe.

'~ For a complete description of the formalism used to obtain
the results quoted in this paper see reference 3.

where
( 1)8'-s

u. @(5,00) = Rar, ; s r, Yr, "(8g')
(4z')1 LL'r

X (2L+1)'*(2J+1)(—1)zC„s i'i@

XW(LJQS', SL'), (l.g)

2. REACTION FORMULAS FOR SPIN-~~
AND SPIN--', PARTICLES

The form of the angular distribution and polarization
of the reaction products of the decay of a spin-2 hyperon
into one spin-zero particle and one spin--, particle may
be obtained from Kqs. (1.5) and (1.6) by dropping the
contributions from all initial states with L'/0. If the
unit vector along the momentum of the fermion in the
decay products is denoted by V and the polarization
vector of the initial system is denoted by P;, the angular
distribution of the decay products is given by

I(U) = (rV/43r)[(Rs('+ (Rt('+2 Re(RsRr*)P; Vj, (2.1)

and the final polarization is

P(V) =I(V) '(X/4s. )(2 Re(RsRr*)V
—2 Im(RsR, *)(P;XV)+~Ro~'P,

+ ~Rt~'[2(P; V)V —P;]}
=I(V)-'(E/4z)[2 Re(RsRr*)V

—2 Im(RaRr*) (P;XV)
+(iRoi'+iRri')(P; V)V

-([R,[s- ]R,]s)(P;XV)XVg.
"G. Racah, Phys. Rev. 62, 438 (1942}.The values of the W

coeKcient have been tabulated by L. C. Biedenharn, Oak Ridge
National Laboratory Report ORNL-1098, 1952 (unpublished).

where 5' is the Racah coefficient. " If the initial and
final spin quantum numbers, S' and S respectively, are
equal then the matrices T„ are square matrices.
Otherwise they are nonsquare, with (2S'+1) columns
and (25+1) rows. The indices S and 5' on the
R8~., q L,

~ will be suppressed in the remainder of the
paper.
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The Rl are an abbreviation of Rl.o'. They are the two
fundamental parameters that completely describe the
decay process. If we take E=1 and normalize the El,
so that IRoI'+ IRiI'=1 then I(V)d0 is the probability
that the final nucleon will have its velocity in the solid
angle dO about the direction V.

The polarization vector of the hyperon, P,, is deter-
mined by the production mechanism. If parity is con-
served in the production the P; must be normal to the
plane of production. Its magnitude may be expressed
in terms of the fundamental parameters of the produc-
tion process. For the case in which the intrinsic parities
of the initial and final states of the production process
are equal these expressions are well-known. "The exten-
sion of these results to the case in which the intrinsic
parities of the initial and final states differ is given in
reference 3. The contribution from D states and the
case in which parity is not conserved in the production
process are also examined there.

The case in which the initial fermion of the production
process is a spin--, particle and the final fermion is a
spin--, particle may be described in a form similar to
the above. For this purpose we introduce the symbols

T(ui) = (4n/3)'* Yi"(ui) T.',

T(ui)us) = (4n/5) )Ys"(ui)us) T,')

T(ui)up)us) = (4)r/7)* Ys"(ui)up)up) T.'
(2.3)

The explicit form of the g; and h; when only S- and
P-wave final states contribute is given in Table I. The
normalization factors in Eq. (2.4) have been chosen so
that the differential reaction cross section for the case
of an unpolarized initial fermion is

Ip(8) =P;( I g; I
'+

I
h;

I
')+2 Re (hihp*) cosH

+$ Re(hph4*) cosH+2 Re(g&gs ) cosH

+2 Re(gpg4*) cos81Re(gpg4*) (3 cos'8 —1)
——'(IhpI'+ Ih4I'+sin'HIgpI') (2.5)

"See L. Wolfenstein and J. Ashkin, reference 7; H. A. Bethe
and F. de Hoffmann, 3EIesoes and Fields (Row, Peterson and
Company, Evanston, 1955},p. 79.

