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Numerical Calculation of the Wave Functions and Energies of the
I 'S and 2 'S States of Helium*
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An exact iteration method for obtaining solutions to the eigenvalue problems of quantum mechanics is
used as the basis for developing a numerical iteration scheme for the approximate solution of such problems.
The connection between an approximate analytic iteration method and the standard variational method
is made and the former method is applied to the 1 'S state of He. The wave functions so determined are
linear combinations of products of hydrogen-like wave functions. The best value of the energy obtained
with twenty parameters is E(1 'S) = —2.900938 au. By using the theory of Gaussian quadrature and least-
squares approximation, a systematic transition from an exact iteration method to the numerical iteration
method can be made. The resulting numerical scheme is applied to the 1'S and 2'S states of He. The
energies obtained are E(1 'S) = —2.903443 au. and E(2 'S) = —2.174823 au. The 2 'S wave function yields
a He' hyperfine splitting v=6664 Mc/sec, which is lower than the experimental value by about 1'%%up. The
wave functions obtained are expressible in both the coordinate and momentum representations.

1. INTRODUCTION

K shall describe a numerical iteration calculation
~

~

~

~

~ ~ ~ ~

of approximations to the wave functions of the
1 'S and 2 'S states of helium. The method gives results
which are expressed as expansions in products of
hydrogenic functions. The resulting analytic wave
functions can be used to calculate upper bounds on the
energies of the states under consideration.

The numerical scheme derives from a general iteration
method' for solving eigenvalue problems arising in
quantum mechanics. This general method is presented
in a form that is convenient for our purpose. The
relationship between the iteration method and the
usual variational method is made explicit and it is
seen that the iteration method is equivalent to the
variational method when truncated discrete represen-.
tations are used. This latter fact allows us to study the
dependence of the solutions on a certain parameter
appearing in the iteration operator by doing a pre-
liminary twenty-parameter variational calculation of
the 1 'S state. The principal difhculties in setting up a
numerical method stem from the Coulomb singularities.
The numerical procedure used is derived from an
exact scheme by making use of the theory of Gaussian
quadrature and least-squares orthogonal polynomial
approximations. The results obtained are compared
to results calculated in other ways and possible improve-
ments in the method are discussed.

2. THE EXACT ITERATION METHOD

The methods which will be developed and applied
below are based on the following iterative procedure'
for obtaining discrete solutions to the eigenvalue

problem
Af=XBQ, (2.1)

where A and 8 are Hermitian operators operating on a
class of functions of certain variables x. Let fi, lt s, be
eigenfunctions of (2.1) belonging to the eigenvalues
X&, X2, , respectively. Let q 0 be an arbitrary function
in this class. Then

Pp=QXrfr (2 2)

If X1 is the eigenvalue of least magnitude and is discrete,
and if c1&0, then

q „=(A '8) "q p-+crit, /)i, " as n~~, (2 3)

and we have a method for obtaining the eigensolution
corresponding to the eigenvalue of least absolute value.

If the eigenfunctions of (2.1) can be divided into
symmetry classes, iterating on a po belonging to a
particular class leads to the eigensolution corresponding
to the eigenvalue of least magnitude within that
symmetry class.

Let the vector C„represent the eth approximation,
p„, in a particular representation and the matrices
A and B represent the operators A and 8 in that
representation. Then the iteration algorithm becomes

C„=A 'BC (2.4)

gi(r) =Psssifs(r). (2.5)

In the calculations to be discussed it has been found
advantageous to work with the operator A in one
representation and the operator 8 in another represen-
tation. Let the complete set of functions (fs(x)) define
the f representation and the complete set (gi(x) )
define the g representation. Let S have matrix elements
such that

*This work is based on a thesis submitted by D. H. Tycko
in partial fulfillment of the requirements for the degree of Doctor
of Philosophy in the Faculty of Pure Science, Columbia University.

'l Present address: Nevis Cyclotron Laboratory, Columbia
University, Irvington-on-Hudson, ¹wYork.' L. H. Thomas, Phys. Rev. 51, 202 (1937).

