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Some Properties of the Shift and Penetration Factors in Nuclear Reactions*
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The shift and penetration factors are shown to have certain monotonic properties in the variables p, g, and
L for both positive and negative energies. The behavior of the shift factor in the neighborhood of zero energy
(threshold) is discussed.

I. INTRODUCTION AND SUMMARY

'HE Wigner theory of nuclear reactions' has the
central feature that it separates the various

nuclear reaction parameters into two types: internal
quantities, such as the reduced widths which are
independent of energy; and energy-dependent external
quantities, which are functions of the (spherically
symmetric) interaction of separated pairs of particles.
The Wigner theory is necessarily complicated, and in
the region of widely separated levels a drastic simplifi-
cation, the "one-level approximation, " is employed.
In this approximation, the external parameters required
for the width and energy shift are the penetration
factor, P, and the shift factor, S, defined in Eqs. (8)
and (4). These factors also occur in the general case,
but enter in a more complicated manner.

It is the purpose of the present note to detail a few
general properties of the external quantities S and P,
for the particular case that only the Coulomb field (for
definiteness taken to be repulsive), and the centrifugal
barrier, are operative in the external region. Many of
these results are obvious on physical grounds, such as,
for example, the fact that P is a positive, monotonically
increasing function of the energy; others relating to
the shift function are more involved. Besides their
usefulness for facilitating a numerical treatment of the
functions P and S, such results are of value in furnishing .

an intuitive feeling for the over-all behavior of these
functions.

The point of departure for the present work is an
unpublished result of R. G. Thomas LEq. (9)7 giving a
very convenient form for an investigation such as
follows. For the general case, we show that P mono-
tonically decreases with p and l; monotonically increases
with p, and correspondingly monotonically increases
with energy. For the shift function, S, we demonstrate
that the shift monotonically increases with p. For
increasing p, we show that S/p decreases monotonically;
S itself, however, apparently does not behave so simply.
(See also the remarks in Sec. IU.) In consequence, we

can show, at best, only that S/p is a monotonically

* Supported in part by the U. S. Atomic Energy Commission.
t Now at The University of Kansas, Lawrence, Kansas.' E. P. Wigner, Phys. Rev. 70, 15 (1946); Proc. Am. Phil. Soc.

90, 27 (1946); Phys. Rev. 70, 606 (1946); E. P. Wigner and L.
Eisenbud, Phys. Rev. 72, 29 (194'7).' We take this to mean that not only is the R matrix approxi-
mated by a single pole, but also that R&"& is set to zero.

decreasing function of energy. The particular case of
E=O is given in detail.

For the case where only the centrifugal barrier occurs,
the general formula is shown to reduce to a remarkably
simple form for both P and S. It is possible to show
for this case that both P and S are monotonic with
changing energy.

The one-level approximation requires, however, that
the external functions also be considered for negative

energy, corresponding to closed channels. The required
generalization of P, S to this region has been given by
Thomas. ' For negative energy, S is shown to be mono-
tonic in p, p, and l; but not in energy.

A particularly interesting situation occurs at thresh-
old, that is, the behavior of S and P near zero energy.
A typical example physically, which led in part to this
investigation, is the case of the reaction iH'+ iH'~He'*
and the inverse reaction se'+&He4 —+He'*, currently
under investigation at this laboratory. 4 For these
reactions the shift factors are required in the neighbor-
hood of the (d, t) threshold; the linear approximation'
will clearly not suffice. Application of our results to
this, and other reactions, will be reported elsewhere.

It is well known' that the behavior of P near zero
energy suffices to illustrate the general rules of Wigner
for those cases where the threshold occurs in an entrance
or exit channel. Our investigation below yields a similar
conclusion for S. The shift factor near threshold is
shown to be continuous in energy for p)0, and con-
tinuous through l energy derivatives for p=0. The
case g=0, 7=0 has therefore a discontinuous slope;
specifically Ss scr~E~&, E(0; Ss s——0, E&0. The one-
level approximation thus shows for g= 0, l=0 a singular
behavior which is just midway between the two extreme
general behaviors given by Wigners ("cusp") and
recently by Breitr ("tilted S").

