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Spacings of Nuclear Energy Levels
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The distribution of spacings of nuclear energy levels in many heavy nuclei at an excitation energy of
5 to 9 Mev is obtained by careful correction of the observed distributions for the eRect of failure to observe
all levels. Results of transmission measurements on U2+ and U"6, as measured with the Brookhaven fast
chopper, are presented. The experimental spacings of the zero-spin nuclides are considered first since all the
levels from slow neutron capture have the same spin. The results show a deficiency of small spacings relative
to the exponential distribution, which corresponds to a random occurrence of levels. In the analysis it is
shown that there is no local correlation of neutron widths and level spacings. The "level repulsion" effect
is also found for the nuclides of nonzero spin, for which the data are more abundant but the analysis is

complicated by the presence of two spin systems. The distribution obtained is in agreement with one sug-

gested by signer based on a probability of level occurrence proportional to the spacing S. The corrections
here developed are also applied to the reduced neutron width distribution and this corrected distribution

is in good agreement with the Porter-Thomas distribution.

INTRODUCTION

HE techniques of slow-neutron spectroscopy have
advanced rapidly during the last few years, both

in the resolving power of the instruments and in the
methods of analysis of the data. As a result of these
improvements, parameters of many neutron resonances
are now available, particularly for heavy nuclei. The
heavy nuclei have given much data because there are
many resonances in the low-energy region for which
the new instruments and analysis methods are well

adapted. In addition, the fact that only l=0 interactions
take place at low energy simplihes the interpretation
greatly. The parameters of each resonance represent
properties of the energy level in the compound nucleus
to which the resonance corresponds. These energy
levels are at an excitation energy of from 5 to 9 Mev,
equal to the neutron binding energy.

For elements above atomic weight 100 there are
values of neutron widths now available for several
hundred resonances and of radiation widths for about
fifty resonances. ' The measured parameters have re-
vealed the general distribution laws of these param-
eters, although not in detail as yet. The radiation widths
are rather constant from level to level in individual
nuclides, and in fact do not exhibit large variations even
from nuclide to nuclide. ' ' In contrast, the neutron
widths range over values differing by factors as large as
several hundred in individual nuclides, and the average
values for various nuclides also show wide variations. ' '

' Seutron Cross Sections, compiled by D. J. Hughes and J. A.
Harvey, Brookhaven National Laboratory Report BNL-325
(Superintendent of Documents, U. S. Government Printing
0%ce, Washington, D. C., 1955) and D. J. Hughes and R. B.
Schwartz, Supplement I to BNL-325.' D. J. Hughes and J. A. Harvey, Nature 173, 942 (1954).' H. H. Landon, Phys. Rev. 100, 1414 (1955).

4 J. S. Levin and D. J. Hughes, Phys. Rev. 101, 1328 (1955).' A, Stolovy and J. A. Harvey, Phys. Rev. 108, 353 (1957).
Harvey, Hughes, Carter, and Pilcher, Phys. Rev. 99, 10 (1955).' D. J. Hughes and J.A. Harvey, Phys. Rev. 99, 1032 (1955).

These findings are in good agreement with the expecta-
tions based on current nuclear theory; the radiation
widths being very constant because they are averages
over several hundred final states available for gamma
emission, whereas the neutron widths vary markedly
from level to level because each neutron width corre-
sponds to a single exit channel, rather than an average.
Concerning the spacings of levels, the average spacing,
D, is now reasonably well known for a number of
nuclides. The relationship of D to other nuclear proper-
ties such as the even-odd characteristics, the excitation
energy, the proximity to closed shells, and spin has been
investigated, ' "but not in detail. At the present time
more values of the level spacings are needed in order
to specify accurately the dependence of D on all the
the individual important parameters.

There has been little detailed information available
on the spacings, S, between adjacent levels in individual
nuclides. This lack may seem a bit surprising for
apparently a very easy property to measure concerning
the levels is their separation in energy. However,
because of the great difficulty in ascertaining whether
every level has been detected, it is dificult to say with
certainty whether a legitimate set of spacings has been
measured for a given nuclide. Another difhculty in

gaining information on the distribution of spacings
arises because in all but zero-spin target nudei the
observed levels correspond to two different spin states,
whose individual distributions are independent. For
capture of slow neutrons by a target nucleus of spin I,
levels of spin I+ ', or I——', can be formed. Fo-r practically
all measurements of neutron resonances no determina-

tion of the spin is possible, hence the observed levels

' C. E. Porter and R. G. Thomas, Phys. Rev. 104, 483 (1956).
9 H. W. Newson and R. H. Rohrer, Phys. Rev. 94, 654 (1954).
M Sailor, Landon and Foote, Jr. , Phys. Rev. 96, 1014 (1954)."John A. Harvey, Phys. Rev. 98, 1162 (1955).
'2 T. D. Newton, Can. J. Phys. 34, 804 (1956}.
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correspond to the two possible spin states combined at
random. If the spacing distribution is exponential in
each spin state then these two distributions combined
will also be exponential. In that case no complication
will be introduced by the presence of two spin systems.
However, if the levels are to some extent regular in
their occurrence, the distribution law of the two spin
states combined will appear to be more random than
the single spin state distribution. This distorting e8ect
of the combination of the two separate spin systems
makes the experimental determination of the distribu-
tion of spacings of each spin state much more dificult.