Then the iteration algorithm can be written as

C =S(A') 'StBC. i, (2 6)

where A' represents A in the g representation, B, C„,
369
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x*(p,)Ox (y,)dr
(x,ox)

(x,x)

(2 7) (o)= (2.20)
where P(r;)—=P(ri, r2, r„), is replaced by the scaled
equation, x*(y*)x(e')dr

and C„ i are in the f representation, and St is the Here, (8) and (Z) are averages of the operators 8 and
Hermitian adjoint of S. g evaluated according to the formula

When applying the iteration method to atomic
problems' the Schrodinger equation,

where

and

(~+b3)x(y') = —&~x(e') (2.8)
This choice of X is equivalent to making the virial
theorem hold exactly in the state f(r;).

(2.9)

3. VARIATIONAL CALCULATIONS
n g ri

&=Z ——+ 2—
1 pi s)g=l pij

(2.10)

in the coordinate representation. g is the identity
operator and b is an arbitrary positive number. For
bound states, x(g,) must vanish at infinity. If xz(y;) is
an eigenfunction of (2.8) belonging to the eigenvalue'
Xy&0, then

Let {f~(y;)) be a set of expansion functions which
are chosen to satisfy certain boundary conditions
imposed by the physical problem. In the standard
variational method, approximations to the hrst S
bound state wave functions are obtained in the form

y, (r;) =xi, (r~/Xi, ) (2.11)
by solving the algebraic eigenvalue problem

is an eigenfunction of (2.7) belonging to the eigenvalue

Ep= b/XPg. — (2.12)

r, =Ay;, (i=1, e) (2.13)

For any P, the connections are made by using the scale
change

1 1—Z+—8 C;=E,3',
X' X

(-' 2)

where the vector C; has elements C,i and g, 8, and 3
are S)&S matrices having elements

and the corresponding relations

2=x'T,
and

(2.14)

(2.15)

Zik' —(fk,Zfk'), etc. (3.3)

The quantity X is a parameter which is varied until the
lowest value of El is found. '

Consider the eigenvalue problem

If Xi is the eigenvalue of (2.8) of least magnitude and
is positive, then iteration with the operators

A =2+A and 8= —I (2.16)

yields the eigensolution of (2.8) belonging to X& and
thus, through Eqs. (2.11) and (2.12), the eigensolution
of (2.7) corresponding to the lowest energy, E&.

Generally, we do not obtain exact solutions to Eq.
(2.8). For example, after a finite number of the above
iterations we have a function x (y;) which is an approxi-
mation to the eigenfunction xi(y;). We seek an approxi-
mation, f(r;) to the eigenfunction ziti(r;) of Eq. (2.7).
The variational principle leads to the solution

0'(r') =x(r'/~ ) (2 17)
where

(2.18)

The corresponding value of the energy is given by

E~=—'()'/4). (219)
2 If P q (0, (2.11)and (2.12) form an eigensolution to the problem

(T—~)0=&0.

(++b~~)d, = —X,8d, , (3 4)

where d; is the eigenvector belonging to the eigenvalue
X; and b is a positive number. If (X,,d;) is a particular
solution of (3.4), then E;= —b/XP, C;=d; is a solution
of (3.2) with ) =X,. In particular, if (X&,di) is that
solution of (3.4) such that ~X&~ & ~X;~, j=1,
then Ei —— b/Xi2, Ci ——di is—that solution of (3.2) with
A, =Xl such that El &E,, j=1, , S. Thus, in cases
where only the ground state is of interest, we may
replace (3.2) by (3.4) and solve for the solution corre-
sponding to the eigenvalue of least magnitude. The
above iteration scheme can be used to obtain this
solution. The parameter b can be varied to give the
lowest value of El, a procedure which is equivalent to
varying ) in the standard variational method.

This reformulation of the variational method ap-
proaches the iteration scheme for obtaining an exact
solution as E~~. The solution would be obtained in
the f representation.

' E. C. Kemble, The Fundamental Principles of Quantum
Mechanics (McGraw-Hill Book Company, Inc. , New York, 1937),
p. 408.
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In general, the representatives of the operators and
vectors in function space are matrices of infinite
dimensions. In practice, when carrying out the iteration
(2.6) with discrete representations, it is necessary to
use only a finite subspace spanned by Sbasis functions.
Such a calculation is equivalent to a variational
calculation

A calculation using continuous representations can
be done exactly if the implied operations can be carried
out analytically. If numerical methods must be used,
the introduction of a finite grid with 6nite intervals
corresponds to the truncation of the matrices in the
discrete case and evaluation of the matrix elements by
numerical integration. Because of the latter, such a
calculation can be considered as an approximation to a
variational calculation.

