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Nuclear Potential and Symmetry Energy*
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A quadratic dependence on momentum is assumed for the two-nucleon interaction energy in the inde-
pendent-particle model, and is used in a study of the nuclear binding energy and symmetry energy. The
corresponding optical potentials for elastic nucleon scattering are discussed. The semiempirical interaction
used is compared with the two-body potentials commonly used in shell-model calculations. These are found
to be inadequate.

I. INTRODUCTION
' 'T has been proposed by Brueckner and others' that
~ ~ the energy of the ground state of nuclear matter
can be obtained from a model in which the nucleons
move independently in a common (velocity-dependent)
potential V arising from their mutual interactions. This
potential is also the optical potentiap used to describe
elastic scattering of nucleons by nuclei. The actual
two-body interactions ~;; between free nucleons are
replaced in the model by effective interaction or
scattering operators t;;.' If the actual e;; are known,
the t;; in principle may be calculated. An alternative
approach' is to assume some simple form for the matrix
elements of the t;; and study its properties in a semi-
phenomenological way. We describe here some simple
calculations along these lines, chieQy using a quadratic
dependence on the nucleon momenta. First we adjust
the parameters of the nuclear potential V and two-body
interaction energy t to give the observed binding and
separation energies of nucleons in nuclear matter with
equal numbers of neutrons and protons. Then we
generalize to nuclei with unequal numbers of neutrons
and protons, using the nuclear symmetry energy to
place restrictions on the diGerence in interaction energy
of like and unlike pairs of nucleons. Incidentally, we
note a general relation between the symmetry energy
and the difference in optical potential seen by neutrons
and protons. Finally, we inquire how closely the inter-
actions 3;; correspond to the effective central potentials
used quite successfully in shell-model calculations of
nuclear spectra.

('packing fraction') requires the common potential U
of an independent-particle model to be velocity-
dependent. He finds relations between the mean po-
tential U, the potential felt by nucleons at the Fermi
surface Vp, the Fermi kinetic energy Tp, and P.

Up —— P Tp, —U=—2P (6/5—)Tr. — (1)

In particular, for a quadratic dependence of V on the
momentum,

U(k) = —Up+ Ur(k/kr)', (2)

2 Up= '7P+3Tp, 2Ur =SP+Tr. (3)

Now the potential U, felt by a nucleon in a state
~
a)

arises from its interaction with the nucleons in all other
occupied states ~b)

U =g (abItIub) —(ob~t~ba)

P p tab.

The exchange term, of course, arises from antisym-
metry, and the labels a, b include spin and charge. The
pair interaction t & is easily evaluated in the Fermi gas
approximation (in6nite nuclear matter). If we assume
equal numbers of neutrons and protons, and average
over spin and charge states, t, & can only depend on the
relative momentum tl=k —k' of the pair of states u, b.
The sum over b is then replaced by an integral over
k' in the usual way. Writing t,s= t(q),

~
It;y'

U(k) = (2srs) ' dk't(k —k').

II. NUCLEAR POTENTIAL AND
BINDING ENERGY

Weisskopf has pointed out' that the equality of the
separation energy S and the volume binding energy P
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As a first trial we shall assume a quadratic dependence
of t(q) on q:

t(q) = tp+tr(g/k p)'. (6)

This, of course, gives a corresponding quadratic de-
pendence for the potential U as in (2), with

Up (to+ stl)pp Ul trpb

where p is the nuclear density. We then obtain to, t1
from (3), using P=15.75 Mev found from the mass
formula by Green. ' The density p found in electron
scattering experiments' gives Tr (assuming neutrons

' A. E. S. Green, Phys. Rev. 95, 1006 (1954).
r R. Hofstadter, Revs. Modern Phys. 28, 214 (1956).
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TABLE I. Parameters for the nuclear potential well U and
interaction energy t, with corresponding reduced masses. All
energies are in Mev.

l- 40-

z 20-

0

P TJ

15.75 34
1575 36
15.75 38
14.00 36
14.00 38

Up U1 to t1

106.1 56.4 —140.0 56.4
109.1 57.4 —143.6 57.4
112.1 58.4 —147.2 58.4
103.0 53.0 —134.8 53.0
106.0 54.0 —138.4 54.0

t1/tp m/'m+

—0.40 2.66
—0.40 2.59—0.40 2.54
—0.39 2.47—0.39 2.42
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Fro. 1. Variation of optical potential U with incident energy,
when adjusted to give nuclear binding energy. 1. Quadratic, Eq.
(2); 2. Gaussian, Eq. (7a); 3. form of Eq. (7b). The experimental
"points" are only intended to be representative. The appearance
of experimental points at negate've energy is due to surface eGects.
These raise the energy of a 6nite nucleus so that a zero-energy
incident neutron is actually only about 8 Mev above the Fermi
surface. In an infinite nucleus this would appear as a negative
energy, 8—P——8 Mev. The dashed curve was obtained by T. B.
Taylor LPhys. Rev. 92, 831 (1953)7 from analysis of neutron total
cross sections, but using a square well.