Because the spacings of levels are determined by the
structure of the nucleus it is obviously of interest to
measure the actual distribution law of the individual
spacings for comparison with theory. In addition, there
is a practical use of the level spacing distribution. This
use has to do with the prediction of cross sections in the
region of several kev, above the energy at which detailed
resonances can be measured, but in a region where
cross sections are needed for design of reactors. In order
to predict the cross sections in the kev region it is
necessary to know the distribution laws of neutron
and radiation widths and, in addition, the distribution
of the level spacings.

There has been practically no theoretical work done
on the distribution of spacings between nuclear energy
levels. It seems that the assumption has usually been
made that the levels are distributed at random. This
assumption amounts to saying that the probability of
a level occurring in the interval dS at a distance S from
a particular level does not depend on S and is given

by dS/D. This gives a probability distribution of level

spacings S proportional to e 1', an exponential dis-
tribution of spacings. However, it was pointed out in
1929 by von Neumann and Wigner" that in many-
body problems in quantum mechanics there will always
be a repulsion of energy levels. Recently signer" has
considered the question of the spacings of nuclear
energy levels of zero-spin target nuclei and has con-
cluded that at least for small values of S the probability
of ending a level in an interval dS is proportional to
(SdS/D) . If this proportionality to Sshould hold for large
values of S the distribution law of spacings would then
be proportional to SexpL —(~/4D')S'j, a distribution
that goes to zero for small S. If the probability of
finding a level is proportion to S only for small values
of S, the distribution would probably be exponential
for large spacing values but there would be fewer small

spacing values than from an exponential distribution.
The target nucleus U"' was particularly useful in

getting the first information on the distribution law
of spacings. As it is even-even, only one compound
nucleus spin, —,', results from capture of slow neutrons,
hence the diS.culty of the two spin systems is avoided.

'~ J. von Neumann and E. signer, Physik. Z. 30, 467 (1929).
'4 E.P. Wigner, Oak Ridge National Laboratory Report ORNL-

2309, 1957 (unpublished), p. 59.

Furthermore, because of its importance to nuclear
reactors the energy levels of U"' have been carefully
investigated. The first results for U"' showed that the
levels occurred in a surprisingly regular manner, and
not at all like the exponential distribution of spacings
expected for a random occurrence of levels. The number
of levels investigated in U"', however, was only about
10 or 15 in number, hence, the statistical accuracy was
not sufhcient to draw any dehnite conclusion about the
distribution law of spacings. The surprising regularity
of spacings in U"', however, stimulated further work.
On the basis of data on U"' and preliminary results on
Th"', Harvey" reported that the spacings appeared
more uniform than would have been expected if the
levels occurred at random. However, Fujimoto, Fuku-
zawa, and Okai" considered the distribution of 268 level
spacings computed from resonance data which had
been published, and concluded that the distribution
was consistent mith an exponential distribution.
Gurevich and Pevsner" concluded that there was a
repulsion of levels for zero-spin nuclei and also for
levels of the same spin state for the nonzero-spin target
nuclei. However, in all these treatments, no corrections
were applied for the small resonances which were not
observed. Measurements were undertaken with the
Brookhaven fast chopper with the nuclides Th"', U"',
and U", in order to obtain more data similar to that
for U"', and the odd nuclides results mere carefully
studied as well.

After presenting the experimental data on two of
these even-even nuclides in the next section, we shall
consider the various corrections that must be made in
order to obtain the actual spacing distribution from the
observed location of levels. Because of the finite re-
solving power of the instruments, distortions of the
actual spacing distribution inevitably occur. It is a
matter of some difhculty to correct the observed spacing
distribution for these experimental eGects, and the
corrections were considered in detail. In the process the
neutron width distribution was investigated, as well as
the possible correlation of individual neutrons widths
to local spacing. After the spacing law for the zero-spin
nuclei is obtained, we shall then consider the nonzero-
spin nuclei, for which many more data are available,
but for which the added complication of the combination
of two spin systems is present.

II. EXPERIMENTAL DATA ON U"4 AND U"'

In order to increase the available data on the distribu-
of spacings of even-even target nuclei, measurements
were made on the nuclides U" and U"' Previous to
the present work very little was known about the
resonance structure of these two nuclides. In 1949 a
resonance was assigned to U"4 at 5 ev based on trans-

"Fujimoto, Fukuzawa, and Okai (private communication)."I.I. Gurevich and M. I. Pevsner, J. Exptl. Theoret. Phys.
U.S.S.R. Bl, 162 (1956) Ltranslation: Soviet Phys. JETP 4, 278
(1957)g; also Nuclear Phys. 2, 575 (1957).
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FIG. 1. The transmission as a function of time-of-Qight at 20 m
for a sample of (U"')sos (ssss4 2.34X10" atoms/cm') in the
energy range from 55 to 100 ev. The straight line is the base line
from which areas are measured to determine the neutron widths
of the resonances.

mission measurements at Columbia" using two samples
of enriched U"' containing diferent percentages of
U"4. In measurements made with the Oak Ridge chopper
in 1952" using a sample enriched to 96.65% in U"',
a resonance was found at 5.3 ev in U"'. It was expected
that the resonance structure of U" and U" would be
similar to that of U"', and that many resonances
would be observed below 200 ev.

