
RECOIL PROTONS FROM MESON PHOTOPRODUCTION

where dQ is the di6'erential of solid angle in the center-
of-mass system. The integral is carried out over the
aperture of the telescope in ko, Q' space. E is the number
of target nucleons/cm' with the particular value of
initial momentum. E(drr/dQ') is the probability per
unit solid angle of a photon with energy ko producing
a meson at an angle m —6 in the center-of-mass system.
The product (drs/dks)dks is the number of photons in
the energy range ko&-,'dko. If the aperture of the
telescope is su%.ciently small, as it was designed to be,
then we may replace the integrand by its value at the
center of the aperture and take it outside of the integral.
Making successive transformations of the integral- from
ko,Q' space to k,Q' space, to k,Q space and finally to
T'„,0 space, where the integral becomes ET„AQ, we
obtain

Counts/beam integrator pulse = (do/dQ') AT'&EQNG/Eo

&({(cl coso.'/cl coso) (1—P cose„) (clk/ciT~) f(k)/k},

where AT„ is the width of the proton energy interval

accepted by the telescope, AQ is the solid angle sub-
tended by the telescope, G is the total energy in the
photon beam per beam integrator pulse, Eo is the
maximum bremsstrahlung energy, cl c osn'/ clcosn is the
solid 'angle transformation function (photon energy
held constant), p„ is the initial velocity of the target
nucleon, (8„,$ ) is the initial direction of the target
nucleon (the photon direction is 8=0; the plane con-
taining photon and recoil proton defines &=0), elk/ciT„
is the partial derivative of photon energy with respect
to recoil proton energy with the laboratory proton
angle held constant, and f(k) is the bremsstrahlung
function defined so that the number of photons/beam
integrator pulse in the Ak is Gf(k)hk/kEs

In deriving the above equation, account was taken
of the fact that at arget nucleon moving toward the
synchrotron sees a larger photon Aux than if it were
moving away from the synchrotron. It is now seen that
the cross section at each of the dots in Fig. 4 should be
weighted by the expression inside the braces in the
foregoing equation.
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The effect of finite nuclear size on the scattering of p mesons is calculated for a nucleus Z=80, 2=1.2A&

X10 " cm. The nucleus is considered as a uniformly charged sphere. The y mesons have v/c=0. 2 corre-
sponding to an energy E=2.1 Mev. It is found that the left-right asymmetry in the scattering of polarized
p, mesons is decreased from that for a point nucleus. However, considerable asymmetry remains at large
angles.

INTRODUCTION

HE scattering of negative p, mesons by a point
Coulomb field is similar to that for electrons if

the p, meson is taken to be a Dirac particle. For the
same P=e/c, the only difference is that the p cross
section is smaller in the ratio of the squares of the masses
of the two particles. The angular distributions and
polarizations are exactly the same in the two cases.

Recent experiments' on the decay of x mesons,
~~@,+r, have indicated that the lu mesons are polarized
in the direction of their momentum in the center-of-
mass system. It is possible, by using this eGect, to
obtain a beam of transversely polarized p mesons. The
scattering of such a beam by a point Coulomb field will
have a left-right asymmetry, ' S, which has been calcu-

*This work supported in part by the U. S. Atomic Energy
Commission.

f Part of this work was performed while one of the authors
(J.F.) was at Brookhaven National Laboratory, Upton, New York.' Garwin, Lederman, and Weinrich, Phys. Rev. 105, 1415(1957).' H. A. Tolhoek, Revs. Modern Phys. 28, 277 (1956).

lated by Sherman. ' Measurement of this asymmetry
would indicate the original spin direction (parallel or
antiparallel to the momentum) of the p meson and this
could be used as a check on the hypothesis of conser-
vation of leptons.

The purpose of this paper is to examine the eGect of
the finite size of a charge distribution such as is found
in heavy nuclei on the scattering cross section and on 5
for p mesons. For electrons the finite size of the nucleus
does not become important until highly relativistic
velocities are reached, at which point there are no
polarization effects. p, mesons, because of the larger mass,
have smaller wavelengths than electrons for a corre-
sponding'P and in fact the finite size affects the scatter-
ing strongly already at the lowest energies.

We derive in the next section a general method for
correcting the Dirac particle point Coulomb scattering
results for finite nuclear size for a uniformly charged
nucleus of radius E. We then apply the results to the

s N. Sherman, Phys. Rev. 103, 1601 (1956}.
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calculation of the cross section for scattering of a p
meson beam and the left-right asymmetry for trans-
verse polarization for the case P=0.2 (E=2.1 Mev),
the nucleus having charge number Z=80, kR=0.77.
This corresponds to using a nuclear radius R=1.2A&

X10 "cm. The small value of kR enables the calcula-
tion to be done with a desk computer. Machine calcu-
lations are advisable if a series of such calculations are
to be performed, especially for higher energies.