Here the u; are arbitrary vectors and the symbol
Yip "(ui, ,u~) represents the function of the vectors u,
that is linear in each argument, is symmetric in all its
arguments, and which becomes Yip."(8@) when all its
arguments are set equal to the unit vector in the direc-
tion 8)t). If unit vectors along the initial and final
momenta are denoted by K' and K respectively and N
is the unit vector in the direction K'XK, than the (R

matrix describing the production may be expressed as
the following superposition of these T matrices:

(R(K,K)) = ~2(2pr//4))
—

'Lgi(8) T(N)+go(8) T(K,K)

+g, (8) T(K,K')+g4(8) T(K',K')

yh, (8)T(K)yap(8) T(K')
+h, (8)T(N, K)+h, (8)T(N, K')]. (2.4)

Ip(8) b(8) = 4)(P sinHa, ,

I,(8)c(8)=0,
Ip(8)c'(8) =-4')~p{2np+n4},

Ip (8)c"(8) = -4')~P {ap—5 cosHnp},

Io(8)d(8) =0,
I (8)d'(8) =0,

I p(8) d" (8) = 4)to{sinHn 4},

(2.9)

TABLE I. Coe%cients of T matrices in Eq. (2.4} when only S- and
P-wave Gnal states contribute.

g)(e) = () /4 )( ,'4R))& 4(—))—&R))&5—sine,

g (g}=o,
g) (e) = p /4n) LRI)&—(-;)&Rl)&+2 (4)&R)4'"j)
g4(e) = ())/47r)L —vip)& —5(4)4R)4'i' cope),
h)(e) = ()~/kr)LR)p&+-,'(-;)&R)4&+) (f)&R)4"g)
hp(e) = (X/4))) L

—Vip)4 —$(-', )&R))4 cose —(9/2) (4)4R))@' cosej,
h, (e}=0,
h4(e) = (X/4)r)L —43(-,*)&R))&+4(-,')4R)p)i'j sing.

If parity is conserved in the reaction then the h;(8)
will be zero for the case in which the relative intrinsic
parity of the initial particles is the same as that of the
final particles; the g, (8) will be zero if these relative
intrinsic parities are opposite.

If parity is conserved in the interaction and the initial
fermion is unpolarized, the density matrix describing
the spin of the final particle must be of the form

~(K,K') =-,'+b(8) T(N)+c(8) T(K,K)+c'(8)T(K,K')
+c"(8)T(K',K')+d(8) T(N, K,K)
+d'(8) T(N, K,K')+d" (8)T(N, K',K'). (2.6)

The coefIicients in this expression as functions of the
g;(8) and h;(8) are given in reference 3. %hen only 5
and P final states contribute, the differential reaction
cross section reduces to the form

Ip(K, K') = 4'/is(A'+8' cos8+C' cos'8], (2.7)

where, for the case in which the relative intrinsic
parities of the initial and 6nal states are the same,

&'= IRii-: I'+2 IRop: I'+ (14/5) IR»'I'+ (9/5) IR»'I'
+ (-', )-*' Re(Rii~Rii'*)+3('s)'* Re(Rii~Rip'**)

—-', (6*') Re(Rii~Ri p'*) )

I3'= —242 Re(Ri;*Rpp'**)+ (4/5**) Re(Rii~Rpp***)

+6(6/5)& Re(RoplRip&*), (2.8)
C'= —(12/5) IRiigI'+(18/5) IRisiI'

—3(p)& Re(RiiiRii'*) —9(p)* Re(Rii**Ri *)
+(9/5) 6** Re (Ri i' is'*) .

'When the contribution of the P Anal state is much
smaller than that of the S final state and the quadratic
final E-state terms can be neglected, the parameters in
Eq. (2.6) are given in terms of these same reaction
matrix elements by
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where the e; are

a~=Im[ ( ) R»R» +sR»R02
+ (9/5) ($)&R»&R»&*],

~2= —~R»'~',

n3 ——Re[-', (6/5) 'R»'*R&3&*+(6/5 (5)l)R„~RoP],
&4=Re [~2R11~R02'*+(8/5 (5) '*)R»'R02~*

—s3 (6/5) &R02&R»~*],

n, =Im[(18/5) R»~R»&*——', (6&)R02~R„&*].

(2.10)

The case in which the initials and final intrinsic parities
are diferent is described by the same equations modified

by the replacement of RL„& ~ by RL„& +&~, where the
choice of sign is fixed by the vector addition law; this
implies

I
J

The foregoing expressions give the form of the
angular distribution and spin-space characteristics of
the hyperons produced in association with E particles
in pion-nucleon collisions if the E particle and hyperons

are spin 0 and spin —,', respectively. In the subsequent
decay of this hyperon into a pion plus nucleon, each
term in the hyperon density matrix %,(K,K') —=%zz gives
a characteristic angular distribution and also a charac-
teristic angular dependence for the polarization of the
final nucleon. In order to exhibit these angular de-
pendences in a convenient way we write Eq. (2.6) in the
form

+a=4+Ex 'r~'2 (u')+Qy ~2'2 (ui', u2')

+Qg ~,"T(ug",u2', u3"). (2.11)

In this formula the u~" are vectors that are to be
selected in a way that gives the desired form of %L~.