For comparison, the earlier value of P=14 Mev given

by Feenberg' is also used.
We see the values of to and l& are not very sensitive

to the choice of P or T&. But we require a value of 3& of
about —,'Tp, in contrast to the value -,'Tp used by
Skyrme' to explain the nuclear surface energy. Our
value would lead to a surface thickness nearly twice
that observed. ' Inclusion of scattering in odd states
(assumed negligible by Skyrme) is unlikely to produce
much effect, and the value of the compressibility he
uses is consistent with recent results of Hrueckner. ' A
possible source of error lies in the assumption that, in a
region of varying density, the interaction t is just that
appropriate for the local density. Thus any possible
dependence induced by the surface on k+k' in addition
to tl= k —k' is neglected. This point will be investigated
further.

Also, as already remarked by Weisskopf, ' the reduced
mass m* 0.4m is somewhat smaller than is usually
assumed. For example, the nuclear photoeffect' seems
to require m* 0.5m for nucleons near the Fermi
surface. To see how much the discrepancy can be put
down to the simple quadratic form we chose, we have
also htted the two more realistic two-parameter

J. M. Blatt and V. F. Weisskopf, Theoretical NNclear Physics
(John Wiley and Sons, Inc. , New York, 1952), Chap. 6.

9 D. H. Wilkinson, in Proceedings of the 1954 Glasgow Conference
(Pergamon Press, London, 1954); S, Rand, Phys. Rev. 107, 208
(1957).

and protons occupy the same volume); the central
densities correspond to Tp from 34 to 38 Mev. The
results are given in Table I, together with the reduced
mass ratio' '

m/ *m= 1+(Ui/T p).

potentials:
U= —Up expL a(k/k&)'j~

U= —Up/1+P(k/kg)sg '.
(Sa)

(Sb)

Using I' = 15.75, Ts =38, we find for (8a) that
Us=124.1 Mev, n=0.837, while (Sb) gives Us=150.5
Mev, P=1.80.

The photoeffect is interpreted' as the raising of single
nucleons from bound levels of energy E to states of the
next shell at Eq. The di6erence in the single-particle
energies is given by

Es E,= Us U—,+—Ts T, —
= (To—T.)m/m**, (9)

say, where the "effective" reduced mass m** over the
range U to U~ is given by

(m/m**) 1= (—Us —U.)/(T s—T.)
~(d U/d T)

' Ross, Mark, and Lawson, Phys. Rev. 104, 401 (1956).

evaluated at the Fermi surface. With the figures just
given, m/m**=2. 18 for (Sa), 1.91 for (Sb), which are
much closer to the experimental value.

It is also interesting to compare these potentials
with those found necessary to describe elastic nucleon
scattering. They are plotted in Fig. 1 for external
incident energies up to 150 Mev. The experimental
points scatter somewhat; those from an analysis using
a Saxon potential are displayed in Fig. 1 in a schematic
way. In general, they follow the curve for potential
(Sb); part of the scatter is due to the difference in
potential seen by neutrons and protons. However, this
has little significance other than showing that (8b) may
be a convenient expression for the velocity dependence
in this region. Apart from a certain amount of ambiguity
in choosing potentials to fit the scattering data (un-
certainty about the amount and distribution of the
imaginary part, for example), no analysis has yet taken
into account the velocity dependence. This introduces
(in the case of a square well) a discontinuity in the
logarithmic derivative' " of the wave function, which
tends to strengthen reftection from the surface.

In passing, it is of interest to note the degree of non-
locality this velocity dependence implies. In a coordi-
nate representation, (Sa) and (Sb) lead to nonlocal
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potentials' of the form

U(r, r') = —g expL —(p/a)'), g= 4n/k~, (11a)

U(r, r') = B—(b/p) exp ( p—/b), b =P*'/kg, (11b)

where p=r —r'. The above figures give a=1.4&10 "
cm, 9= 1.0X10 "cm. Whatever the true form of U(k),
these results should remain qualitatively correct.