The samples obtained from Oak Ridge National
Laboratory in the form of oxides were as follows:
a 186-mg U"' sample with 95.55% U"' 3.02% U"' and
0.98%U"', and a 304-mg U"' sample with 95.36% U"',
4.14% U"', 0.43% U"'and 0.07% U'". The Brook-
haven fast chopper' "with the bank of 128 BF3counters
and the 100-channel analyzer was used for all the
measurements. In order to get somewhat thicker
samples, only one slit was used and the other was
blocked off. The advantage of the fast chopper with
regard to its ability to use small samples is well illus-
trated by this work on U"' and U"'.

Transmission measurements were made in the energy
range from a few electron volts to a few kev. At the
maximum operating rotor speed of 10000 rpm the
chopper produces a one-@sec burst. Since the collection
time in the BF3 counters is about 0.5 p, sec, this results
in a resolution of 0.06 @sec/m for high-energy neutrons
when one uses a 20-meter flight path and 0.5-@sec
channels. At somewhat lower energies the Right time
in the detector, 0.7 p,sec at 100 ev and 1.4 @sec at 25 ev,
produces resolutions of 0.07 and 0.095 fssec/m at these
two energies, corresponding to energy spreads of 1.9 ev
and 0.33 ev. Since the correction for the small resonances
that may be missed depends on the energy resolution
it is necessary to know the resolution quite accurately.
The natural widths of the resonances in U"' and U"'

"Havens, Rainwater, and E. Melkonian (unpublished work,
1949).

'8 Pawlicki, Smith, and Thurlow (unpublished work, 1952).
'I' Seidl, Hughes, Palevsky, Levin, Kato, and Sjostrand, Phys.

Rev. 95, 476 (1954).
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FIG. 2. The transmission as a function of time-of-Qight at 20 m
for a samPle of (U"')sos (sssss=2 34X.10ss atoms/cm') in the
energy range from 90 to 200 ev.

vary from 0.03 ev at low energies to about 0.1 ev at the
higher energies, and the true shapes of the resonances
are not seen with the present resolution. Also, the
Doppler widths of the resonances are several times the
natural widths, r.

Figures 1 and 2 show the transmission curves of the
U"4 sample in the energy range from about 60 to 200 ev
with a sample thickness of 2.34X10"atoms/cm' of U"'
Each curve represents about 40 hours of operating time
with the sample, in which about 2500 counts were
accumulated per p,sec channel. The areas of the trans-
mission "dips" are estimated to be accurate to about
10% for a large dip such as the one at 95 ev and about
50% for a small dip such as the one at 89 ev. Between
the prominent resonances it is estimated that a small
resonance producing at least a 2% dip would have been
observed. At lower energies several small transmission
dips occurred at energies corresponding to the large
resonances in U"5 and U" and as their strengths agreed
with those expected from the contributions from these
from these other isotopes, they were assigned to these
isotopes and discarded.

Since the energy resolution was greater than the
natural width of the resonances, only an area analysis
was possible. For thin samples, the area of a transmission
dip gives o-OF directly and hence I' . The method of
analysis, using a set of standard curves, has been dis-
cussed by Hughes. "For each resonance the area was
measured over an energy interval such that the wing
correction was in general less than 10%. The data for
U"4 are summarized in Table I. Only for the 5.2-ev
resonance was more than one sample thickness run.
When one uses the thick-thin method of analysis, this
level results in a value for 1', of (22+9) X10 ' ev. The
computations of I' in Table I are based on an assumed
I'~ of 25X10 ' ev; however, since the samples are thin
the results are very insensitive to the assumed I'~. The
errors on the neutron widths are determined entirely
by the errors of the measured areas.

'0 D. J. Hughes, J. Nuclear Energy 1, 237 (1955).
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TABLE I. Neutron widths and energies of the resonances in
U"' up to 400 ev. The computations of F„are based on a F~ of
25&&10 'ev. 6 is the Doppler width and the reduced neutron
width, F„', equals I'„/LEO(in ev)g&.

Ep
(ev) (ev)

n
(atoms/cm2)

Area
(% error)

(ev)
F.

(10 Pev)

Reduced
width F~P
(10 Pev)

5.20 0.048

31.4
46.4
49.4
78.3
88.7
95.3

106.9
112.1
132.9
145.9
154.0
179.0
184.0
191
274
295
319
357
369

0.12
0.14
0.15
0.19
0.20
0.21
0.22
0.22
0.24
0.25
0.26
0.28
0.29
0.29
0.35
0.36
0.38
0.40
0.40

2.02 )&101&
6.2 &(102P
2,34 &(10»
2.34 &(10»
2.34 &&10»
2.34 )&10»
2.34 +10»
2.34 )&10»
2.34 )&10»
2.34 )(10»
2.34 )& 1021
2.34 )&10»
2.34 )& 10»
2.34 +10»
2.34 )& 10»
2,34 &(10»
2.34 )& 10»
2.34 )&10»
2.34 +10»
2,34 &(10»
2.34 +10»
2.34 +10»

