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that there is as much shift as was observed at only 7%,
polarization. The only explanation one can give is that
from Eq. (1) the actual energy shift in W, through
changing 6, does not depend on the degree of polari-
zation but only on the orientation; thus the shifts
should be independent of the degree of polarization.
However, there is so much integration over different
planes with only 79, polarization that the curves must
be smoothed out to a large degree. This, in fact, explains
why no differences in structure intensity were observed
at different orientations. These results, giving energy
shifts at D and beyond, imply that Kronig’s theory
holds pretty well for electrons of 75-ev energy or greater
and that the structure D to ¢ is true extended structure
determined by the crystal lattice. Germanium is not a
simple cubic crystal and does not have 90° symmetry
in general; thus, shifts in fine structure for 90° rotation
of the absorber are not inconsistent with the crystal
structure.

E Turning now to a comparison of the results for Ge
and the Ge-Si alloy, one would expect to find differences
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in the positions of the structure such as that observed
for o’ and B’ because the conduction band structure
of the two crystals should be different.” The shift in
the K-edge for the Ge-Si alloy of 1.2 volts to lower
energy, if real, would indicate that the absolute energy
value of the first conduction band for the alloy lies
lower than for the pure metal. Since the energy gap
between the valence band and the first conduction
band for 7%, Si in Ge is slightly greater than for pure
Ge,” our result would mean that the top of the valence
band would shift slightly more than 1.2 volts to lower
energies in the alloy. However, we cannot be sure of
the true value of the shift of the K-edge. Certainly it
is no more than 1.2 ev. However, it is to be noted that
the alloy sample was thicker than the sample of pure
Ge by 15 to 209, and this increased thickness makes it
difficult to speak with certainty concerning the relative
location of the edges.® The shifts in position for a’ and
B’ are certainly larger than would be expected from a
thickness effect alone, indicating real differences in the
conduction bands for Ge and the Ge-Si alloy.
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Energy bands are derived for a hypothetical crystal composed of carbon atoms arrayed in a single face-
centered-cubic lattice by the method of orthogonalized plane waves (OPW). The bands are compared with
those of diamond which have been obtained by Herman. It is shown that the hypothetical crystal is an
almost perfect metal. A potential for atomic carbon in the 3P ground-state is computed within the framework
of Slater’s free-electron-exchange approximation. An analytical approximation to this potential is provided.
Results of a general symmetry analysis, appropriate for application of the OPW method to any f.c.c. lattice,
are given. The cohesive energy of the metallic crystal relative to that of diamond is discussed within the

approximation employed.

I. INTRODUCTION

GENERAL discussion of cohesion in solids has
been given by Wigner and Seitz! As these
writers have noted, the cohesive energy of diamond
relative to that of its neighboring group III and group
V elements is far too large in comparison with the
corresponding relation of the other group IV elements
to their respective neighbors to be explained on the
basis of the qualitative picture they present. When the
work described here was begun, it was hoped that by
studying the energy-band structure of a hypothetical
crystal composed of carbon atoms arrayed on a ‘“‘suit-
ably chosen” lattice and comparing the results with
* Supported by the U. S. Air Force, through the Office of
Scientific Research of the Air Research and Development
Command.
1 E. P. Wigner and F. Seitz, in Solid State Physics, edited by

F. Seitz and D. Turnbull (Academic Press, Inc., New York,
1955), Vol. 1, p. 97.

those obtained by Herman?* for diamond, one might
somehow be able to gain insight into the reasons behind
this circumstance.® The crystal we have selected is one
in which the atoms are situated on a single face-
centered-cubic lattice. The f.c.c. symmetry was chosen
because it is one of the simplest types exhibited by
metals and its reciprocal lattice is the same as that for
diamond within a scale factor. The last feature facili-
tates comparison of the energy eigenvalues at points
of relatively high symmetry in the Brillouin zone. The
lattice constant was chosen in such a way that the mean

2 F. Herman, Phys. Rev. 88, 1210 51952).

3 F. Herman, Phys. Rev. 93, 1214 (1954).

4F. Herman, Ph.D. thesis, Columbia University, 1953 (un-
published), available on microfilm through University Microfilms,
University of Michigan, Ann Arbor, Michigan.

5The cohesive energy of diamond has been calculated by
Schmid who has used an approach based upon the concept of

molecular bonds rather than energy bands. [L. A. Schmid, Phys.
Rev. 92, 1373 (1953).]