II. SUMMARY OF FORMULAS

The one-level approximation leads to a scattering
matrix of the Breit-Wigner form:

S- =expCs(0-+4)7P'-+su-e-!
(E),+~~—E—-'sT) )7 (&)

s R. G. Thomas, Phys. Rev. 88, 1109 (1952).
Bonner, Prosser, and Slattery, Bull. Am. Phys. Soc. Ser. II, 2,

180 (1957).
~ J. M. Blatt and V. F. Weisskopf, Theoretica/ Nuclear I'hysics

(John Wiley and Sons, Inc. , New York, 1952), Chap. VIII.' E. P. Wigner, Phys. Rev. 73, 1002 (1948).
7 G. Breit, Phys. Rev. 107, 1612 (1957).
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Ai, ;=pi (S„,i+b,), (3)

where p& is the reduced width, b; the boundary
condition matrix, and

pL~t(V p)Ei'(rl, p)+Gi(rl p)Gi bl p)]
X [Et'(n, p)+GP(9 p)] (4)

with Fi(iI,P) and Gi(it, p) denoting the regular and
irregular Coulomb wave functions" (the prime denotes
d/dp). Equation (4) is taken as the general definition
of the shift factor for positive energies (open channels).

For negative energies (closed channels), we have

S„,i& &—=—pW'/W,

with W= W „,i+I(2p) being the Whittaker function.
The total width I'z is similarly composed of the

partial widths,
(6)

where the partial widths Fz; are given by

2+x Pg, l (7)

I', i=pL~i'(n p)+—Gi'(v p)] '. (g)

This last equation is the general definition of the
penetration factor for positive energies. For negative
energies, P„,~=0.

These formulas are often given alternative forms
depending upon the choice of reference energy and
boundary condition applied to the internal region. '
The form given above requires, however, that b,

S;(E„,). That this —is necessary can be seen from
the fact, obtained from the results of Sec. IV, that
otherwise difhculty would arise from the contribution
of distant closed channels.

III. MONOTONIC PROPERTIES FOR
POSITIVE ENERGIES

(a) Penetration Factor

Thomas has shown that the quantity FP (rl p)
+GP(iI,P)=—A„, P may be expressed in the form of an

J. M. Blatt and L. C. Biedenharn, Revs. Modern Phys. 24,
267 (1952).

9 R. G. Thomas, Phys. Rev. 81, 148 (1951);88, 1109 (1952);
97, 224 (1955)."Tables of Coulomb Wave Functions, National Bureau of
Standards Applied Mathematics Series 17 (U. S. Government
Printing Once, Washington, 1952), Vol. 1,

The notation and application of this result is discussed
in Slatt and Biedenharn' and in many other places too
numerous to detail. The relevant features for the present
discussion are the total energy shift, 6&, and the total
width, 1),.

The total energy shift, Az, is composed of the partial
shifts,

(2)

where the sum i extends over all (open or closed)
channels. The partial shifts Az; are determined' by:

integral:

A p=2p I Cse
—'&*Q(s)

0

Q(s) =exp(2iI tan 's)(1js')'

(
X2Fi( —

&
—iiI, —1+iiI, 1;

1+s'&

(a proof of this is included in an appendix for con-
venience).

It will be seen immediately that the integrand is
everywhere positive and real. " It follows that the
penetration factor is positive; and is an increasing
function of p, since BA/Bp is everywhere negative. In
s, similar fashion one sees that BA/Bl and BA/BrI are
both positive, so that P decreases monotonically with
both l and it. Since Bg/BE is negative, the result that
dP/dE is always positive also follows at once

(1) Shift Function

To draw conclusions for the shift function is not quite
so trivial as in the above case for the penetration factor.
Consider first the variation with p. An alternative form
for A is useful here:

f
A„, P=1+ dse '&'Q'(s), Q'(s)=dQ/ds. (10)

The function Q' is again everywhere positive and real."
Using this, we 6nd:

(C/Cp) (SIP) = sA '[(A')'(A')' A'(A') —"] (ll).
Using (10), the bracket may be written:

]=4
i

se—'*Q'Ck
i
—

(
e
—'~'Q'ds

i

t' t', 'I' t'
t

)