0.061
0.37
0.71
0.54
0,014
0.57
0.43
0.09
0.82
0.24
0.56
0.55
0.59
0.63
1,18
0.61
1.47
0.62
1.18
1.37
0.60
2.0

(10)
(5)

(10)
(50)
(12)
(12)
(50)
(10)
(25)
(10)
(20)
(20)
(15)
(15)
(35)
(15)
(40)
(30)
(25)
(60)
(40)

4.4&0.3

7.7 +2.0
0.07 &0.04

11+4
6.4&1.5
0.9&0.5
28 ~7
3.1 &1.1
13&3
14&5
17+7
19~6
70 &30
20&12

110&40
26 +17
80 &50

110&60
30&20

220 &150

1.93 &0.15

1.4 &0.4
0.010&0.005

1.6 &0.5
0.72 &0.17
0.10&0.05
2.9 &0.8

0.30&0.10
1.2 +0.3
1.2 &0.5
1.4 &0.5
1.5 &0.5
5.2 &1.9
1.5 &0.9

8+3
1.6+1.0

5&3
6+3

1.6 &1.1
12 &8

TABLE II. Neutron widths and energies of resonances in U"'
up to 400 ev. The computations of F„are based on a Fz of
25&(10 ' ev.

Ep
(ev)

5.49
30.2
34,6
44.5
72.3
87.4

121.0
126.0
133
198
216
280
308
384

(ev)

0.049
0.12
0.12
0.14
0.18
0.20
0.23
0.24
0.24
0.30
0.31
0.35
0.37
0.41

(atoms/cm~)

4.04 )&10»
4.04 bio»
4.04 bio»
4.04 )(10»
4.04 )&10»
4.04 F10»
4.04 )(10»
4.04 Xio»
4.04 bio»
4.04 )&10»
4.04 bio»
4.04 && io»
4 04 )(1021
4.04 &(10»

Area
('Po error)

(ev)

0.56 (5)
0.219 (10)
0.43 (20)
0.92 (10)
1.24 (10)
1.27 (10)
1.31 (15)
0.56 (20)

1.67 (10)
1.45 (15)
1.6 (25)
1.9 (25)
2.3 (25)

Fn
(10 3 ev)

1.76 &0.21
0.61 &0.11

2.6 &1.2
19&5
40 &10
44 +11
53 &19
8&4

94 ~25
80 &30

100&50
130&70
190&100

Reduced
width FnP
(10 3ev)

0.75 +0.12
0.111&0.019
0.44 +0.20
2.8 &0.8
4.7 &1.1
4.7 ~1.1
4.8 ~1.7
0.7 &0.3

6.7 ~1.7
5.4 &2.0

6&3
7~4

10&5

In the energy range up to 155 ev, 12 resonances are
listed. Above this energy it is evident from a plot of the
number of levels against neutron energy that some
resonances are missed. When one applies a 15%%u~ correc-
tion for all the small resonances missed in the energy
range up to 155 ev (discussed later), the average level
spacing, D, is 12&3 ev. The average reduced neutron
width, I"„', becomes (1.1&0.3))&10 ' ev. The strength
function (I'„'/D), determined from a plot of QI'„' ns E
and including the higher energy resonances, is (1.2+0.3)
)&10 4. The reduced neutron width distribution is con-
sistent with either a Porter-Thomas or an exponential
distribution.

The transmission measurements of U"' were very
similar to those of U"4. Since about 50% more material
was available, the sample measured was somewhat
thicker. The three low-energy resonances in U"' were
observed, as well as several resonances in U"'.

The data on the resonances in U"' are given in
Table II. No area is listed for the 133-ev level since this
small transmission dip was much broader than that
expected for a single resonance and it is possible that

it is not a single resonance. In the energy range up to
140ev, 9 resonances are listed. Above this energy,
resonances are definitely missed. Upon applying a
14'Po correction for small resonances missed up to 140 ev,
D becomes 14+4 ev and I' '(1.9+0.6)&(10 ' ev. The
I'„/D ratio, including higher energy resonances is
(1.3+0.4) X10 '. The reduced neutron widths, as for
U"4, are in agreement with either a Porter-Thomas or an
exponential distribution.

The level spacings of U"4 and U"' are somewhat
smaller than that of U"s, 16&3 ev. The order is con-
sistent with the fact that the binding energy of U"4 is
about 200 kev higher than that of U"', which in turn
is about 200 kev higher than that of U"'.

III. LEVEL SPACING DISTRIBUTION FOR
ZERO-SPIN TARGET NUCLEI

When one considers the distribution of level spacings
of U"' and U"' based on the data in Tables I and II, it is
apparent that there is a definite deficiency of small
spacings. This is true even for the energy region below
160ev in U"4, in which one feels that most of the
resonances are being observed. This "cutoG" energy
is determined by means of a plot of the number of
resonances ts energy (see Fig. 3 of reference 6, for
example). The same deficiency of small spacings is true
for the distributions of spacings of V"' and Th"'
determined from parameters listed in BNI -325.'