HYPOTHETICAL

electron density of the metallic structure is the same as
in diamond. The procedure has the following advantage:
Many of the terms which appear in the Hartree-Fock
expression for the total energy of a solid, in addition
to a sum of the one-electron energies, depend only on the
average electron density in first approximation.® Hence,
the difference between the total energies of the two
lattices can be estimated qualitatively by comparison
of the energy bands which are occupied by electrons at
T=0°K. Since the f.c.c. lattice has only one atom per
unit cell, whereas diamond has two, the condition
imposed leads to a lattice constant for the metal which
is smaller than that for diamond by a factor, 2—%. Cor-
respondingly, the metal has a larger reciprocal lattice.
Thus, simply by considering the energies associated
with the empty lattices” of both systems, one expects
the energy bands of the f.c.c. structure to be wider
than the bands of diamond. The results of the detailed
analysis show that this condition actually obtains.

Herring’s method® of orthogonalized plane waves
(OPW) has been employed since it is the same pro-
cedure which Herman has used in the case of diamond.
Thus, inaccuracies in the results obtained for the two
structures are expected to cancel more nearly than
would be the case had we used some other technique
such as the cellular approximation. As will be shown,
however, our detailed procedure, which is outlined in
Sec. II, differs sufficiently from Herman’s that we are
unable to draw rigid quantitative conclusions about the
relative stability of the two lattices. We are able to
demonstrate only that if the f.c.c. structure were stable
for our choice of lattice constant, it would be a nearly
perfect metal. That the pseudostructure is metallic
cannot be considered surprising, although the result
could not have been predicted with complete confidence
prior to carrying out the analysis. Additional comments
concerning the conclusions to be drawn from the analy-
sis will be given in Sec. V.

II. CRYSTAL POTENTIAL AND ASSOCIATED
OPW PARAMETERS

Unless explicitly stated otherwise, atomic units are
assumed. (Unit of energy=1 rydberg.) A one-electron
crystal potential is constructed from atomic wave
functions given by Jucys® for carbon in the *P ground-
state configuration, (25)2(2p)%.. The free-electron-ex-
change approximation of Slater! is employed through-
out the analysis. The atomic potential for carbon is
denoted by V,.(r), where 7 is the radial coordinate. A
numerical tabulation of the function, —7V,(r) is ob-
tained by substituting values of the radial charge

8 See, for example, the discussion presented in the book by
F. Seitz, Modern Theory of Solids (McGraw-Hill Book Company,
Inc., New York, 1940), Chap. X.

7 Empty-lattice energies are illustrated in Fig. 5 of reference 3.

8 C. Herring, Phys. Rev. 57, 1169 (1940).

% A. Jucys, Proc. Roy. Soc. (London) A173, 59 (1939).

10 7. C. Slater, Phys. Rev. 81, 385 (1951).
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density and the quantity, 2Z,(r) in an expression for
Va(r) which is derived readily from Slater’s results.
The radial charge density is computed easily from
Jucys’ wave functions. The function, 2Z,(r), which is
equal to the Coulomb potential for the atom multiplied
by —7, has been tabulated by Freeman.!! The tabula-
tion of —#V,(7) is approximated to within 5%, by the
following analytical expression'?:

—rVa(r) =1.741¢43297-4.522¢72047r -5 7370487 (1)
It should be remarked that the procedure described
does not represent a self-consistent solution for the
field of atomic carbon in the approximation of Slater.
With one exception, the crystal potential V.(r) is
approximated by the relation

Vc(r)=2uva(lr—Rul)y (2

where R, denotes the position of an atom in the lattice.
Equation (2) represents a further approximation within
the framework of the free-electron-exchange method
since it contains the implicit assumption that the ex-
change term in the crystal potential can be obtained by
superposing atomic exchange potentials. The nature of
the approximation has been discussed by Woodruff.!3:14
He has given arguments which indicate that, except
for a single case, Eq. (2) represents a reasonably good
approximation when one is interested in computing the
Fourier coefficients of potential, »(K), which constitute
one of three types of parameters involved in the OPW
method. K represents a principal vector in the reciprocal
lattice. The exceptional case occurs when K=(0,0,0).
When K differs from the null vector, Eq. (2) can be
employed to express 7(K) in the form

o(K) = (1/20) f dr V(e ks, 3)

where Q is the volume of a unit cell and the symbol
Jodr implies an integration over all of space. Equation
(3) is valid for crystals having only one atom per unit
cell, but can be generalized easily to include lattices
with diamond-like symmetry. From Eq. (1) and Eq. (3)
the Fourier coefficients can be expressed by a rela-
tively simple relation of the form,

V(K)=“(4"r/90)§ B/ (b2+K2), K=(000), (4)

11 A, J. Freeman, Phys. Rev. 91, 1410 (1953).

2 The method outlined has also been employed by the writer
to approximate the Slater potential for atomic argon. [R. C.
Casella, Phys. Rev. 104, 1260 (1956).]