For example we obtain the form of %.~ given in Eq.
(2.6) by the choice u'=N, uP=K, u&'=K, uP=K,
u22=K, etc. The various ~ are to be identified with
the coefficients b(8), c(8), etc. , appearing in Eq. (2.6).
The angular distribution of the decay products is given
in terms of the v by

~(V) =(4 ) '((IR~I'+ IR2I')+2'5 "'(u' V)«e(R~R2*) —2; ~2'[3(«'.V)(u2' V) —(u~' u2')](IR~I'+ IR2l')

Qp 5 'rg"[5(ug V) (u2" V) (us" V) —(uP V) (u2'u3") —(u2 V) (uP uP) —(u," V) (u(.u2")]6 Re(R&R2*)).
(2.12)

The polarization vector of the nucleon in the final state is given by

I(V)P=(4m) '[2 Re(R~R2*)V++;5 *'r~'[2(~R~~'+ ~R2~2)(u' V)V+4(~Ri~' —~R2~')VX(u'XV)
—8 Im(R~R2*) (u'X V)]—Q; ~j2 Re(R~R2*)[3(uy' V) (u2'. V) —(ug' u2')]V —Qp 5 *'r3~([(~Rg

~

'

+ iR2i') (V ug')V+ ((R&i'—(R2i')VX (uPXV) —2 Im(R&R2*) (uPXV)]
X [5(u2 V) (u3 ~ V) —3(u2 u8)]+Sym. )]. (2.13)

The symbol Sym. in the preceding line represents the
sum of the two terms needed to symmetrize the contents
of the braces.

3. DISCUSSION

The consequences of nonconservation of parity in the
decay of a spin--,'hyperon may be obtained from an
examination of Eqs. (2.1) and (2.2) if it is noted that
conservation of parity requires either Ro or R& to vanish.
The measurement of the anisotropy in the decay cross
section as a test of parity conservation has been sug-

gested by Lee et a/. ' Another test would be the measure-
ment of the longitudinal polarization of decay nucleons
that move in the plane of production. This latter
method is more dificult but has the advantage that it
is independent of the magnitude of the hyperon
polarization. If the hyperon polarization is large,
however, then the measurements the nucleon angular
distribution and of various components of the nucleon
polarization allow Ro and R~ to be determined up to an
over-all phase. These two parameters give a complete
phenomenological description of the decay process.

The measurement of the final polarization also
permits a direct test of the invariance of the decay
interaction with respect to time reversal. If the decay
Hamiltonian is invariant under time reversal, the

quantity Im(ROR&*) must be zero in so far as the decay
process may be considered to be first order in the decay
Hamiltonian, provided final-state interactions may be
neglected. The inclusion of the final-state interactions
modifies this condition somewhat. " For the case
Z ~0+m the upper limit on ~Im(RoR~*)

~

in the
presence of the final-state interactions becomes

where 6L, is the spin--,'isotopic spin- —', phase shift for the
pion-nucleon system. This places a corresponding limit
on the magnitude of the decay nucleon's component of
polarization in the direction P;XV.

For the case of spin-2 hyperons, tests very similar to
the above are obtained from an examination of Eqs.
(2.12) and (2.13). For this case it is either R~ or R2
that must vanish if parity is conserved, and it is
Im(R~R2 ) that is associated with invariance under
time reversal.

If the hyperon is spin ~3, the correlation between the
directions defined by the production process and those
of the decay process are given by Eqs. (2.4) through
(2.13). At production threshold, where only the S