However, even in an energy range where the resolu-
tion width is much less than the average level spacing,
there is still a sizable probability for missing small
resonances, and careful corrections must be made to
obtain the correct level spacing distribution. The loss of
levels is made more serious because the sizes of the
resonances (determined by their neutron widths) have
a broad distribution, with the very small ones the most
probable. Since the probability of missing a small
resonance near another resonance is high, the correction
for the small spacings in the distribution is very
important.

In making the correction for the failure to observe
levels, it is important to determine if there is any cor-
relation between an individual value of F„and the
spacing to the adjacent levels. Thus, if levels of small
neutron widths were correlated with small spacings,
the loss of small levels near large ones would be quite
diBerent than if there were no correlation between F„
and S. A strict interpretation of the treatment given
by Blatt and Weisskopfs' (particularly Fig. 8.3) would
lead one to believe that small spacings might be corre-
lated with small I'„"sof adjacent levels. In order to in-
vestigate the possible correlation between the size of
a level, given essentially by I'„', and the local spacings, a
comparison of the individual values of F„' and the
spacings to the nearest levels was carried out. A
definite ratio of the average reduced neutron width

"J.M. Blatt and V. F. Weisskopf, Theoretical nuclear Physics
(John Wiley and Sons, Inc. , New York, 1952).
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to the average spacing, D, is predicted by the theory of
the cloudy crystal ball but this theory deals only with
average properties of levels, not the individual values.

The most direct way to investigate the correlation
between the neutron widths F„and the spacings to the
nearest levels is illustrated in Fig. 3 for U"4 for the
resonances up to 154ev. In this figure the reduced
neutron widths, P„' (the value of F„at 1 ev) for indi-
vidual levels are plotted against the average distance
to the levels on either side of the given level. The solid
line in Fig. 3 has a slope determined from the average
reduced neutron widths and the average of the local
spacings. If the neutron width were strictly proportional
to the spacing to the nearest levels, each point would
be expected to fall on the solid line. However, the
scatter of the observed points show that there is no
strong correlation between neutron width and the
local spacing.

In order to study the possibility of a correlation in a
somewhat different manner, the results for the four
even-even nuclei investigated are shown in Fig. 4, in
which the number of levels is plotted as a function of
the ratio of (F„'/local S) to (average I'„0,'average local
S). Here all points would fall at unity if there were a
strict correlation between each I"„'and the local spacing.
However, a very broad distribution is observed, which is
approximately that expected for the case of no correla-
tion between I"„'and the local spacing. For the case of
no correlation the expected distribution is, of course,
given by the individual distribution laws for the
neutron widths and for the spacings, these two distribu-
tions being combined as independent. The curve in
Fig. 4 was computed by assuming a Thomas-Porter
distribution of neutron widths and the distribution of
spacings discussed later, namely, (4$/D')e 's'o. The
agreement between the experimental results and the
calculation shows that there is very little correlation
between neutron widths and spacings to the adjacent
levels and, hence, that these distributions can be treated
as independent in computing the corrections necessary
to determine the distribution law of level spacings.

I.et us consider the transmission curves of the sample
of U"4 shown in Figs. 1 and 2. In the regions between
resonances we shall assume that any resonance that
gives less than a 2% transmission dip would not have
been detected and any resonance larger than this would
have been observed, this limit corresponding to about
twice the statistical standard deviation. In the energy
region around 85 ev, this limit corresponds to a minimum
observable area of 0.03 ev. From the U"4 sample
thickness we can readily compute that this corresponds
to a reduced neutron width of 0.03X10 ' ev. Since the
average reduced neutron width of U"' is 1.1X10 ' ev,
the resonances that have been missed in this energy
region must have reduced neutron widths that are less
than 3% of the average reduced neutron width. If
thicker samples had been measured, the loss of small
resonances in the regions between observed resonances

XO
I

U234

).0

+AVERAGE LOCAL S
t c

~
~j ~ ~

r„'-~ ~W ~

o~
0 2 4 6 8 )0 &2 14 )6

LOCAL S (ev)

18 20 22

Fn. 3. A plot for U'" of the reduced neutron width of a level vs
the average of the distance to the levels on either side of the given
level. The straight line has a slope given by the average reduced
neutron width divided by the average local spacing.

would have been decreased. For example, if a sample
three times thicker had been measured, resonances with
reduced neutron widths )1% of the average reduced
neutron width would have been observed. At higher
energies where the energy resolution gets poorer, the
loss of small resonances increases. For example, at
160 ev the resolution is 3.6ev and, hence, any area
less than 0.07 ev would not have been observed. This
area corresponds to a reduced neutron width of
0.11X10 ' ev or 10% of the average reduced neutron
width. At low energies very small resonances can be
detected between the larger observed resonances. For
example, at 8 ev resonances with reduced neutron
widths of only 0.1% of the average value would have
been observed with the particular U"4 sample used.