III. NUCLEAR SYMMETRY ENERGY

In the preceding section, we assumed equal numbers
of neutrons and protons, and averaged over their
interactions. We now relax this condition. However,
first we make a few general remarks about the difference
in potential seen by neutrons and protons. This arises
in two ways, due to the Coulomb energy and to the
nuclear symmetry energy. When we have equal numbers
of neutrons and protons, each will experience the same
potential, as a function of its kinetic energy T, provided
the forces exhibit charge symmetry, e„„=v». However,
because of the repulsive Coulomb energy U„protons
will have a smaller kinetic energy in the medium than
neutrons of the same total energy, and thus experience
a different potential. "With our quadratic momentum
dependence, the potential for both types of nucleon is
U(T)= —Uo+nT, n= U,/Tl. But for neutrons we
have a total energy E= U(T)+T, while for protons it
is E= U(T)+ U.+T. Using these to express the optical
potential as a function of total energy E, we have

U„(E)= (—Up+nE)/(1+n),

U„(E)= (—Vo+nE)/(1+n) —nU„/(1++).
(12)

Thus, even in this case, protons will see a nuclear
potential nU, /(1+n) deeper than neutrons of the same
incident energy. For Ca", for example, this is about 5
Mev, if one uses U, =1.4(Z —1)A ' Mev. '

With unequal numbers of neutrons and protons
there is a further contribution to this difference from
the symmetry energy. This arises partly because the
ranges of relative momentum between one nucleon and
those of the two groups are now different, and partly
from any difference in the force between like and unlike
pairs. Then, for example, the constants Uo and U~ (or
n) for a proton will differ from those for a neutron.

A simple relation holds for nuclei which are P stable
on the statistical model (i.e., ignoring shell effects).
For these, the most energetic neutrons and protons
(those at the Fermi surface) have the same total energy.
Thus,

T„+U„(T„)= T„+V„(T~)+U„

where T„, T„are the respective proton and neutron
Fermi kinetic energies; most medium and heavy nuclei
depart little from this. It is well known that

T T„=(4/3) Tpe, e= (1V—Z—)/2,

"This has also been pointed out by A. M. Lane, Revs. Modern
Phys. 29, 191 (1957).

if Tp is the Fermi energy appropriate to the mean of
the neutron and proton densities, —,

' (p„+p„). Also, this
stability condition is essentially the same as that used
with the mass formula to extract values of the symmetry
energy I, from empirical nuclear masses. When the
symmetry energy just balances the Coulomb force
(or BE/Be=0), we have (neglecting the neutron-proton
mass difference)

Putting these results together, we obtain

U„(T„) U„(T—„)=4e(u, ,'TI)—. -

Numerical values of this are included in Table II. For
A about 60, e 1/10, and for A about 200, e —',, giving
a potential difference of 5 to 10 Mev. While this is only
true at the Fermi surface, the change in going to low
incident energies should be less than 10%%uo. These values
are consistent with the reported difference in neutron
and proton potentials. (We note that Feenberg's value'
for u, of 18 Mev leads to only half this difference. The
experimental evidence, if significant, would seem to
support Green's larger value. ')

To obtain a more detailed insight into the symmetry
effect, we continue to use the simple quadratic form for
the interaction t(q), but allow it to be different for like
and unlike particles. A simple way to do this is to write
the interaction, still averaged over spin orientations,

t(q) = t,(1+p)+&, (1aq) (q/k, )'. (14)

The upper sign refers to like particles (Ne or pp), the
lower to unlike (ep). Averaging over these leads again
to (6), so 30 and tq have the same meaning as in Sec. II."
Unfortunately we now have two new unknowns, and
only one new datum (the symmetry energy), so we
shall only be able to establish a relation between p and
q. This will be of interest, however, when we come to
study the relation between t(q) and two-body forces
commonly used in shell-model calculations. We shall
also point out further possible sources of information
on v and g separately.

The expression (5) for the potential must now be
generalized to

V.(k) = (4~')-' dk'~. „(t—k')
~0

+ " dl'~, „(k—k'), (15)

with x=m or p for neutron or proton respectively. This
is readily evaluated, giving in (2)

V.(k) = —U.p+ U,g(k/k p)',
"The expression (14) cannot be strictly true, since, even if

the forces between free nucleons show charge symmetry, v„„=p»,
this property will not in general be retained by the t's. They have
to be evaluated in the nuclear medium, and the differing densities
of neutrons and protons will introduce some asymmetry. However,
it is reasonable to suppose that this is a higher order effect than
the one we are considering.
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15.75
15.75
15.75
14.00
14,00

34
36
38
36
38

23.7
23.7
23.7
18.1
18.1

1.24
1.25
1.26
1.27
1.25

0.11
0.13
0.15
0.22
0.23

(U —U7)l ~

49
47
44
24
22

with

TA&LE II. Empirical parameters in the relation cv —q=d, and
the difference between neutron and proton potentials at the Fermi
surface for "stable" nuclei. All energies in Mev.