"For a detailed account of the restrictions imposed upon the
reaction matrix elements by invariance conditions and 6nal-state
interactions see reference 3.
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waves of the 6nal state contribute, the angular distribu-
tion for the production is isotropic and the angular dis-
tribution of the decay products in the decay center-of-
mass frame is of the form (3 cos'0~'+1), where 0~' is
the angle, measured in the decay center-of-mass frame,
between the direction of the incident nucleon in .the
production process and the outgoing nucleon of the
decay process. This may be compared to the case
discussed by Treiman' in which it was the initial state
of the production process that was an S state. In that
case the angular distribution of the decay products was
of the form (3 cos'0+1), where 0 labels the angle
between the hyperon velocity and the velocity of the
final nucleon. For this limit in which only S waves are
produced there will be no asymmetry with respect to
the normal to the plane of production. At somewhat
higher energies, where the interference between the
final S and P waves becomes important, the hyperon-
density matrix will contain nonvanishing contributions
proportional to T(N), T(K,K'), T(K',K'), and
T(N, K',K'). The form of the decay angular distribution
associated with each of these terms may be obtained
from Eq. (2.12). From the T(N) term one obtains a
contribution proportional to cosO~, where O~ is the
angle between the normal to the production plane and
the direction of the nucleon from the decay. This term
is analogous to the one that appeared when the hyperon
was considered to be spin -„and it must vanish if parity
is conserved in the decay process. The contribution from
the T(N, K',K') term will also be nonzero only if parity
is violated in the decay. The angular distribution
associated with this term is obtained from the r3 con-
tribution to Eq. (2.12) by setting ui'= N, u&' ——K', and
u3' ——K'. It is of the form cosO~~[5 cos'0"' —1]. This
gives an asymmetry with respect to the normal to the
production plane that is greatest for particles that
decay in the plane defined by the vectors N and K' and
which reaches a maximum when 0'~~58.9'. The
maximum asymmetry from the T(N) term occurs, of
course, at 0'~ ——0.

In addition to these terms, which reveal parity
violations, there is another new term in the angular
distribution. This one is a consequence of the T(K,K )
contribution to the hyperon density matrix. According
to Eq. (2.12), the angular distribution characteristic of
this term is [3 cosO~ cosO~' —cose]. Each of these terms
will also give its characteristic contribution to the
polarization of the final nucleon. The form of these
contributions is given by Eq. (2.13).At higher energies,
where all the terms in the general form of the hyperon
density matrix given in Eq. (2.6) contribute, three
additional terms may enter in the decay angular dis-

tribution. Two are present only if parity is violated, and
have the forms

cosO~~[5 cosO~ cosO~ —cos8]

and
cosO~[5 cos'0 —1].

The other has the form (3 cos'0 —1).
Ke conclude this section with several comments.

First, the contributions to the decay angular distribu-
tion that are present when parity is not violated give no
information about the decay mechanism except its total
strength. All of them are proportional to (~RO('+ (Ri(')
for the spin--', case and to ((Ri~'+ ~R2~') for the spin--,'
case. This form does not allow the contributions from
the two final angular-momentum states to be distin-
guished. For the same reason, however, these terms give
information about the production process that is
independent of the detailed nature of the decay reaction,
and their measurement provides information useful in
the study of the strong reactions. Second, if, in the decay
angular distribution there should occur a term that is
asymmetrical with respect to any direction that lies in
the plane of production, then parity must be violated
both in the decay and in the production. It is assumed
here that the strange particles are single particles —not
parity doublets. Third, it is of interest to determine
whether the intrinsic parity of the E-hyperon system is
the same as the intrinsic parity of the pion-nucleon
system. In view of the great dissimilarity in the forms
of the 5t matrices in these two cases [see Eq. (2.4)], it
might be thought that the correlations near threshold
between the various angular distributions and polariza-
tions would depend upon the relative intrinsic parities.
However, no information about the relative intrinsic
parities of the two systems can be obtained from the
analysis of the angular distributions and polarizations
of hyperons produced in pion-nucleon collisions unless
assumptions are made regarding the relative magnitudes
of the contributions from various initial angular-
momentum states in the production process. This is a
consequence of the close similarity, which is discussed
below Eq. (2.10), of the formulas that describe the two
alternative possibilities.

Finally we note that if the angular distributions in
both the production and decay reactions are known,
then for incident energies at which only S-wave and
S,E-interference terms contribute the parameters n2,

Q3 and n4 may be determined from (and are in fact
overdetermined by) Eqs. (2.7) through (2.12). The
production angular distribution determines A = —2n2

and 8' =6n3 —2+4. This leaves a single parameter
to be determined by the angular distribution of the
decay products (only the part symmetric with

respect to reRection in the plane of production is per-
tinent here). Note that the decay angular distributions
at all of the various production angles may be used
simultaneously. If 802'* is taken to be real by a suitable
choice of the arbitrary phase factor then from the
values of these n's the real parts of the other three
RL,I. ~ are determined, except for sign, up to a single
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degree of freedom. The parameters ni and a5 determine
to the same extent the imaginary parts of these three
RL,L, ~. However, such an analysis of the angular dis-
tributions in the production and decay reactions can
determine o.i and ns only up to the over-all factor
Re(RiR2*)/(tRi~'+ )R2~'). This factor could be deter-
mined by, for example, a measurement of the longi-
tudinal polarization of the final nucleon.