Near the large observed resonances, of course, it is
possible to miss much larger resonances than for the
energy regions between resonances. If a resonance
occurs within a half a resolution width of a large

5

(
/& (i.g)~'

U234, 6,8
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FIG. 4. Distribution (per 0.2 unit of the abscissa) of the ratio of
(r„o/local S) to (F '/average local S) for the four nuclides
U"' "'"' and Th'". The curve was computed assuming a Porter-
Thomas distribution of neutron widths and a level spacing dis-
tribution of the form (4/D')Se~~~ . A normalizing factor of 2.33
has been omitted from the equation on the curve.
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FIG. 5. The percentage of resonances smaller than a particular
size for the Porter-Thomas and the exponential reduced neutron
width distributions as a function of the size of the resonance.
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FIG. 6. The percentage of resonances which are missed between
observed resonances for U2'4 as a function of neutron energy
assuming a Porter-Thomas distribution of reduced neutron widths.
In the vicinity of large resonances the loss is much greater.

observed resonance it will be missed if its dip area is
less than half the area of the observed transmission
dip. For example, in the region of the large resonance
at 95 ev, any resonance from 94 to 96ev which is
missed must have had a reduced neutron width less
than 45% of the average value. On the wings of a
resonance from one half to one resolution width away
we have assumed that any resonance with 4 times the
area of the limit that we computed between resonances
would have been observed. Thus, any resonance which
might be in the energy range from 96 to 97 ev would be
missed unless its reduced neutron width were greater
than 12% of the average. If we are close to a big trans-
mission dip, such as the one at 95 ev, little advantage is
obtained in using a thicker sample, even though the dip
due to the small resonance increases with sample thick-
ness since the large resonance dip increases in width.

In order to determine the fraction of all the resonances
that are missed corresponding to the size limits just
mentioned, it is necessary to know the distribution of
the reduced neutron widths, which determine the size of
levels. For example, if the distribution is exponential,

only 1% of the resonances have neutron widths less
than 1%"of the average and only 9.5%have F„'&0.1I'„'.
However, for a Porter-Thomas distribution' 8% of the
resonances have widths less than 0.01I'„' and 24.5%
have widths less than O.ir„o. The percentages of reso-
nances smaller than a particular value are plotted in
Fig. 5 for both the exponential and Porter-Thomas
distributions. In computing the correction for missed
levels, we shall use the Porter-Thomas distribution
since it fits the experimental neutron width distribution
better. From the estimate already made of the upper
limit of levels missed as a function of energy for U"4,
together with Fig. 5, we easily obtain (Fig. 6) the
fractional loss of resonances bet@eee the observed
resonances ~s energy in the case of U"4. The data
below 9 ev were taken at a rotor speed of 3000 rpm, and
those from 9 to 60 ev at 6000 rpm, which account for the
discontinuities at 9 and 60 ev. In the vicinity of large
resonances the loss of small resonances is much greater,
as has been explained. From the percentage of reso-
nances which are missed both between and near observed
resonances, it is possible to correct the observed level

spacing distribution for the loss of the small resonances.
It is obvious that greatest loss of resonances occurs
near the large observed resonances, hence, giving a
large correction to the number of small spacings and not

affecting the large spacings very much. Thus, the cor-
rection to the small spacings is very important.

The correction for the loss of small resonances
has been made for three spacing distributions (1)
an exponential distribution (2) a distribution of
the form 4(S/D')e iD, and (3) a form (m/2D')S
Xexpg —(m./4D')S'). The distribution (1) means that
the levels occur at random, (2) is an empirical form that
corresponds to a deficiency of small spacings, and (3)
is the Wigner distribution already mentioned. Since
we have already computed the fraction of resonances
that are lost as a function of energy, both between and
near resonances, the number missed at any particular
energy follows directly from the fraction missed and
the assumed distribution of level occurrence Lconstant
for (1), and proportional to S for (3)$. The effect of
adding missed levels in this way is that the number of
large spacings derived from the data in Table I must
be decreased and the number of small spacings increased.

The entire energy range up to 154 ev for the case of
U"4 was analyzed in this manner and the percentage loss

of levels es energy was computed. Since the thickness

of the U"' sample was just a little greater than that for
U"4, no detailed analysis of its transmission curve was

made. It was estimated that the loss of resonances

between observed resonances was about 30% less

than that of U"4 as a result of the increased sample

thickness, but that the correction for small levels near

large ones was the same as for U"'. The Th"' and
U"' data were obtained with samples much thicker

(a factor of 15) than the U"4 samples, hence, a detailed
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analysis was carried out for these nuclides, the same
correction being used for both.

No data were used at energies higher than the point
at which the loss of resonances had reached 15%
(based on the exponential spacing distribution). In
U"4, 11 spacings were used up to 154ev; in U"', 8
spacings up to 133 ev; in U"', 10 spacings up to 192 ev;
and in Th"', 6 spacings up to 131 ev. The data for U"'
were taken from BNL-325 Supplement I and that for
Th"' were BNL fast chopper data listed in a review
article by Harvey and Schwartz. "The small resonance
at 10.2 ev in U"8 was not included in the analysis since
it is possible that this is a p-wave resonance. "
Recent high-resolution data from Columbia'4 indicate
many more resonances in U"' above 200 ev but do not
show any new resonances below this energy. In order
to improve the statistical accuracy of the data, the
distributions of the 4 nuclides were combined by
plotting them relative to the average level spacing of
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FIG. 7. The level spacing distribution for the four zero-spin
target nuclides U"'"'~' and Th"' as a function of the spacing
between adjacent resonances, S, divided by the average level
facing, D. The corrections were determined assuming that the
resonances occur at random, which corresponds to an exponential
distribution. The corrections increase the number of spacings
from the observed 35 to 40 (a 14% correction).

each nuclide. Since there is some error in the measured
D for each nuclide, the procedure distorts the combined
distribution a slight amount. The results are shown in
Figs. 7, 8, 9 with corrections based on the three distribu-
tions considered. The correction increases the number
of spacings from the observed number of 35 to 40,
38 and 37 for the distributions (1), (2), and (3),
respectively.