4. A PRELIMINARY VARIATIONAL CALCULATION

In order to Study the dependence of the solution on
the parameter b in the case of the 1'5 state of He,
iteration calculations using truncated discrete repre-
sentations were carried out for several values of b.

The iteration operators for the helium problem are,
in the coordinate representation,

XX10 '
(X)X 1O—(~)
@AX10

+M

1.000

5.434401
9.971750
3.401082
5.863869
2.900032

0.875

6.282075
8.731157
3.182753
5.486544
2.900508

0.750

7.508409
7.488355
2.947753
5.080720
2.900921

0.500

12.62438
5.014177
2.412121
4.157484
2.900938

lntng c(l,ni, n2)

011
021
022
031
032
033
041
042
043
044
122
132
133
142
143
144
233
243
244
344

1.0000000—0.0585522—0.0969924
0.0576329—0.0151173—0.0149084
0.0149173—0.0005056—0.0067053—0.0048915—0.0812585—0.0344793—0.0292201

—0.0097641—0 0142989—0.0094764—0.0136360—0.0092256—0.0076769—0.0021258

1.0000000—0.1245153—0.0869617
0.0675673—0.0112846—0.0143533
0,0075985
0.0002312—0.0063235—0.0047899—0.0853009—0,0305090—0.0276061—0.0072174—0.0131207—0.0090110—0.0154477—0.0096897—0.0080353—0.0027079

1.0000000—0.2003958—0.0643140
0.0868166—0.0095875—0.0141389—0.0028465
0.0015315—0.0058258—0.0046856—0.0898427—0.0251599—0.0262791—0.0045348—0.0118713—0.0085967—0.0176588—0.0100061—0.0083944—0.0035162

1.0000000—0.3963826
0.0493882
0.1739854—0.0325059—0.0085636—0.0452116
0.0125124—0.0056533—0.0044525—0.1008847—0.0076564—0.0268149—0.0000271—0.0083956—0.0082796—0.0239524—0.0094123—0.0093387—0.0067125

TABLE I. Results of the 20-parameter variational calculation
for the 1'S state of He. The normalized wave function is
p (r1 r&,8») = X & 2 C(l,n1,n~)8n1l(r1/P ~)Rn2l(r2/P ~)Pl (cose12).

A =g+bg = —
—2,Vi2 ——2' V'22+ b,

2 2 1

P1 P2 P12

(4.1)

has matrix elements
(4 2)

(ie,e2I ~
I
t'e, 'e2')

The primary set of basis functions was the complete
set of functions

(2 2 1)
finin2I + Ifi'ni'n2'dgid82. (4.6)

~Pl P2 Pi2~

finin2(pi, p218i2) =Bnii(pi)Bn2i(p2)Pi(COS8i2), (4.3)
A' and S are determined by the simultaneous diagonali-

where Pi(x) is the /th normalized Legendre polynomial zation of the two matrices P and 3 having elements
and 812 is the angle between p1 and I02.

(~e,e2I ZI ~'e, 'e2')
2' (e—l —1)!'&

e !'p'~-i(p) =
(e+/)! e(e+l)! . fin]n2( 2V'i 2V'2 )fl'ni'n2'd8id82& (4.7)

y I 2 l+1 (2p) (n =3+1, ), (4.4)

where J. i(x) is the usual associated Laguerre poly-
nomial. 4 Only flnin2 such that 0&1&3, 3+1&ei&4,
and l+1&e2&4 were used. Thus, by a variational
calculation, we determined the coefficients C(l,ei,e2) in
the expression

3 4 4

X(pi,p2,8») = Z
l=o n1=l+1 ng=l+I

XC (l)ei,e2)f inin2 (pi, p2)8i2), (4.5)

where C(l, , e)2=eCi(l, ei,e2). These coefficients were
calculated using the iteration algorithm (2.6). Here, B

4 The bar over this function refers to the particular normali-
zation used here.

(leie2IQ I
l ei e2 ) =

J
finin2fi'ni'n2'dpid82, (4.8)

respectively. With the operator A represented by a
diagonal matrix, it was possible to change the parameter
b easily.