13T, O. Woodruff, Phys. Rev. 103, 1159 (1956).

1T, O. Woodruff, Ph.D. thesis, California Institute of Tech-
nology, 1955 (unpublished). Portions of this work are described
in a review article by T. O. Woodruff, in Solid State Physics,
edited by F. Seitz and D. Turnbull (Academic Press, Inc., New
York, 1957), Vol. 4 (to appear shortly). The writer is grateful to
Dr. Woodruff for access to his manuscript prior to publication.
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where B; are the constants multiplying the exponentials
in Eq. (1) and b; are the constants occurring in the
exponents of the same expression.

When K=(0,0,0), Egs. (2), (3), and (4) are no
longer valid. Following Herman® and Woodruff,®® the
(additive) Coulomb and exchange contributions to
2(0,0,0) are treated separately. Since the Coulomb por-
tion of the atomic potentials, —2Z,(|r—R,|)/|r—R,|
can be superpcsed in constructing the ccrresponding
portion of the crystal potential, the Coulcmb contribu-
tion, v(?(0,0,0) obeys a relation similar to Eq. (3) in
which V. (r) is replaced by —2Z,(r)/r. That is,

V(0,0,0) = — (47/Q) fwdr ?[2Z,(n)/r]. (5)

Equation (5) has been integrated numerically, yielding
2(9(0,0,0)=—1.5156. An expression for the exchange
contribution 2¢©(0,0,0) is derived by noting that »(K)
can always be written in the form

o(K) = (1/20) f dr V. (1)eEr, ©)

cell

By replacing V.(r) in Eq. (6) with Slater’s exchange
correction, as applied directly to the crystal potential,
and adopting Woodruff’s assumption that the valence
charge density may be considered constant in deter-
mining an approximate value of »¢(0,0,0), one obtains
the expression

0
2(9(0,0,0) = — (47C/) f dr
0

X LU (r)/rP+4xX/Q 2. (T)

In Eq. (7), C=6[3/(32a%) ]}, U.(r) is the radial charge
density due to the core electrons, X is the number of
valence electrons per atom, and 7 is the radius of a
sphere having a volume equal to Q. By numerical
integration of Eq. (7), v¢(0,0,0)=—1.4398. It is

TasLe I. Fourier coefficients of potential, 2(K), for the metallic-
carbon and diamond lattices. Comparison with Herman’s results®
for diamond. K denotes a principal vector in the reciprocal lattice.
2a equals the edge length of the basic cube (i.e., @ denotes the
lattice constant). Unit of energy =1 rydberg.

|2(K)|
K K2 9(K) (diamond)
(in units  [in units (metallic l2(K)| (after
of w/a) of (x/a)?] lattice) (diamond) Herman)
000 0 —2.9554 2.9554 2.8686
111 3 —0.63588 0.6454 0.6400
200 4 —0.50501 0 0
220 8 —0.28409 0.4183 0.4188
311 11 —0.21590 0.2269 0.2013
222 12 —0.20007 0 0.0016
400 16 —0.15503 0.2329 0.2272
331 19 —0.13282 0.1418 0.1256
420 20 —0.12678 0 0
422 24 —0.10734 0.1631 0.1532

s See reference 4.

easily demonstrated that application of the method to
diamond-like crystals yields results which may be
obtained formally by replacing Qo with @, and 7, with
ro wherever they occur in Eq. (5) and Eq. (7). Q.
denotes the volume per atom in the crystal and 7, is
the radius of a sphere having a volume equal to Q.
Aside from notational differences, the resulting ex-
pression for »(2(0,0,0) is identical with Woodruff’s.
The agreement is not unexpected since his assumption
of uniformly distributed valence charge underlies the
method employed in deriving Eq. (7).'* Since Qo is
equal to Q, for the metallic lattice and since the lattice
constant has been chosen in such a way that the volume
per atom is the same as in diamond, the foregoing
implies that v(0,0,0) is the same for both lattices in the
approximation employed. The results of the present
treatment are summarized in Table I, which contains
numerical values of several of the Fourier coefficients
associated with both the metallic and diamond lattices.
The latter are compared with Herman’s values? of #(K),
which were determined from Jucys’ wave functions!®
for atomic carbon in the 55 bonding configuration
(2s)(2p)2.