Because of the large statistical uncertainty it is
impossible to establish a definite distribution law on
the basis of the four zero-spin nuclides alone. However,
the deficiency of small spacings seems definite and of the
three distributions considered, the third (Wigner) is

~ John A. Harvey and R. B. Schwartz, Progress of Xgclear
Ene'gy. Ser. I. P'hysics and Mathematics (Pergamon Press, Ltd. ,
London, 1957), Vol. 2.

"Bollinger, Cote, Dahlberg, and Thomas, Phys. Rev. 105, 661
(1957).

'4 Rosen, Desjardins, Havens, and Rainwater, Bull. Am. Phys.
Soc. Ser. II, 2, 41 (1957).
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IV. SPACING DISTRIBUTION FOR NUCLIDES
OF NONZERO SPIN

Much more extensive measurements have been made
for the nuclides other than those of zero spin discussed
in the last section. However, for the nuclides of non-
zero spin the complication exists of the presence of two
spin systems that tends to obscure the distribution law
of spacings within a single spin system. Before discussing
the available experimental data on the nuclides of
nonzero spin, we shall consider the way in which spacing
distributions are altered when two spin systems are
combined.

If the levels in each individual spin system occur at
random, the combined distribution would also be
random and the nuclides of nonzero spin could be
treated in exactly the same way as the zero-spin
nuclides. However, as we have seen in the previous
section, it seems definite that the distribution law is not
exponential and, hence, we must compute the combined
distribution. It is not a difFicult matter to compute
the combined distribution when the distributions for a
single spin state have simple analytical forms, such
as (4/D')Se ' ~ and (rr/2D')S expL —(z/4D')S'j dis-
cussed in the previous section.
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FIG. 9. The level spacing distribution for the four zero-spin
target nuclides as a function of S/D. The corrections were com-
puted assuming that the probability of level occurrence is propor
tional to S, which corresponds to the Wigner distribution of the
form S expL —(7r/4D2)Ss]. The curve is drawn normalized to 37
spacings.

FIG. 8. The level spacing distribution for the four zero-spin
target nuclides as a function of S/D. The corrections were com-
puted assuming a distribution of spacings of the form Se ' I . The
corrections increase the number of spacings from 35 to 38.

the best fit. We shall now consider the results for non-
zero nuclides for which more data are available.
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FIG. 10. Combination at random of two distributions of the
form 4xe '* to get the combined distribution (x'+2x+-', )e ".
The combined distribution gives the probability of obtaining any
spacing regardless of its spin of the level.

The complete formula that can be used to combine
two distributions of arbitrary forms, Pt(S) and Ps(S),
with average spacings D~ and D2, has the following
form":

P(S)=
DgD2

I', (S) xr, (x+S)dx

+Ps(S) xPt(x+S)dx
4p

Ã3/
-', exp( —sy'/8)+ —exp( —sy'/16)

8

(
$y&w

J,X( 1— exp(-x')dx ~,

where again y is the distance between adjacent levels.
25 A. M. Lane, Oak Ridge National Laboratory Report ORNL-

2309, 1937 (unpublished), p. 113.

+2 ~ I' ( +S)d ~ I' ( +S)d . (1)
0 J,

By means of Eq. (1) it is possible to transform the dis-
tributions used in the previous section so that they may
be compared with nonzero spin nuclides, for which many
measured spacings are available. For two distributions
of the form (4/D')Se 'B~n, each with the same average
level spacing D per spin state, the combined distribu-
tion is

e '"(y'+2y+ s),

where y is the distance between adjacent levels divided

by D/2, and D/2 is the average spacing of resonances
of both spin states regardless of the spin state. The
single and the combined distributions are shown in
Fig. 10 for this case, from which it is seen that the
combined distribution is quite similar to the individual
distribution for large spacings but is closer to an
exponential distribution than the individual distribution
for small spacings. For two distributions of the form
(vr/2D') S exp) —(s/4D') S'$, each with the same average
level spacing D per spin state, the combined distribu-
tion is

If the individual distributions do not have the same
average spacing, the change in the distribution resulting
from the combination will be somewhat less, as would
be expected. The limited accuracy of the experimental
data does not justify computations assuming the level

spacing per spin state to be different or selecting dis-
tributions more complicated than the two outlined here.