A program was written for the IBM 650 which
carried out an iteration in about two minutes. A
solution was reached, for a given value of b, in 100
iterations, and this was done for b=1, 0.875, 0.75, and
0.5. The quantities (Z), (8), X~, and E2r were calcu-
lated from each y(pi, p2, 8i2). The results of these
calculations are given in Table I. We note that the
energy is quite insensitive to variations of b in the
neighborhood of the minimum and that the best value
of b is close to b=0.5 in the approximation used here.
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5. NUMERICAL ITERATION CALCULATIONS

I The numerical iteration method is based on an exact
scheme in which continuous representations are used.
The operator —5 is taken in the coordinate represen-
tation and (Z+gb) in the momentum representation.
If X„(s.i,s-2, 0i2) is the eth approximation to the solution
of the equation

(&+b3)X=—&X

in the momentum representation, then X~i(s'i, s 2, 0i2)
is given by

Xx+1(&ly7r2&O12) (2~1 +2~& +b)
(27r) '

and define momentum-space radial functions

(sinq q'
F„i(q)F„i(q) i i dq =bee'.

~o I cos'q &

(5 &)

The E„& and F„& are related by the Fourier trans-
formation'

e(n —
&
—1)! icos'qF,(&) —( 1)nyl+ii~

~(e+l)! sin q

Xsin'+'2qC„ i i'+'(cos2q), (5.6)

where the C„" are Gegenbauer polynomials. ' The
F„i(q) satisfy the orthogonality relation6

where
Xg.(pi,P~Pim)dpidy~, (5 1)

1 f2 2 1$
g (Pi P2 0»)=,~

+
(2m)' &pi P2 Pi2

X
J

exp[i(~1' $1+~2' p2)7

XXn(irlp 2)O12)d'iild~2. (5.2)

O~i2 is the angle between mi and m2. This application of
the mixed representation scheme leads to a considerable
reduction in the number of arithmetic operations
involved in a numerical iteration. This is because of the
separability of the Fourier integrals. '

In carrying out the iteration defined by Eqs. (5.1)
and (5.2) numerically, special care must be given to the
regions near the singularities at p~=0, p2=0, and

p» ——0. By introducing expansions in terms of
hydrogenic functions, these singularities can be handled
analytically. I et

2'+' -(ii—i—1)! '
R.i(P) = (—i)'

(e+i)! (e+i)!
X~ 'P'L-+i""(2P) (5 3)

(2m)'F„i(q)Pi(cosO) =
(2s) l

exp( i~ —y)R„i(p)Pi(cosg)dy. (5.8)

(7rl 'ir2 O12)

l=0 n1=l+1 n2=l+1
a„(l,ni, n2) F ni i ((p,)

XFn2 i (p2)Pi (cos0i 2) ~ (5.9)

Then, using (5.4) and (5.8),

(2)F;i] —/F, X„
EP, )

a.(l,mi, ii2)
=Sec Iplp Fili(pl)F52~(+2)

XPi(cosOi2) —=v„(q $ q 2 O]2). (5.10)

Consider the process of multiplying the Fourier
transform of X„(s.ip.2, 0») by 2/pi and then taking
the inverse Fourier transform of the result. I,et F; be
the Fourier transformation operator for the ith electron
and suppose X„has been expanded as

These functions satisfy the scaled hydrogen equation, The 2/P2 term is given by

2s
(—V'+1)R„ii»Pi(cos8) =—R„i(p)Pi(cos8), (5.4)

P

2
F2Xn =~vn(p2, pi, +is) &

P2
(5.11)

and the orthogonality relation

j" R. *(P)R- i(P)PdP=b-'
0

We make the transformation

~;=tanq;, (0 & q, &-,'vr), (i=1,2),

' L. H. Thomas, "Lecture Notes on the Numerical Solution of
Differential Equations" (unpublished).

where the positive sign refers to '5 states and the
negative sign to '5 states.

Consider the 1/P, ~ term. If the origin of coordinates
is taken at the position of electron 1, then y» is the
position vector of electron 2 and the calculation could
be handled as above. Let di =—exp(i~2. pi) and

' W. Magnus and F. Oberhettinger, Formulas and Theorems for
the Specia/ Functions of Mathematica/ Physics (Chelsea Publishing
Company, ¹wYork, 1949), p. 76.