In addition to the Fourier coefficients two other
types of parameters must be determined in order to
ascertain the energy bands by the OPW method. They
are the atomic eigenvalues, E,; associated with the
core states and orthogonality coefficients, A ,;(k+K),
where k is the reduced wave vector. Since the orthog-
onality coefficients are introduced in the process of
orthogonalizing plane waves to core states, they are
determined by the core orbitals.!” For carbon the
parameters reduce to E;, and A:,(k+K). Following
Parmenter'® and Woodruff,"® new values of E;,; and the
1s atomic orbital ¢, are determined instead of using
the quantities obtained originally by Jucys.® The mean
value of a trial wave function, C(a)e~*" with respect to
an atomic Hamiltonian containing V,(r), as given by
Eq. (1), is computed and « is varied so as to obtain an
extremum. C(e) is determined by the condition that
¢1; be normalized. From the variational procedure,
©1:=17.6434 exp(—5.683r) and E;,= —21.448, whereas
Jucys has obtained E;;=—22.658. Although his value
is presumably the more accurate one, it is believed
more consistent to employ quantities which are derived
from the same atomic potential that is used to construct
the crystal potential. The argument is weakened, how-
ever, by the fact that the exchange contribution to
2(0,0,0) is treated in a manner which is inconsistent
with the procedure employed in determining the other
Fourier coefficients of potential. Values of the orthog-
onality coefficients are presented in Table II.

15 See reference 13, p. 1164.

16 A, Jucys, J. Phys. (U.S.S.R.) 11, 49 (1947).

17 For a mathematical definition of the orthogonality coefficients
see, for example, Eq. (4.1), reference 13.

18 R. H. Parmenter, Phys. Rev. 86, 552 (1952).
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Tasre II. Orthogonality coefficients, 4:,(k+K). k is the re-
duced wave vector and K is a principal vector in the reciprocal
lattice. a denotes the lattice constant. Values are presented for
the metallic lattice at the symmetry points, I'[k=(0,0,0)],
X[k=(r/a)(1,0,0)], and L[k=(r/a)(3,3,3)] and at the point,
k= (r/a)(},0,0), which lies along the symmetry axis, A in the
Brillouin zone. For diamond, values are given at T'. Notation is
after Bouckaert et al.® In the table, k+ K is given in units of r/a.

k+K A1:(k+K) A atT k+K A (k+K)
atT at T (diamond) at X at X
000 0.16915 0.11961 100 0.15558
111 0.13291 0.10241 011 0.14358
200 0.12339 0.097495 120 0.11486
220 0.093973 0.080993 211 0.10719
311 0.078305 0.071219 122 0.088265
222 0.073946 0.068352 300 0.088265
k+K A1 (k+K) k+K An(k+K)
at L . at L along A along A
P 3 3 0.15881 300 0.16559
$ -1 -1 0.13546 —-111 0.14079
-5 -3 0.11691 —300 0.14079
3 3 3 0.10192 211 0.12117
5 & 3 0.10192 120 0.12117
£ -3 3 0.089643 200 0.10539
—-320 0.10539

2 See reference 21.

III. SYMMETRY ANALYSIS

As is well known, advantage can be taken of the
lattice symmetry to simplify the secular equations which
result when stationary mean values of a crystal Hamil-
tonian are computed with respect to trial functions
expanded in a finite number of OPW. Since the tech-
nique is described adequately elsewhere,”® details are
omitted. Briefly, one first constructs symmetry com-
binations (SC) of plane waves (PW) which are de-
generate in the empty lattice. The SCPW transform
according to irreducible representations of the group
of the wave vector. Then the SCPW are orthogonalized
to the core states to obtain orthogonalized SCPW
(OSCPW). Finally, the trial functions are expanded in
in terms of the OSCPW. It can easily be shown that
OSCPW can be constructed by formally replacing each
PW in a given SCPW by its corresponding OPW.

Since, to the writer’s knowledge, SCPW for f.c.c.
lattices do not occur elsewhere in the literature, several
are presented in an Appendix for PW belonging to
low-lying levels in the empty lattice and having reduced
wave vectors located at the points ', X, and L in the
Brillouin zone. The notation is that of Bouckaert et al.®

18 See reference 3, 4, and 14. The method appears in a particu-
larly convenient form in Woodruff’s thesis, reference 14. A similar
procedure oriented toward the Wigner-Seitz method is given by
F. C. Von der Lage and H. Bethe [Phys. Rev. 71, 612 (1947)7].

20 Recently Heine has determined the energy bands of alumi-
num. [V. Heine, Proc. Roy. Soc. (London) A240, 340, 354, 361
(1957).] An earlier application of the OPW method involving an
f.c.c. lattice (copper) was made by M. Fukuchi, Progr. Theoret.
Phys. (Japan) 16, 222 (1956). Since there is only one valence
electron per atom in copper »s three in aluminum and four in
the carbon metal, it may be presumed that the earlier work re-
quired a less extensive symmetry analysis.