THEORY

The scattering of relativistic Dirac particles of mass,
m, and total relativistic energy, E, in the potential, V,
is governed by the Dirac radial equations4 '

dG„(»—1)
(E V+—mc')F—,+ —— G =0

Ac dr

1 dF„(~+1)
(F- V —m—c')G„—+ —+ F„=O,

Ac dr r

where ~=&(j+2) for j=l&~
The asymptotic form of 6„,

G„--sinl 7.+. ln2~. —g~+-„„ I,
r ( aw

determines the phase shift, q„. The logarithmic term
appears since the potential falls off as 1/r.

The scattering cross section averaged over q is then
given by

with
CO

f(8) = Q «(Lexp(2ig. )—1)P. ~(cose)
2ik =1

+I exp(2' ) 1)P„(—cose)},

1
g(e) Z( exp(2i 4)P —& (cose)

2ik ~-&

+exp(2' „)P„'(cos8)}.

For a given initial spin direction 6, the cross section

as a function of 8 and p is given by'

do (e,q) . (p xp)
=(lf(e) Im+lg(e) I2} 1+s(e)

dQ sin8

where p~ and p2 are unit vectors in the directions of
initial and 6nal meson momenta, respectively, and

i(fg* f g)
s(e) =

Ifl'+lgl'
(6)

The left-right asymmetry in the scattering, that is the
relative number of scatterings at q =0 minus the
number at p=x divided by the sum of these two scat-
terings, for a given 0 is

p~ (jiXj2)
s(e).

L+R L sine
(7)

For a transversely polarized beam (see Fig. 1),

(L-R)/(L+R) =S(e)

where s= (~' —a')', q=n/P, q'=q(1 —P')' with P=e/c,
and F(s+iq, 2s+1, 2ikr) is the conQuent hypergeo-
metric function. M„and E„are constant normalization
factors with E„=—L(E/mc' —1)/(E/mc'+1))&M„.

The asymptotic expression for the conQuent hyper-
geometric function leads to the asymptotic form (2) with

( s—
&q

g„=—arg
I I

—argr (s+1+iq)+-,'(l—s)z, (11)
K $q)

Polarizations after double scattering of an unpolarized
beam can also be calculated by using S. Formulas for
such polarizations are given by Mott and Massey' and

by Tolhoek '
For a point Coulomb potential, V= —nhc/r where

a=Ze'/Ac, the solutions of (1) which are regular at the
origin are:

G„=—~„Im P,./r, F,=E„Re$„/r,

fs—iq )~
I

e-'"'(2kr)'F(s+iq, 2s+1, 2i&r), (10)
(—x—iq')

and the normalization constant

FIG. 1.The relative direc-
tions of spin and momenta
for a transversely polarized
beam.

lr(sy1+iq) I

M„= e .I2
r (2s+1)

(12)

TABLE I. Changes in Coulomb phase shifts
due to finite nuclear size.

-1 2
4 N. F. Mott and H. S. W. Massey, Theory of Atomic Collisions

(Oxford University Press, Oxford, 1949), second edition, p. 74.' L. K. Acheson, Phys. Rev. 82, 488 (1951).
—b„(degrees) 76.5 26.3 12.6 1.3 0.8
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FIG. 2. The relative cross section for a uniform charge distribution'
d04/dQ is Sherman's result for a point nucleus.

The solution of Eq. (13) for a uniformly charged nucleus
is given in the appendix. The matching condition at the
radius, R, of the nucleus then is

The use of the rf„given by (11) in Eqs. (3), (4), and (6)
would then lead to the scattering cross section and
asymmetry for a point Coulomb scatterer.
lf~&For a finite size nucleus, the phase shift is determined

by matching the logarithmic derivative of the inside
wave function to a linear combination of the regular and
irregular Coulomb solutions at the boundary of the
nucleus.

Eliminating F„ in Eqs. (1) and making the substitu-
tion g„=r[d(lnrG„)/dr] leads to a Ricatti-type differ-
ential equation for the inside logarithmic derivative:

dg„ f' r (d V/dr)
!+g. +g. (

—1+
dr ( (E—V+mc') )

[(E—V)' —msc4] r(d V/dr)»
r' —»(» —1)— =O. (13)

k'c' (E V+fric')—
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Fro. 3. The asymmetry parameter S(e) for a uniform charge dis-
tribution. So is Sherman's result for a point nucleus.

The ratio (A/B)„ from Eq. (14) is

(&s—iq p
*

exp(ip+) =
( (—»—iq')

and F~= F(&s+iq, &2s+1, 2ikR)

fA) '!I'(1—s—iq)! I'(1+2s)
(
—

! = —(2kR)-"
i BJ„!&(1+s iq)!—I'(1—2s)

Im (e—'s~ exp(iy —
)

Im (e 4"~ exp(iso+)

[(g„+s+ikR)F- R(dF/—dr) ]„=-ri)
(17)

[(g„s+ikR)F+ R(dF—+/dr)], rr)—

g„(R)=R (ln[ArG„+(r)+—BrG„(r)])
dr

(14)

where G„+ is the regular Coulomb solution given by (6)
and G„ is the irregular solution obtained from G„+ by
replacing s by —s.