IV. SHELL-MODEL TWO-BODY FORCES

In shell model calculations of nuclear spectra near
closed shells, " a two-body central force ~;; with some
exchange mixture, usually Rosenfeld or Serber, has
been used quite successfully. We ask now how far such
a force can be regarded as a reliable characterization
of the true interaction t;;. The usual central force with
exchange is

v;, = (w+ mP +bP'+hP') J(r )

w+m+b h=——1.
—U p

——top(1&vs)+tip(s+r)e+se'),

U, i ——tip(1+rte).

The interaction between pairs is, analogous to (4).(16)
t s (ab

~

v —
~

—ab) (ab
~

—v
~
ba)

The & now refers to x=e or p. Using &*'=&v'(1~e)t Averaging over spin states, and using plane waves to
and (13), or by explicitly calculating the total energy~ evaluate the matrix elements, "we soon find
we soon find the symmetry energy

I,= ,'[tpv+2t—,( ,'+rt) jp+-',Tv- (17)

y = tip/(t, p+ Tr),
d, s

——2e(1 y))top(v vrt)—+tiprt(1 ——s'7)j
+&[1-"(1-~)]U..

This reduces to (12) when e=0, and to (13) when
e=U, /4u, . We see the energy dependence of Air is
proportional to p as well as e, as already remarked
above. With I'= 15.75, TI =38, we have

As ——(99.4r) —116.0v) e+ (0.61—0.24ert) U,+0.48er)E.

Thus more careful analyses of neutron and proton
optical potentials and their variation at low energies
could reveal further information on the symmetry
effect.

Inserting the values of to, t~ found in Sec. II we obtain
a relation of the form cv —g =d. The c and d are included
in Table II; we see c is about 5/4, and d is about 1/10
to 1/5. We shall return to this in the next section.

Equation (16) shows that the velocity dependence
of U is sensitive to g, but not v, in the k' approximation.
That is, (dU/dT) at the Fermi surface depends on rt

and is diGerent for neutrons and protons by perhaps
5% for medium weight nuclei. It follows from (10) that
(p, p) and (p,e) will show giant resonances of slightly
diferent energies. Figure 1 shows the k' approximation
not to be very good above the Fermi surface, so the
simple dependence of (16) will not hold exactly.
However, we might hope to find some measure of q in
this way.

Further, we may use (16) and the arguments at the
beginning of this section to write down the diGerence
between neutron and proton potentials at a total (or
incident) energy E. We find to order e'

U (E)—Uv(E)—:6@=Ap+2p(1 —p) ertE

where

f(q) =Jf dr exp( —iq r)J(r)
0

(20)

is the Fourier transform of the space dependence of the
two-body potential. To compare (19)with our phenome-
nological quadratic expression (6) for t(q), we can
expand f(q):

f(q) =4v. I r'drJ(r) siq'~I r4drJ(r—)

1
+ q

I r'drJ(r)
120 &

=cr+p(q/hv)'+y(q/hv)', say. (21)

This is closely connected to the technique" of expanding
the potential in powers of its range. The quadratic
approximation for t(q) corresponds to retaining the
first two terms of such an expansion. Collecting terms,
we can identify

ts= ~rr(3w+3m); ti= srP(4m —2h —2b —w),
(22)

tpv = ',cr(w+m+2); tir-) = ——,'p(2b+w).

We see that to and v depend only on the amounts of
Wigner and Majorana force. We can use (22) to study
the relation cv—g= d. Take c= 1.26, corresponding to
Tv=38, P=15.75 (Table II). The popular Rosenfeld
mixture gives d= —0.30 instead of the empirical +0.15.
A Serber force has d= —0.09, which is closer. In fact,

13 M. G. Redlich, Phys. Rev. 99, 1427 (1955);J. P. Elliott and
B.H. Flowers, Proc. Roy. Soc. (London) A229, 536 (1955); M. J.
Kearsley, Phys. Rev. 106, 389 (1957)."J.H. Van Vleck, Phys. Rev. 48, 367 (1935)."D.M. Brink, Proc. Phys. Soc. (London) A67, 757 (1954).