(1;13 163)oucka,ert, Smoluchowski, and Wigner, Phys. Rev. 50, 58
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From the information in the Appendix, one can con-
struct explicit representation matrices and thus obtain
SCPW associated with other levels in the empty lattice.
Of course, the SCPW presented are not unique and one
could equally well start with an equivalent set belonging
to equivalent irreducible representations.

Generally, the plane waves in a set which are de-
generate in the empty lattice transform reducibly into
each other under the operations of the group of the
wave vector. It is convenient to know which irreducible
representations are contained in the reducible repre-
sentations associated with each set of plane waves
which have relatively low empty-lattice energy. The
information for f.c.c. lattices is presented in Table IIT.%

IV. RESULTS

The secular equations which result from the sym-
metrized OPW method have been factored to obtain
the one-electron energies of the crystal with the aid of
the Illiac digital computer at the University of Illinois.

TaBLe ITI. Occurrence of irreducible representations (i.r.) of
the group of the wave vector in the empty lattice spectrum. The
table is divided into three parts, each of which may be regarded
as a matrix. Rows are labeled by the wave vector, k+K, of a
typical plane wave in a degenerate set having the same reduced
wave vector, k, and empty lattice energy, | k+K|2. [Kis a prin-
cipal vector in the reciprocal lattice.] Columns are labeled by
the i.r. belonging to the group of k. The mnth entry gives the
number of times the i.r., “n,” is contained in the reducible repre-
sentation having plane waves in the set “m’” as a basis. Omission
of an entry implies the omitted entry is zero. The three parts
correspond to k at T', X, and L respectively in the reduced zone.
Notation is after Bouckaert ef al.* k+K is given in units of 7/a,
where a is the lattice constant.

k+K Tt Tis Tewr Tor Tz Tos Ty Tir T T
0 0 0 1
1 1 1 1 1 1 1
2 0 0 1 1 1
2 2 0 1 1 1 1 1
3 1 1 1 2 2 1 1 1 1 1
2 2 2 1 1 1 1
4 0 0 1 1 1
1 3 3 1 2 2 1 1 1 1 1
k+K X1 Xe X X3 Xs X2 Xp X X4 Xv
0 0 0 1 1
0 1 1 1 1 1
12 0 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
1 2 2 1 1 1 1 1 1
3 0 0. 1 1
0 1 3 1 2 1 1 1
3 2 0 1 1 1 1 1 1
k+XK Ly Ly Ly L3 L Ly
¢4+ 11
3—34-4 1 1 1 1
1-5-3 1 1 1 1
5 3 3 1 1
2 % 3 1 1 1 1
2 -2 3 1 1 2 2 1 1
$—-3—-3 1 1 1 1

a See reference 21.

2 A corresponding table for diamond-type lattices is given by
Herman. (Table VIII, reference 4.)
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Fic. 1. Energy bands of the metallic-carbon and diamond
lattices. Above, the reduced wave vector, k lies along the [100]
direction. Below, k lies along the [1117] direction. The curves for
diamond (after Slater and Koster?) appear to the left of those for
the metal. They have been redrawn in the same scale employed
in the diagrams associated with the metal. The origins in the
energy scales of the two systems are displaced relative to each
other in order to demonstrate the results of the “procedural dif-
ferences” discussed in Sec. V. The small circles appearing in the
illustration of the bands of the metal designate energy values
determined by the OPW method (cf. Table IV). Continuous
curves represent the results of interpolation with the LCAO
procedure. The curves labeled A; must approach the zone bound-
ary (¢=) with zero slope in the case of the metal. The curvature
is sufficiently rapid near the boundary, however, that the bands
appear to have finite slopes in the diagram. Portions of the
interpolated curves are repeated in the extended zones to facilitate
comparison with the energies (broken curves) of effectively free
electrons having an effective mass equal to 1.13. The Fermi
energy is denoted by Ep. £=*ks, n=Fya, and ¢ =k.a, where k., &y,
and £, are the x, v, and z components of k and ¢ is the lattice
constant.

The results are displayed in Table IV, which illustrates
the degree of convergence attained, and in Fig. 1 where
the energy bands are shown as functions of k for values
of k lying along the [100] and [111] directions. The
energy bands are obtained by interpolating with the
LCAO method, as proposed by Slater and Koster,?
between nine OPW-determined solutions at points of
relatively high symmetry. Portions of the extended
zones are included and the interpolated results are
compared with a parabola (broken curve) corresponding
to the energies of effectively free electrons having an
effective mass, m*, equal to 1.13 in units of the free-
electron mass. This effective mass m* is determined by
the relation 1/m*=(1/m*), where (1/m*) is the average

% J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).