The phase shift for 6nite size, g„, is then determined
from the asymptotic relation

sin(kr+q lnkr —srhr+rf„'} A sin(kr+q lnkr —shr+rf„+)

+B sin(kr+q lnkr ,'l7r+rl. ), —(-15)

where q„+ and g„—are the phase shifts for G„+ and G. ,
respectively, as determined by Eq. (11).

If one lets 8„=if„'—rf„+ and e„=rf„—ri„+, Eq. (15)
leads to

sIntq
tan6„=

(A/B) „+cose„

The expression for f(8) and g(8) can be written
directly in terms of b„and the regular Coulomb phase
shifts, g„+:

1
f(8)=fc(8)+ P»(exp(2irf„+[exp(2ih„) —1]

2ik ~=&

XP„r(cos8)+exp(2iif „+)[exp (2i8 „)—1]P„},

g(8) =go(8)+ P{—exp(2i~f.+)[exp(2i8„)—17
2ik ~-&

XPg—i'+ exp (2iii „+)[exp (2i8 „)—1]P„'),

where fo(8) and go(8) are the values of f(8) and g(8)
for point Coulomb scattering. The functions fo(8) and

go(8) can be calculated from the tables of Sherman
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TABLE II. DiGerential cross section and asymmetry parameter.

8 15o 30 45o 60 75 90o 105o 120o 135O 150' 165

1.01

0,3
0.2

do/dQ(b) 6260
do/dQ

d~o/d& '
100 S(e)
100 Sp(8) '

374

0.921

—0.1
—0.2

1.03 1.37

1.1
—1.0

0.2
5.6

87.8 38.5 16.6

1.35

—1.3
8.2

6.86

0.990

—2.7
—3.6

2.84

0.572

—5.3
—20

1.27

0.300

—11
—28

0.738

0.183

—19
—26

0.615

0.155

—19
—19

0.630

0.158

—10
—10

a d00/dO and Sp(0) refer to the point-nucleus results of Sherman.

through

uf, (8) =G(8) ~q'P(8), —
kGc(8) = tan( —8)G(e)+i/' cot(—8)&(e),
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where F(8) and G(8) are given by Sherman.

RESULTS AND CONCLUSIONS

The change in the Coulomb phase shifts due to the
6nite nuclear size is tabulated in Table I. The finite
size of the nucleus has the e8ect of decreasing the
scattering considerably at large angles (Table II and
Fig. 2).

The left-right asymmetry, S, in the scattering of
transversely polarized p mesons as a function of scat-
tering angle is plotted in Fig. 3 both for a finite size
charge and for a point Coulomb field. At large angles
a considerable left-right asymmetry remains after cor-
recting for finite nuclear size. One might have expected
this asymmetry to disappear owing to the finite nuclear
size with its consequent weakening of the spin-orbit
interaction. However, the Rutherford or charge scatter-
ing is also weakened and hence a considerable asym-
metry remains. It is not unreasonable to expect that
this left-right asymmetry will persist at higher energies.

It is to be noted that for p+ mesons of 2-Mev energy,
one should not expect to see asymmetries since the
Coulomb repulsion of the nuclear scattering center
prevents the p+ meson from reaching the region where
the spin-orbit interaction is important.

Finally, the results of this calculation show that p,

mesons when scattered from nuclei can provide infor-
mation on the charge distribution of nuclei. This infor-
mation would supplement that obtained from the work
of Fitch and Rainwater' on p-mesonic atoms and that
of Hofstadter7 on high-energy electron scattering. It
is to be noted that measurements of left-right asym-
metries in the scattering of transversely polarized p,

mesons provides information not obtainable from
electron scattering since for electrons the finite nuclear
size is not important at energies where 5(8) is large.

' V. L. Fitch and J. Rainwater, Phys. Rev. 92, 789 (1953).' E.g., R. Hofstadter, Revs. Modern Phys. 28, 2'14 (1956).

V= —(Ze'/2R) [3 (r/—R) '$. (A1)

Equation (13) can be written for potential (A1) in the
form

dg»
(g—bx)g„'+2x(e —bx) —(e 3bx)g„+J—(x) =0 (A2)

dx
where

J(x) = —K(x—1)+[pV(c—2)+II, (»—3)box
—p'be (3e—4)x'+p'b'(3e —2)x3 p'b'x4-

x= (r/R)', b= (Ze'/R)/2mc'

c= (E+mc')/mc'+3b, p=R/(h/mc)

The solution of (A2) can be written as

where

and

g„(x)=P u„x",
nM

ao= ~ for I(:&0,

= -(a—1) for z(0,

b 0„
8„= —(2B—5+Go)8~

/b+2 ~
I

e & ~ —
I (2& I+2+o) ' (A3)

m=i

0„ is given by

' J(x)=+ 8„x", and 8„=0 for e)4.
n=o

The value of g„(r) for r =R is then

(A4)

APPENDIX

The potential energy of a negatively charged p meson
inside a uniformly charged nucleus is