The experimental data considered for the nonzero
spin nuclei are tabulated in BNL-325 and its Supple-
ment I. The nuclides included, with the number of
spacings per nuclide in parentheses, are as follows:
In"'(6) In"s(7) Sn" (4) Cs'"(11) ssBa" (10) Pr' '(5))
Ndt4s (6) Ndr4s (4), Eu»t (13), Eutss (7), TbtI (1$),
Ho'"(14) Tm'"(9) Lu"'(11) Hf'"(14) Ta'"(9). The
total number of intervals used was 145. All of these
nuclides were measured with the Brookhaven chopper
under conditions and with sample thickness equivalent
to the U"' data. Most of the nuclides have average
spacings similar to that of U"4, although some (Eu'"
and Eu'") are an order of magnitude less and others
(Sn"' and Pr'4') have spacings much larger. It was
decided that the correction derived for the U"4 would
be satisfactory to apply to these nonzero-spin nuclides
and no elaborate examination of all the transmission
curves was made. The fissionable isotopes like U"' were
not included in the analysis since the spacings of U"'
are complicated by the presence of interference between
resonances.

As for the zero-spin nuclides, the corrections for
missed levels were made for the three distributions in
the combined form for two spin states, assumed equal
in number. For the exponential distribution the correc-
tion is just the same as for the even nuclides and the
results are shown in Fig. 11. As with the zero-spin

nuclei, the corrected points are in reasonable agreement

with an exponential distribution except for the smallest

spacing, and those for which y is about unity. In Fig. 12
are shown the experimental spacing distributions and

the corrections based on the other two distributions

already considered. Here the agreement is much better,
with either distribution, than with the random distribu-
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FIG. 11. The level spacing distribution for the nonzero-spin
nuclides as a function of S/D'. D' is the average spacing of levels of
both spin states regardless of their spin and is taken to be equal
to D/2, where D is the level spacing per spin state. The corrections
were computed by assuming an exponential distribution of
spacings, which increase the number of spacings from 145 to 170.
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tion of Fig. 11.Distribution 3 (Wigner) seems to agree
better than 2 but the difference is not great. However,
the conclusion of the zero-spin results, that repulsion of
levels exists, is supported by the odd-spin nuclides, and
with greater statistical accuracy. Actually, the results
indicate somewhat more repulsion than the assumed
distributions, as would be expected if the two spin
systems are not equally populated.
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FxG. 12. The level spacing distribution for the nonzero-spin
nuclides with corrections computed assuming a distribution of
spacings given by the curves in the figure. The dotted curve is the
combined distribution curve 162(y'+2y+-,')e '& computed for
distribution 2 and the solid curve is the combined distribution
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V. NEUTRON WIDTH DISTRIBUTION

The considerations given in Sec. III with regard to
the size of a resonance which would have been missed
as a function of neutron energy can be used to correct
the observed neutron width distributions for the 4
nuclides U"'"' "' and Th"'. From the size of reduced
neutron width which would not have been observed ~s

energy for each nuclide we can determine the eKciency
for detecting a particular size resonance averaged over
the energy range up to the "cutoG" energy. The eKciency
for detecting very small resonances is obviously low
while that for detecting large resonances is almost
unity. The results when the 4 even-even nuclides are
combined is as follows. The efficiency is 0 for detecting
a resonance whose I'„' is only 0.0001I"„', 25% for
F„'=0.001F„', 53% for I' '=0.01I'„', 80% for
F„'=0.1I'„' and 100% for F„'=I'„'.When this efft-

ciency factor is applied to the experimental data it
makes an important correction to the number of small
neutron widths. For example, of the 39 neutron widths
considered for these 4 nuclides, three were observed
with I'„'/I' ' between 0 and 0.04. Because of this effi-
ciency factor and the neutron width distribution, a
correction of a factor of 2 must be applied in this
interval. However, rather than plot the neutron width
distribution we have chosen to plot the distribu-

0
0 5.0 3.0

r o/r„'

Fio. 13. The distribution of the square roots of the reduced
neutron widths for U2" "' "and Th'+ as a function oi (I' /I' ') &.

The points have been corrected for the loss of small resonances.
The Gaussian shaped curve is the Porter-Thomas distribution and
the curve 88y exp( —y') corresponds to an exponential distribution
of reduced neutron widths.

tion of the square roots of the neutron widths, ' i.e.,
E((F„'/F ') '), which is a property more closely related
to nuclear theory. The results for 39 reduced neutron
widths are shown in Fig. 13. No correction has been
applied for the distortion produced because of the fact
that the average neutron widths are not accurately
known for the individual nuclides since it is estimated
that this correction is much smaHer than the statistical
errors on the points. The experimental points are in
better agreement with a Porter-Thomas distribution,
the Gaussian curve on Fig. 13, than an exponential
distribution of reduced widths, corresponding to the
curve 88y exp( —y').

In an analysis of 145 neutron widths of resonances
from both zero and nonzero spin target nuclei, Hughes
and Harvey' estimated that the corrections for small
resonance which were missed would be less than the
statistical accuracy on the experimental points and
concluded that the data were in agreement with either
a Porter-Thomas or an exponential distribution of
neutron widths. However, as a result of the careful
examination of the transmission data outlined in this
paper we see that the corrections for small size reso-
nances are very important. For example, the first point
in Fig. 2 of reference 7 should be raised a factor of 2.
After this correction has been applied, the data are in
better agreement with the Porter-Thomas distribution.
than an exponential distribution of reduced neutron
widths. This is in agreement with the results of a
detailed treatment by Porter and Thomas' who con-
cluded that their distribution is consistent with the data,
while an exponential distribution is not.
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