TasLE IV. Convergence of eigensolutions. E; denotes an energy
eigenvalue obtained by factorization of a secular determinant of
rank 7. Generally, only the lowest root is presented for each sym-
metry type considered. When two roots having the same sym-
metry are given, symbols (I) and (II), designating the lower and
higher roots respectively, are attached to the symmetry symbols
heading the columns. When two symmetry combinations belong-
ing to the same irreducible representation are degenerate in the
empty lattice, the rank of the associated secular determinant, in-
creases from i to 7+2 (see Table III). Notation is after Bouckaert
et al.® Unit of energy=1 rydberg.

Ti(I) Tis Tosr T1(I1) Ty Ar(I)
E, -2.4107 1.1612 1.7710 2.0448 —2.0795
E, —2.5063 0.7941 1.7364 1.9431 2.0402
Es —2.5363 0.5854 1.8768 2.0325 —2.1424
E; —2.5370 1.7175 1.8743
Es —2.5372 0.3635 1.7007 1.8703 —2.2137
E¢ —2.5373 0.2835 1.8699
E; 0.2592 —2.2206
A(ID) X1(T) X X X1 (IT) X3
E, —1.0962 —1.0713 0.0869 0.5288
E, —1.2941 —1.1077 —0.0980 0.4320 0.5220
E; 0.1733 —1.3134 —1.2577 —0.1566 0.4003 0.4949
E,4 —1.3376 —0.2509 0.3959 0.4852
Es 0.1147 —1.2964
Eg —1.3387 —1.3254 —0.3383 0.3860
E; 0.0146
Li(I) Lo/ Lar Li(11) Ls
E, —1.5535 —1.2852 0.7013 1.5413
E, —1.6546 —1.3020 0.5399 1.3163 1.5358
E, —1.6837 —1.3789 0.4720 1.3126 1.5211
E .
E: —1.6952 —1.4841 0.2599 1.3001 1.4943
Eg —1.6952 —1.4950 0.1728 1.2897 1.4816

2 See reference 21.

value of the quantity (E—Er;)/(k+K)? as obtained
directly from the OPW-determined values of E at four
points in the extended zones: k+K=(w/a)(},0,0),
(71'/(1) (1)010)7 (7!'/0) (%70)())) and (7[‘/(1) (%a%y%) The quan-
tity 2a equals the edge length of the basic cube in the
f.c.c. lattice.

The Fermi level, Er, is determined by the relation?

Ep—Ery= (1/m*)(5/3)(2.21/r.2), )

where 7, is defined by the condition that (4w/3)7r,
equal Q,/4, the mean volume per valence electron.
From the foregoing, 7,=1.32 and Er=—0.66. From
Fig. 1, it is seen that the deviation from free-electron
behavior is small for values of E(k4K) which do not
exceed Ep. That is, the f.c.c. carbon lattice may be
considered a nearly perfect metal with m*=1.13, if one
ignores the relatively small energy discontinuities at
the boundaries of the first zone and assumes that the
behavior of the energy bands for arbitrary directions of
k is typified by their behavior for k along the [100]
and [111] directions as long as E does not exceed Ep.
The assumption is plausible for two reasons. First, the
behavior for k along the [100] and [111] directions is
nearly the same. Second, the bands A; and A; do not
split as k is allowed to leave the symmetry axes, A and

24 See reference 6, Eq. (23), Chap. X.
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A respectively. As E approaches Ep, however, the as-
sumption is probably no longer valid since the band
labeled As and As in Fig. 1, splits into two bands for
general values of k. For some values of k one of the
“split-off”’ bands probably extends below Ep. That is,
for E less than but nearly equal to Er, deviations from
effectively free-electron behavior are expected to be
somewhat greater than is indicated in Fig. 1. Spin-
orbital effects are neglected throughout the analysis.

V. COMPARISON WITH DIAMOND

Herman’s solutions for the one-electron energies in
diamond at the points ', X, and L in the Brillouin zone
have been interpolated with the LCAO method by
Slater and Koster. The illustration of their results is
reproduced® in Fig. 1 to facilitate comparison with the
results of the present study. Recently, Bassani?® has
extended Woodruff’s results®® for the energy bands in
silicon at k=(0,0,0) to the point k= (x/a)(1,0,0) and
has interpolated between the two sets of energy values
with the LCAO method. In contrast with the differ-
ences between the diamond and metallic-carbon lat-
tices, his results show that the bands of silicon and
diamond exhibit remarkable similarities.