At higher energies, where a phase-shift analysis is
not practical, the general parameters g, (8) Lor h, (8)]
must be used in the analysis of the data. Due to their
unknown dependence on the production angle 8 the
analysis at each production angle is a separate problem
(unless general power series forms are used). A knowl-

edge of the production cross section and the decay
angular distribution for a single production angle 0/0
is sufficient to determine the seven parameters appear-
ing in Kq. (2.6) except for the unknown factor
Re(RiR2*)/(~Ri~'+ ~R~~') that occurs with b(8) and
the various d(0). Thus the expressions for b(8), etc. , in
terms of g;(8) for k;(8)) together with Kq. (2.&2)

provides eight equations for eight unknowns, these

being the real and imaginary parts of the four g;(tt) )or
k, (8)) minus one over-all phase factor plus the unknown

factor Re(RiR2*)/(~Ri~'+ ~R2~'). In principle, there-

fore, the production process at any angle is completely
determined by the angular distribution measurements
alone and the polarization measurements are necessary

only to distinguish between the various solutions of the
system of equations. In practice, however, the com-

plexity of the equations limits their usefulness and

polarization measurements would be quite valuable,

particularly for the determination of Re(RiR2*).
Furthermore the polarization must be measured if

Im(RiR2*) is to be determined.

4. RELATIVISTIC CORRECTIONS

Although the expressions given above are nonrela-

tivistic in form they may, if properly interpreted, be

applied to relativistic problems. The fundamental idea

is to apply the formulas to the proper polarization' of

the fermions. The proper polarization is the polarization
as observed in the rest frame of the particle, and it may
be described by the nonrelativistic operators. If the
covariant reaction matrix is multiplied by appropriate
Lorentz transformations it will act directly upon the
operators describing the initial covariant proper polari-
zation to give the final covariant proper polarization.
Specifically, if the reaction is treated in the center-of-
mass frame, the reaction operator N.~ that directly
relates the initial and final proper polarizations is given
in terms of the usual covariant reaction matrix N.„by

'6 The term polarization is interpreted to include tensor-type
polarizatjong,

the equation"

N. (k,k') =I-(k)R, (k,k')L, '(k'),

where L(k) is a Lorentz transformation that transforms
spinors from their values in a frame in which the center
of mass of the reaction is at rest to their values in a rest
frame of the final fermion whose four-momentum is k;
the transformation L(k') is defined in the same way
but relative to the initial particle. The part of the
matrix N,„that describes the transitions between initial
and final states having energies of a well-defined mag-
nitude and sign is a reduced matrix of the nonrelativistic
form. Moreover, if the Lorentz transformations L(k)
and I.(k') are chosen to be pure timelikeis transforma-
tions, then the vectors and spin matrices that appear in
the reduced $t matrix transform under spatial rotations
in the usual nonrelativistic manner. The nonrelativistic
reaction matrix and density matrix of the earlier sections
may consequently be identified with the reduced part
of S.~ and the proper density matrix, respectively. "

If the center-of-mass frame of the reaction is not
identical with the laboratory frame then there is an
ambiguity in the definition of the proper polarization.
The correspondence described above between the
relativistic and the nonrelativistic formulations is
valid specifically in the center-of-mass frame, and the
components of proper polarization refer to those rest
frames of the initial and final particles that are related
to the center-of-mass frame by the transformations
L(k') or I.(k). In the usual definition of proper polari-

zation the rest frame of the particle is taken to be one

generated by the action upon the laboratory frame of

a pure timelike Lorentz transformation. In order to
obtain the usual proper polarizations from those proper
polarizations appearing in our nonrelativistic expres-

sions, the vectors describing the proper polarizations in

the latter formalism must be transformed by the se-

quence of transformations that takes them first to the
center-of-mass frame, then to the laboratory frame, and

then to the usual rest frame. This sequence of trans-
formations is equivalent to a pure rotation. If the center-
of-mass frame is the one generated from the laboratory
frame by a pure timelike Lorentz transformation, then
the sequence of the three pure timelike transformations

produces a rotation of the vectors describing the proper
polarization by an amount specified in Eq. (48) of

"The light-face vector arguments are four-vectors. We have
suppressed in this equation the dependence of the operators upon
the total energy-momentum vector for the reaction. Since we are
considering the center-of-mass frame, this vector is pure timelike.
See reference 19 for a detailed discussion.