' e-'~*s'Q'dz
~

—4(A')" (12)
l
( t

The term in curly brackets is everywhere negative.
To see this, we write this term formally as a double
integral:

f
( ) =

J J
dxdye '&& +»Q'(x)Q'(y)y(x —y). (13)

This double integral, however, is symmetrical in x and

"The series for the hypergeometric function converges abso-
lutely over the range of integration, so that it is permissible to
draw such conclusions from a termwise examination of the series."It is an immediate result that (A')'= (d/dp) (A') is negative
everywhere and behaves oppositely to A2.
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y. Upon making this explicit, one finds (A., P)'~(GP)', the limiting form for S is readily
obtained from the results":

~ ~ ~

which is now obviously everywhere negative.
As (2')"&&0, the result now follows that

(15)
where

(did p) (S/p) ~&o
(2l+1)!Ct(si)=2'e '*"&lF(l+1+irt) l,

X=pg=k 'ZgZ2e'Ma
(23b)The behavior of S with respect to changes in g is

more involved to examine. Use the form in Eq. (9)
and symmetrize the results. One finds and E denotes the modified Hankel function. As a

result, one finds:

r

dxdye ')'t'+»Q'(x)Q'(y)(x —y)' (14) Gt(rt, p)~2(2)))'+tp '[(2l+1)!Ct(rt)j '

&«.t+.([»j'),
Gt'(n, p)~—2(2)t)"'*P ' 'L(2l+1)!Ct(n)j '

~(ll~ + ([»I')+(2) )'*It ([»j*'))

=A—4 ~ dxdye '&'+»Q(x)Q(y)M(x, y),J, J,
~(x,y) = (x—y) [(dldn)»(Q(x)/Q(y)) j

S,, ~S,, t'"=l+(2) ) Itst([»3 )/&st+r([»3') (24)

The behavior of this limiting form of the shift function
is indicated by:

The burden of the proof is that the sign of the term in (a)
brackets varies as sgn(x —y).

l+X'/l, lW0
l—2X' l 2X, 1=0,

as )—+0

(25)

S„,t to! (2)(.)i

as X~~. (26)s(lnQ), 8=2 tan 'x+ (ln 2F1), (17)
Bg 8'g

and clearly sgn(tan ~x—tan ~y) =sgn(x —y), so that only the sF&
is of concern. The relevant quantity [abbreviating eF&( ) by Fg,
1s:

Introduce now the series definition:

It is easily shown that S„,~&" is a monotonically
increasing function of A. .

From the general results above that S/p decreases
for increasing energy, it is clear that zero energy should
yield a maximum for this quantity. It is not surprising
then for S to be also large at zero energy. One notes
that, in general, S cumeot vary monotonically with
energy; for, if this were true in general it would imply
(using previous results) that behavior with increasing
tt and Z should be everywhere opposite while the abov—e
zero-energy limit shows that here they behave similar/y.

«()=r .( ",),
c =(n!) s( t+t7t)„(—t irt) &~—0,— (19)

«()»() «()»(&) e (
' )"( y' )- a

( (.)

To see this, we note that the q derivative of lnQ contains two
terms, (b)

Noting now that
8

sgn—ln(c /c ) =sgn(n —m),

1+x2 1+y' 1+x2 1+y2

(d) Special Case of Z=O

The general formula of Eq. (9) allows an interesting
result to be derived for the neutron case. Using Kum-
mer's transformation,

we find that
=sgn(x —y) sgn(n —nt), Q(s) = sFr( —l, l+1, 1; —s'), r)=O. (27)

8 F(x)
sgn—ln =sgn(x —y),

a& z(y}
and therefore BS/Bq &~ 0.

Combining the p and p dependence yields the result
that

This function is now a polynomial in z, with l+1
positive terms. Integrating termwise, we 6nd

Ao, P=sFo(—l, l+1, rs,' —p '),

where the 3FO is defined by the terminating series,

(d/dZ)(S/ ) &O. (22)

The variation of S with / is apparently more compli-
cated, for similar results have not been obtained for
g~0.

sFo(''')= 2 ( l) (l+1) (s) (sst') '(—)"p '",
m=o

(u)
—=I'(a+sst)/r (a).