B. Podolsky and L. Pauling, Phys. Rev. 34, 109 (1929).
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p (yl y2 O~12) be the inverse Fourier transform of TABLE II. Results of the energy calculations for the 1'5 and
2 'S states of He (in atomic units). The wave functions are of the1 p12 times the Fourier transform oi X„.Then form:

14 15 15

p, =p 'd ~p ~—p2dgpgXn.
p»

$(rl, r2,812) Z Z Z A (f tE112)
(5.12) 1=0 nI=l+I n2=l+I

r2XRnIl —Rn2/ —P~(cos812),
~M ~M

The Fourier coefficients of d~P~X„are evaluated in the
usual way, the F2 '(1/p»)F2 operation is performed as
indicated in Eq. (5.10), the dl ' operation can then be
done immediately, and the P& ' operation is accom-
plished by first transforming to Fourier coefticients and
then summing over the F 1(pl) functions.

The iteration is completed by calculating

7tm+1(2rlp 2y(-)12) (22rl +22r2 +b)
X (Pn(0'1& &PsqO12) ~&e(W q2glqO12)

—p-(~1 ~2 o»)) (5 13)

This exact scheme is converted to a numerical
procedure by truncating the infinite series, replacing
the continuous variables by discrete variables, and
evaluating the Fourier coefficients by numerical
integration. By the theory of Gaussian quadrature, '
it is seen that replacing a continuous p variable by the
E zeros of I.&(p), a continuous x=cose variable by
the X zeros of I'iv(x), and a continuous p variable by
the Jll' points k2r/2(X+1), k=1, 2, Jll', preserves the
orthogonality relations for the functions E„&, I'&, and

when the integrals are replaced by Gaussian
quadratures. Consequently, the infinite series used' in
the exact method become least-squares polynomial
approximationss in the numerical method if the coefE-
cients are evaluated by replacing the integrals in the
exact calculation of Fourier coefficients by the ap-
propriate Gaussian quadratures. Since the numerical
scheme utilizes the same orthogonal functions that
appear in the exact calculation, the properties of these
functions, namely Eqs. (5.4) and (5.8), can be used to
take care of the singularities.

The method outlined above was used to calculate the
coefficients A(l, 221,222) in the approximation

N—]. N

X(pi,p2,0»)= 2 Z Z A(~, ~1,~2)
l=o nI=l+1 n2=l+1

X

Anil�(pl)Rn21(p2)Pt(cose12)

(5.14)

to the solution of the scaled helium equation,

2 2 1
(—21 Vis ——21r 22+21)7~=)~I + IX. (5.»)

l pl p2 p12)

Both the 1'5 and 2'S states were treated. For each
solution obtained, a value of

F. B. Hildebrand, Introduction to XNmerical AnaLysis
(McGraw-Hill Book Company, Inc. , New York, 1956), Chaps.
7 and 8.

where the A (l,n1,n2) were determined by numerical iteration.

(2/~ )
(1/
—(~)
(Z) X 10
~M X 10

Eexp

t 1S

1.4015 48539
0.3924 38253
2,4106 58825
5.0037 80598
4.1513 80151
2.9034 42635
2.903722

2 gS

1.1099 72518
0.1307 78256
2.0891 66780
5.0172 10624
4.8030 73332
2.1748 22905
2.17526

was calculated using Gaussian quadrature. For an
exact solution,

) =)ll= (—281)

The following results were obtained:

(5.17)

1'S

2'5

14
15
15

0.414885
0.414899
0.479316

XI

0.414961

0.479442

In calculating )11(1 'S), the value' E(1 'S) = —2.903722
a.u. (atomic units) was used. )11(22S) was calculated
from E(2'S) = —2.17526 a.u. which is the sum of the
experimental binding energy, " I(2 'S) =0.175260 a.u. ,
and the ground-state energy of He+.

Using the A(l, 11,222) calculated in the Jll'=15 cases,
the quantities (Q) and (X) were calculated exactly.
Upper bounds on the energies of the two states under
consideration were calculated, along with the corre-
sPonding values of )ljr, according to Eqs. (2.18) and
(2.19).These results are displayed in Table II.

All the calculations indicated above were done on the
Naval Ordnance Research Calculator (NORC). One
iteration toward a wave function required about five
minutes. Seventy-seven iterations were necessary in
the '5 case and 192 in the 'S case. The energy calcu-
lations were completed in about three hours.

T. Kinoshita, Phys. Rev. 105, 1490 (1957).' Atomic Energy Levels, edited by C. E. Moore, National
Bureau of Standards Circular No. 467 (U. S. Government Printing
0%ce, washington, D. C., 1949)."E.A. Hylleraas and J. Mitdal, Phys. Rev. 103, 829 (1956);
J. F. Hart and G. Herzberg, Phys. Rev. 106, 79 (1957).