A pure timelike Lorentz transformation will mean one that
leaves unchanged the space components along directions per-
pendicular to the relative velocity of the two frames.

"H. P. Stapp, Phys. Rev. 103, 425 (1956).This reference gives
a detailed justification of the nonrelativistic treatment of spin-~
particles. The arguments may be extended to particles of higher
spin.
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reference 19." A detailed treatment of the Dirac-
particle case is given in that paper. t

~ The velocity vectors V, and Vb that occur in Eq. (48) of this
reference are the relativistic or covariant velocities (dx/dr)
= y (dx/dt), where t, r, and y are time, proper time, and relativistic
contraction factor, respectively. This fact is not made sufficiently
clear in the reference.

]Note added im proof. If in —the production of a spin--,' hyperon
the initial nucleon is unpolarized and only S and P waves con-
tribute in the final state then the angular distribution of the decay
products, when averaged azimuthally, takes the form

g sin'g
In(a 0') =—L(-' cossO'+-') — (-' cos'0' —-') ].

Here 8 is the center-of-mass production angle, J(0) is the produc-
tion cross section, g is a positive constant, and cosa+'= (V E').
Relativistically O~' is the angle in the hyperon rest frame between
the direction of the decay products and the direction lying in the
production plane that makes an angle of (~—8) with the line of
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flight (see from the hyperon) of the production center of mass.
The azimuthal average is about this direction from which 0 is
measured. The constant x is restricted by the inequality

x(—(A' —C'+P(A'+C')' —B"g&)&—(2A'),

where A', B', and C' are the constants given in Eq. (2.7). The
form of Io(g, O') given above is an extension to all production
angles of a relationship given by Adair, 4 and it will be useful in
determining whether the hyperon spin is —,. Its derivation, which
is based upon Eqs. (2.5), (2.6), (2.11), and (2.12) and Table I
together with the general expressions for the v-; in terms of the
g; (or h;) obtained in reference 3, is given by the present authors
in the University of California Radiation Laboratory Report
UCRL-8005 (unpublished).
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Hyperon Production in Nucleon-Nucleon Collisions*
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The hyperon production process in nucleon-nucleon collisions is analyzed in terms of isotopic spin, and
angular momentum near threshold, to deduce certain tests for global symmetry, charge independence, and
the parities of Z, A, and E mesons.

Information about the hyperon-nucleon interaction may be obtained from the E-meson spectrum.
However, the Z's and h. 's may interchange owing to this interaction, and Watson's theory of final-state
interactions is generalized to allow for this eA'ect. The result is applied to the Z processes and its significance
for the recent calculations of Henley, on the A.-S' final-state interaction is discussed.

I. INTRODUCTION

E consider the process

p+ p p+&++&', (1.2)

which has the advantage that it does not interfere with
the A production process. We assume that the final
baryons are in s states and that the E meson is emitted

* Supported in part by the U. S. Atomic Energy Commission.
)Now at the Department of Physics, Johns Hopkins Uni-

versity, Baltimore, Maryland.
f Now at the Department of Mathematics, Imperial College,

London, England.

A+X—b/V+ i"+E. (1.1)

In Sec. 2 this is analyzed in terms of isotopic spin;
certain predictions are made about production ratios,
and a relation between cross sections of the type
familiar in pion physics is derived.

In Sec. 3 an angular momentum analysis is made
near the threshold for A production, and near threshold
for the process

in an s or p state according to whether it has the same,
or opposite, parity as the accompanying hyperon. ' The
angular distribution of the E meson relative to the
initial momentum is either isotropic, or of the form
a+b cos 8, according to the two possibilities. Thus, the
angular distributions should determine the relative
parities of the Z's, A. 's, and E mesons.

In the corresponding pion process,

the spectrum of the pion is strongly affected by the
interaction between the final nucleons. ' In that case,
the two-nucleon potential was already phenome-
nologically well unde~stood. At present little is known
of the F-E interaction and this is a fairly direct way
of getting information. In particular, if bound states
of A'IV or Z+p exist, this should be an efficient way of
producing them. However, in this problem the effect
is complicated by the fact that the final state inter-

' K. M. Watson and K. N. Brueckner, Phys. Rev. 83, I (1951);
A. H. Rosenfeld, Phys. Rev. 96, 139 (1954).