(29)

(c) Limit E=O

The general form Eq. (9) is quite unsuited to investi-
gate the limit E—+0+. Since, however, A„, ~'—&G~' and

'3 Erdelyi, Magnus, oberhettinger, and Tricomi, Higher Trans-
cendental Fttnctt'ons (McGraw-Hill Book Company, Inc. , ¹w
York, 1953},Vol. 1, Chap. VI. The result is originally due to
Breit and co-workers: Yost, Wheeler, and Breit, Phys. Rev. 49,
174 (1936). See also j'. G. Beckerley, Phys. Rev. 67, 11 (1945).
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IV. MONOTONIC PROPERTIES FOR
NEGATIVE ENERGIES

The shift factor is given by Eq. (5); it is convenient
to write this as

S„,)& &= —1+i e &'Q(s)dk i

00

rX ~„'~, + .—'Q'(.)d. (»)
1

fs 1) "—
Q(s) = (s' —1)'I

I)
Using methods exactly as in Sec. III, and omitting

for the moment the case 1=0, g =0, we 6nd that

dS( ) , ( t."e-"Q«l
~ d*dye

—~'+ ~

&J )
(32)

&& Q(~)Q(y)~(~,y),

Jif (*,y) = (~—y) L~Q'(*)/Q(~) —yQ'(y)/Q(y) 7.

It is easily shown that for x, y&~1, sgn3II(x, y)
=sgn(y —x). It follows that dS' &/dp&~0, upon noting
explicitly that for 3= 0, p =0 the result is also true.

In a similar fashion, the relevant functions 3II(x,y)
being elementary, one sees that BS& &/ojrI &&0 and
BS& '/Bl&~0.

Since now an increase in either p or q increases 5& ),
it no longer follows that S~ & is monotonic in E.

For g=0, the shift factor 5|: ' has the simple form of
a ratio of polynomials. '

S t' o&= p+'gl(i+1) poFo(1 —l, l+2) —-'p ')/
oFo(—l, l+1; ——,'p '). (33)

V. THRESHOLD BEHAVIOR

The threshold behavior of the penetration factor has
been extensively discussed in reference 5, and need not
be repeated here. The results of the .one-level approxi-

~4 Erdelyi, Magnus, Oberhettinger, and Tricomi, Higher Trans-
cendental Iilnckons (McGraw-Hill Book Company, Inc. , New
York, 1953), Vol. 1, p. 264, Zq. (5).

This series for Ao, ~' gives a simple prescription for
the penetration factor, and is ideally suited for a
machine calculation.

The shift function now takes the form:

So, g=-', l(l+1)p 'oFo(1—l, l+2, —', ; —p
—')/

oFo(—l, l+1, 'g, —p '). (30)

This shift function (in a manner similar to the proof
for the variation with g, above) can be shown to be
monotonically decreasing for p, and therefore E. In
addition, one may also show that So, )+].~~ 50, l.

mation are in complete accord with the general behavior
shown by Wigner. 6

Let us consider now the shift factor, for a situation
where the threshold channel, t, is neither an entrance
nor an exit channel. According to (2), the total shift
h~ will involve the shift, Aq~, of this channel as the
energy varies across threshold.

Now for positive energy, in the vicinity of F= 0, if
p&0, the amplitude 3„,&' is essentially determined by
GP, since (F/G) e '~o((1, Very near zero energy,
therefore, 5 is completely determined by the irregular
function G~. We may therefore use for 5'+~ the form:

8= p(F+i—G)'/(F+iG) = —pI"/I', (34)

which for very near zero energy is equivalent to the
correct S. But 8 is just the form which continues into
5& ); hence 5&+) and 5' ' continue correctly into one
another as functions of E&. To see, however, that the
variable is really E, instead of &, we note that for
positive energy S—+—pG&'/G&, and this is an ence
function of k (kg=constant). Thus, across zero energy,
S~+' goes smoothly into 5& ) as a function of E, for p&0.

For the case where p =0, we can apply a variant of
this argument directly, upon noting that the irregular
function now dominates the regular function by the
factor k"+'. The irregular function is, as before, even
in k; thus the previous argument shows that the
functions 5&+' and 5' ) are the same functions of k' up
to order k"+'. Hence for E=O, S is continuous to l
derivatives in the energy.

For p =0, the shift functions are ratios of polynomials.
Consider, for example, the ease l=0.