From Table 1V, the value of Er;, the lowest level
in the bands of the metallic lattice, is approximately
equal to —2.54, whereas Herman has obtained the
value, —2.44, for the corresponding level in diamond.*
The near coincidence of the levels mainly results from
the condition imposed in selecting the lattice constant
of the metal, but partly arises from differences between
the method employed by Herman and that described
in Sec. IT. A measure of the extent to which the pro-
cedural differences affect the results has been ascer-
tained by redetermining the solution Er; for the case
of diamond, using values of 2(K), 4:,(k+K), and the
value of E;,(—21.448) determined in exactly the same
way as are the corresponding quantities for the metallic
Jattice.”® From solution of a secular equation of third
order, Er;=—2.76. Since eigenvalues belonging to T’
converge with relative rapidity, it is believed that the
value of Er; would not be altered appreciably if one
were to extend the calculation by including a larger
number of OSCPW in the trial function. A similar in-
vestigation of the energies, Erss, Eri5, and Ery, which
converge more slowly, indicates that if the bands were
determined more accurately by the procedure given in
Sec. II, the results would probably be about the same

2 From Fig. 5, reference 23. (The curves have been redrawn in
the same scale used in illustrating the bands of the metallic
lattice.)

26 F. Bassani, Phys. Rev. 108, 263 (1957). The writer is grateful
to Dr. Bassani for access to his results prior to publication.

27 Herman’s results may be obtained approximately from values
of the interpolation constants for diamond which are quoted by
Slater and Koster, reference 23.

28 See Tables I and II, Sec. II. Expressions for the matrix ele-
ments have been obtained from those for silicon at the origin of
the Brillouin zone, as given in Woodruff’s thesis, reference 14.
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as those obtained by Herman, except for a general
lowering of the levels by approximately 0.3 rydberg.
This result is indicated in Fig. 1, where the origin of
the energy scale for the diamond bands is displaced by
—0.32 relative to that for the metal. Part of the dis-
crepancy obviously results from the fact that in the
present analysis Ei, ¢1,, and the radial atomic charge
density are derived from a field associated with the
ground state of atomic carbon, whereas Herman has
used corresponding quantities arising from the 35S
bonding state. It is believed that the deviations result-
ing from this circumstance generally lie within those
which result from different treatments of the Fourier
coefficients of potential, particularly v(0,0,0), and of the
core parameters.

The mean one-electron energy per electron in the
metallic lattice, (Ey), has been obtained from a modi-
fied form of Eq. (8) in which Er is replaced by (E) and
the factor, 5/3, appearing in the right side of the equa-
tion, is omitted. It is found that (Ey)=—1.42. Since
the electrons in the valence band of diamond are far
from free, a procedure analogous to that employed in
determining () does not seem an appropriate way to
obtain the corresponding quantity, (Ep). (Ep) is
estimated in the following rather crude manner: The
density-of-states function, g(E) is calculated by con-
sidering the valence band to be composed of three
overlapping sub-bands. The density of states, g;(E)
associated with the ith sub-band is assumed to be a
constant for values of E lying within the sub-band and
to vanish elsewhere. The first sub-band is considered to
extend from Er; to Ex; and the second, from Ery to
an energy lying about 0.1 rydberg above Ers. (See
Fig. 1.) The third, which contains twice as many elec-
trons as either of the other two, extends from Ex4 to
Erg. The value of g; within the ith sub-band is deter-
mined by requiring that it contain the proper number
of electrons per unit volume of the crystal. g(E) is
constructed by summing the quantities g;(E) which do
not vanish in a given range of E. Then (Ep) is computed,
in the usual way, by averaging E with respect to the
weighting function, g(£). When the edges of the sub-
bands are determined from the values obtained by
Herman, it is found that (Ep)=—1.4. That is, it is
not possible to determine which of the two systems has
a lower mean value of one-electron energies in the
approximation employed. If the procedural differences
described earlier are taken into account, one might
argue that (Ep)—(Ey)~—0.3, which would imply
that the diamond lattice is more stable. On a purely
theoretical basis, however, this argument clearly is
open to question. A qualitative investigation of the
differences between the other terms appearing in the
expressions for the cohesive energy of the metallic
lattice and of diamond indicates that their inclusion
would lower the total energy of diamond relative to the
metal. It appears difficult to determine the extent of the
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lowering without a more accurate calculation than seems
feasible at present.

Although we are forced to conclude that the band
approximation is not capable of dealing in a quantita-
tive way with the difference in the cohesive energy of
diamond and a metallic form of carbon—a result which
is scarcely surprising—it seems safe to close with a few
speculative comments. The -analysis presented here
indicates clearly that a lattice of carbon having a close-
packed lattice would behave as an ideal metal. Thus, it
seems reasonable to suppose that the cohesive energy
of such a metal would fit in a contiguous manner into
the cohesive energies of the sequence Li (36.5 kgcal/
mole), Be (76.6 kgcal/mole), B (96 kgcal/mole) and lie
near 120 kgcal/mole at largest. Such behavior would be
consistent with the behavior of the quadrivalent solids
in the other rows of the periodic system (see Fig. 2 of
reference 1). This conclusion implies, in turn, that the
unusually large cohesive energy of diamond, namely
170 kgcal/mole, is the result of an unusual matching
of the lattice structure and electronic properties which
is not achieved again among similar monatomic solids
although it is achieved in the tungsten group. When
viewed from the standpoint of the band diagrams, one
presumably can say that the extra cohesive energy of
diamond is associated with an unusual lowering of the
center of gravity of the four occupied bands relative to
the position of the occupied levels in the metallic form.