6. DISCUSSION OF THE RESULTS

The variational calculations which have been done
on the helium problem fall into two categories. First,
there are the Hylleraas-type calculations in which the
basis functions involve the variable r» explicitly.
Recent calculations' "using this approach have yielded
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0
1
2
3

5
6
7
8

14

0.412023142
0.394908265
0.393108101
0.392667464
0.392519315
0.392464504
0.3924~967
0.392439664
0.392438488
0.392438253

(2/Pi+2/P2)

2.80666963
2.80331125
2.80313631
2.80311071
2.80310244
2.80309959
2.80309796
2.80309733
2.80309715
2.80309708

0.497958538
0.499958414
0.500245151
0.500325607
0.500358421
0.500370988
0.500376246
0.500377679
0.500377987
0.500377806

2.87892030
2.90044371
2.90269480
2,90322771
2,90337423
2.90342650
2.90343911
2.90344204
2.90344265
2.90344263

TABLE III. Results of using successively higher Legendre
polynomials in the 1 'S wave function

15 15

x(pi, ps,Sis)= Z Z Z A(l, rti, rts)
l=0 ni=l+1 n2=l+1

XRn&i(p&)Ansi(ps) I'i(cosgxs),

when computing the energy Z= —4(8)'/(Z).

Using the wave function obtained for the 2 'S state,
we have calculated the hyperhne splitting. With the
anomalous moment and reduced mass corrections
calculated by Teutsch and Hughes" we get v=6664
Mc/sec, which is lower than the experimental value by
about 1%.

Examination of Table II shows that the numerical
iteration method yields a 1 'S energy that is about 2.5
times more accurate than the 2 'S energy. The method
is expected to be more accurate for the ground state
because there is only one scale factor involved.
Physically, the difference in effective Z's seen by the
two electrons in the 2 'S case is not taken into account
in the exponential factors as it is in the variational
calculations.

In Table III we have listed the results of computing
the 1 'S energy from the wave function

ground-state energies which are essentially in agreement
with experiment. " The 2'S state problem has also
been studied from this point of view. " In this case the
calculated binding energy agrees with experiment to
about 0.02%%. Teutsch and Hughes" have used the
Huang wave function to calculate the hyperfine
splitting in this state of the He' atom and obtain a
value which is about 0.07%%uo from the experimental
value" of 6739.71&0.05 Mc/sec.

The second type of variational calculation uses trial
functions which are generally described as super-
positions of configurations (SOC)."The best value of
the ground-state energy obtained using this method

is that of Watson. He quotes the result E(1 'S)
= —2.902738 a.u.

The calculation presented in the last section can be
considered as an SOC calculation in which the
coefFicients are determined by an iteration method.
Our 1 'S result is 0.0007 a.u. lower than that of Watson
and gives added evidence that the SOC approach can
be used to obtain accurate solutions to many electron

problems.

"See S. Chandrasekhar and G. Herzberg, Phys. Rev. 98, 1050
(1955), reference 12."E.A. Hylleraas and B. Undheim, Z. Physik 65, 759 (1930);
S. Huang, Astrophys. J. 108, 354 (1948).

"W. S. Teutsch and V. W. Hughes, Phys. Rev. 95, 1461
(1954)."G. Weinreich and V. W. Hughes, Phys. Rev. 95, 1451 (1954)."E.A. Hylleraas, Z. Physik 48, 469 (1928); C. Eckart, Phys.
Rev. 36, 878 (1930); G. R. Taylor and R. G. Parr, Proc. Natl.
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&5 Ss

X(pi,ps, ()rs) = Q Q Q A (l,rtr, es)
l=o ni=l+1 ng=l+1

X&art(pi)A~st(ps)Pt(cosg„) (6.1)

for successively higher values of I~. It is clear that
values of l greater than /=8 do not contribute more
than 10 " a.u. to the total energy. Furthermore,
contributions from l &5 did not increase the accuracy
appreciably. Green" has given as a lower bound on the
l~=0 energy the value —2.8792 a.u. which is about
0.0003 a.u. lower than our value. These facts suggest
that in order to obtain a ground-state energy with an
accuracy comparable to the experimental accuracy it
would be necessary to improve the radial least-squares
approximations by using more radial functions for a
given /. This would also require using more radial
points to preserve the orthogonality of the expansion
functions over the discrete space. The added labor
involved would be partially compensated by the fact
that the higher l values can be neglected.
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