So, o&+&=0, So, o& &=p=ka= (2&a'/k')'~B~ '*. (35)

Thus as the energy decreases across this threshold, the
total shift, d)„shows a discontinuous derivative. For
the general case, Wigner has shown' a cusp at threshold
is possible. Recently, Breit' has given a general proof
that the cusp behavior may be modified, for the general
case, so that the slope on both sides of the singularity
may have the same sign. (To use Breit's descriptive
phrase, the curve is like "the central portion of the
letter S turned on its side"). We see that the one-level
approximation yields a not unreasonable compromise
between these two extreme possible behaviors, and
appears to be satisfactory as an approximation.
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APPENDIX

The function I"=F+tG is given by:
W„,„(s)W„,„(i)= [r(1—~—X)]-t(g)o+he-h&~r&

I' t (n,p) = [r(I+I—t'n)/r (I+I+tg) )'
X egw i(t+1—gs)W. (2sp)

where 8' is a Whittaker function. Thus,

A„ ts= I I"*=a & W, „, t+*, (2ip)W, „ t+;( 2—t'p) .(A-2)

However, we have the relation"

where

XsFr(s —tt+tt, ,' P.+-tt—; 1—tt —lt; O)dt, (A-3)

t(s+f+t)

(s+t) 0-+t)

's W. Magnus and F. Oberhettinger, Formrdas artd Theorems for
the Special FNnctioas of Mathematical Physics (Chelsea Publishing
Company, New York, 1949), p. 91.

Introducing values for the various parameters, ~, X,

and employing Kummer's relations for the hyper-
geometric function yield the result given in Eq. (9).
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Resonance Scattering of Slow Neutrons on Indium*
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(Received May 29, 1957)

The scattering of slow neutrons by indium was observed by using a crystal spectrometer as a mono-
energetic neutron source. Thin scattering samples were placed in the neutron beam with the plane of the
samples at a small angle to the incident beam. The samples therefore appeared thick for the transmitted
neutrons but thin for neutrons scattered at right angles to the direction of the incident beam. A measurement
of the scattered and the transmitted neutrons gives o.,/oq. The total cross section o~ was also measured in
the energy range from 0.3 to 11 ev and the value of o., then computed. Both the total cross section and o,/o &

results could be well matched to the Breit-Wigner formulas from 0.3 to 3 ev with the same set of parameters,
assuming that the spin of the compound state in In"' for the 1.456-ev level was 5. No determination of the
spin state of the compound nucleus could be made for higher levels.

I. INTRODUCTION ing cross section, o-, =capture cross section, O.g=total
cross section, E=energy of incident neutron, Ep= reso-
nance energy, 2+Kp=neutron wavelength at resonance,
I' =partial width for neutron decay, 1 ~=partial width
for electromagnetic radiation, I'= r„+r7= total width
of resonance, R~ ——radius of nucleus for resonance inter-
action, and R~~ radius of nucleus for nonresonance
interaction.

'HE Breit-Wigner single-level equation gives the
variation of scattering, capture, and total cross

sections with the energy of the incident neutron. These
formulas are given in Eqs. (1), (2), and (3).' In Eqs.
(1'), (2'), and (3') are presented alternative formula-
tions which abbreviate certain groupings of the primary
parameters by expressions which are convenient for
analysis. 0 pF I(&—&o)

o.,=o.„+
4(E—Es)'+r' 4(E—Es)s+r'4sglto'r ' 16rrgher Rtt(E &o)—

o,=4srgRtt'+ +
(g—Eo)'+r' 4(E—go)'+

(Ep )
'* 4vrgltp'r„I',

0 8 ] 4(E—Es)'+I'

+4sr(1 g)RNtt', —(1)

(2) &t =&a+a c,

(2')

(3')

t= os+ oc)a

where the symbols represent the following: o-,= scatter-

*This work partially supported by the U. S. Atomic Energy
Commission.' J. M. Blatt and V. F.Weisskopf, Theoretical Nuclear Physics
(John Wiley and Sons, Inc., New York, 1951).

where
o„=47rgRtts+4rr(1 g)R tts, —

~„r'=4 glt,s(r„/r)'r',

~„rs=4 gz,s(r„/r) (r„/r)r',

I= 16sgksRttr „.