VI. ACKNOWLEDGMENTS

The writer wishes to express his gratitude to Pro-
fessor Frederick Seitz, who suggested the problem, for
helpful comments and suggestions and for his reading
of the manuscript. He is indebted to Dr. Truman Wood-
ruff for valuable discussions relating to his work and to
Mr. Gene Golub for access to one of his codes prior to
its conclusion in the Illiac program library.

APPENDIX. SYMMETRY COMBINATIONS OF PLANE
WAVES FOR F.C.C. LATTICES

A PW, normalized® in a periodic crystal and having
wave vector, k+K, is designated by W (k+K). A set
of PW having the same empty-lattice energy, | k4 K]|?2,
is denoted by {k+K}. A SCPW belonging to the vth
row of the jth irreducible representation of the group
of k is designated by S,@ ({k+K}). It may be written
in the form

S, ((k+K)N =L xb,?(K)W(k+K). (9

The summation indicated in Eq. (9) extends over all
Kin the set {k-+K}. The expansion coefficients, &, (K)

29 The notation follows that employed in Sec. III.

TasLE V. Expansion coefficients, 5,%(K), occurring in sym-
metry combinations of plane waves appropriate for the application
of the OPW method to f.c.c. lattices. [See Eq. (9).] The table is
divided into three parts corresponding to the values of k at the
points T, X, and L in the Brillouin zone. Notation is after
Bouckaert ef al.» In the table rows are labeled by the wave vector,
k+K, of the plane wave, W (k-+K). Columns are headed by two
symbols which are separated by a comma: The first denotes the
irreducible representation, 7, and the second designates the value
of ». The entry in the 7, »th column and (k- K)th row is the value
of b, (K) which is multiplied by W(k+K) in the process of
constructing S,% ({k-+K}) in accordance with Eq. (9). Omission
of an entry implies the omitted entry is zero. k+K is given in
units of 7/a, where a is the lattice constant. A negative component
of k4K is written with a minus sign over the absolute value of
the component.

k4K I'yl Tl T162 Tis3 Tasr,1 T2sr,2 T25r,3 Tl

0 0 0 41
1 1 1 41 41 =1 41 41 =1 41 41
1 I 1T 41 41 41 -1 41 +1 -1 i
I 1 1T 41 =1 4+t 41 =1 41 41 41
11 1 41 -1 -1 -1 -1 =1 -1 <41
I 1 1 41 -1 41 =1 41 =1 41 -1
11 1 41 =1 =1 41 41 41 =1 =1
1 T 1 41 41 -1 -1 =1 +1 41 -1
1 1 1T 41 41 41 41 -1 -1 -1 =1
2 0 0 41 41

0 2 0 41 +1

0 0 2 41 -1

2 0 0 +1 -1

0 2 0 1 -1

0 0 2 41 +1

k+K X1l X1 Xerl X502 X1 X511 X552

1 0 0 +1 41

i o0 o0 +1 -1

0 1 1 1 41 41 41

0 1 T 41 41 -1 -1

0o 1T I +1 -1 -1 41

0 I 1 +1 -1 41 -1

1 2 0 41 41 41 +1

1 0 2 41 41 +1 +1

1 2 0 41 +1 -1 -1

1 0 2 41 41 -1 -1
i2 0 +1 -1 -1 +1

I 0 2 +1 -1 -1 +1

i 2 0 41 -1 +1 -1

I 0 2 +1 -1 +1 -1
k+K Lyl Ly Lsd L2 L3l Ls2

PIE T S B
-3-3-1 +1 -1

$1—-3—-3 +1 +1 41 41 41 -1
-3 3—-3 +1 H1 -2 -2

-31-3% 3 41 +1 -1 41 41 41
-3 3 3 1 -1 -1 -1 +1 -1
1—3 3 -1 -+2 -2
1 3-—3 +1 -1 41 -1 41 41

s See relerence 21.

occurring in several SCPW associated with low-lying
levels in the empty lattice are presented in Table V.
Generally, SCPW constructed directly from the in-
formation given in the table do not appear in nor-
malized form.