t (ne) = t(PP) = sr (2w+2h+ b m) f—(0)
+2 (2m —2b —h —w) f(q),

t(&p) =-'(2w+b)f(0)+l(2m —h)f(q),
(19)

where
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TABLE III.Force parameters for Serber (8), "almost Serber" (aS) and Rosenfeld (2) exchange mixtures, when P= 15.'IS Mev, Ts'= 38
Mev, and ti/tp ———0.40. For the Gaussian, a=Ba'7r'~', P/n =—4'(ah~)', 7/n=-', (P/n)'; for the Yukawa, a=47rBo', P/a= —(ah~)',
v/~= (p/~)'

—0.750—0.750—0.600

—0.375—0.262—0.600

P/a

—0.80—1.14—0.40

B (Mev)

92
54

325

Gaussian
a(10» cm)

1.32
1.57
0.93

y/a

0.32
0.65
0.08

B (Mev)

326
191

1156

Yukawa
a(10» cm)

0.66
0.79
0.46

0.64
1.30
0.16

if we restrict ourselves to signer and Majorana forces,
the empirical values (for Tr 38, ——J' = 15.75) give
m = —0.59, no= —0.41, which we might call an "almost-
Serber" mixture.

The strength of the interaction to and its velocity
dependence ft/fp are related by (21) and (22) to the
shape of the potential J(r) through n and P, as well as
to the exchange character. It is dificult to disentangle
the two influences, but in Table III we give the strength
and range required for a Gaussian, J=Bexp t' —'(r/c)'],
and Yukawa shape, J=B(a/r) expL —(r/a)] We ha.ve
chosen the Serber, Rosenfeld, and "almost-Serber"
(mentioned above) exchange mixtures as representative.
In addition, the corresponding coefIicients of the q4

terms in the expansion (21) are given. The striking
thing is the large strengths 8, and short ranges a,
required for the Yukawa potential, compared with
those used in the shell model. " The more "square"
Gaussian shape shows a weaker velocity dependence
than the long-tailed Yukawa, and hence yields more
conventional values for range. In this way, the inter'
action energy averaged over the whole momentum
range gives more information as to the potential shape
than shell spectra, which are concerned with a narrow
interval of momentum close to the Fermi surface.
However, until more extensive calculations have been
carried out, it is dificult to draw any definite conclu-
sions on this. It is not clear, for example, how sensitive
the shell-model results are to the choice of strength,
range, and exchange mixture. In addition, it is quite
plausible that the more energetic nucleons concerned
in shell-model spectra are more strongly affected by
surface restrictions than the average, more deeply
imbedded, nucleons. Our model completely neglects
these finite-size effects which, for example, will intro-
duce elements of t off-diagonal in momentum space.

The large values of y/n for the two Serber forces
lead one to suspect that it is not a very good approxi-
mation to take just the first two terms of (21). Using
the exact expression for the Fourier transform f(q),
and adjusting the constants to give the same average
interaction over the momentum range of interest,
increases the range u required, but also increases the

strength B. In addition, the usual criterion that the
parameters for different well shapes be adjusted to give
the same (observed) low-energy free nucleon scattering
is clearly not adequate. Thus there seems to be strong
evidence against the conventional "shell-model" forces
being an effective representation of the actual inter-
action operators t;,.

V. CONCLUSIONS

A simple quadratic dependence on momentum,
f=fp+f (qi/kp)', has been assumed for the two-nucleon
interaction energy, averaged over like and unlike pairs.
At the normal density p of nuclear matter, the observed
binding and separation energies require top to be about—145 Mev, and t1p to be about 58 Mev. The value of
t& is about three times larger than that required by
Skyrme to explain the nuclear surface energy; it is
suggested the discrepancy may be due to the nonlocal
nature of t near the surface. This interaction corre-
sponds to an optical potential with a reduced mass
m*/m of 0.4. Agreement with the value 0.5 required
by the nuclear photoeffect is improved by the use of
more realistic velocity dependences for the potential
U, which are also consistent with elastic nucleon
scattering data. These potentials are nonlocal over a
range of about 1X10 "cm.

A general relation is noted between the nuclear
symmetry energy and the difference in potential seen
by slow neutrons and protons. The predicted value,
U„—U~ about 45 (N Z)/A Mev—, is consistent with
the scattering data. To study further the difference in
interaction between like and unlike nucleon pairs, two
new parameters have to be introduced in our approxi-
mation. We obtain a relation between then from the
observed symmetry energy. It is possible to get further
information from the different velocity dependence of
slow neutron and proton optical potentials.

Finally, we compared the semiempirical f(q) with the
two-body interactions usually assumed in shell-model
calculations. It was seen that these are not an adequate
representation of t. However, it is possible that the
interaction of the most energetic nucleons, concerned
in shell spectra, is modified by surface effects.


