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Low-Energy Inelastic Atomic Collisions*

PHILIP ROSEN
8'asbrouck Physics Laboratory, University of Massachusetts, Amherst, Massachusetts

(Received September 9, 1957l

An approximation method is described which is useful for finding inelastic collision cross sections for
atomic collisions at energies above about 1 electron volt near threshold. The method uses classical paths
for the atoms and the distance of closest approach which is determined from known interatomic forces.
The method is applied to the problem of finding the ionization cross section of helium-helium collisions.
The comparison of theory and experiment shows satisfactory results.

INTRODUCTION

A T present there does not exist a satisfactory and
convenient method for low-energy inelastic atomic

collisions, that is, a method for the almost adiabatic
region. It is well known that the Born approximation
applies only when the energy of collision is much larger
than the interaction energy between the colliding
systems. Furthermore it is required that the collision
time be much smaller than the characteristic time of
the atoms which is usually taken as h/AE.

Now at energies of the order of an electron volt the
path of an atom or molecule can be considered as
classical since its de Broglie wavelength is of the order
of 10 ' or 10 " cm, while molecular dimensions are at
least 10 ' cm. This fact has led to the semiclassical
theories of Gaunt' and Mott' who both use time-
dependent perturbation theory with the simplification
that vt=s. Here ~ is the velocity of encounter and s is
the distance along the zero impact parameter line. This
means that the path of the atom or molecule is a straight
line. This of necessity is true only at energies much
larger than the interaction energy between the colliding
systems. If we are interested in a theory for energies
near threshold where trajectories are not straight lines,
we must devise another theory.

ALMOST ADIABATIC CROSS SECTION

From time-dependent perturbation theory we have
for the amplitude of the Anal state'

1 ~' (Ef Eg-
ad, (t)= Vf;(t') —exp iI It' dt',

where V~; is the matrix element of the perturbation
energy between the initial state i and the final state f.
Suppose the perturbation starts at t=0 and then
decays very slowly because the atom or molecule has
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lost energy and is moving away very slowly. Then
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where p is the impact parameter. The relation between

p and R is

p V(R) p V(R)
1=—+, =—+

-,'P,V' R E'rel

Suppose we express the decay of Vf; as

vt, ——vt, (0)e
—";

then
Vf;(0) Vf;(0) n2 inca

at'( )= +
Et—E. Et—E n'+aP n'+eP

where
(e =' (Et—E,)/5.

For a slow collision, co)&a and

Vt;(0) Vr;(0) t'nq
at*( )=

Et—E; Et—E; iree

I at'(") I'—=
I vf*(o) I'/(Ef —E')'

Our next step is the choice of the distance between the
colliding systems at which one can say that the collision
has started. Our approximation is to choose the distance
of closest approach as corresponding to time zero. I'his
is because Vt, (R) is largest at the distance of closest
approach and falls off very rapidly with distance from
this point.

If we take R to be the distance of closest approach,
then the cross section for a process where the 6nal state
is discrete and no photons are involved is
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Here U(R) is the interaction energy between the
molecules or atoms.

If the final state is a continuous one, we need the
number of final states. For example, in the ionization
of a molecule by another the number of states will be

P pdP, dQ, /(29rI4) '

(here we use a box of unit length), P, is the electron
momentum, and dQ, = 29r sin8+8, is the usual solid angle.
The cross section will be calculated in the center-of-
mass system and the differential cross section will be

There is only one disadvantage in the case of helium.
The interaction energy for small R is only about 500
electron volts. Consequently we shall limit our cal-
culations to energies of the order of 100 ev in the center-
of-mass reference frame.

If we call the beam atom A and the target atom B,
we have for the perturbation energy:

4e' e' e' e' e' 2e' 2e' 2e' 2e'
+ + + +

R r~3 r23 ri4 r24 A3 A4 Bg B2

where

dp. =29r l i dF(R)PdP,
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I V, ,(R) I' P.pdP. dQ.

(I+P,p/2494)9 (29rh)'

where r;; is the distance between electrons i and j and

A, or B; is the distance from electron i to nucleus A or
B. Electrons 1 and 2 are assigned to nucleus A and 3
and 4 to nucleus B.For the state functions we shall use
atomic functions which are products of hydrogenic
functions. For simplicity we do not use symmetrized
molecular functions. Thus, for the initial state we have

Z q (Zq& ( Z
x-pl —~9 II

—
I

~ 'expl ——&9 I

ao ) &ao) & up
I (P,),„J'/29is—E„)—I,

where I is the ionization energy. We are neglecting dif-
ferences in the interaction energy of the molecule (Z11 f' Z 'l t'Z&1
between ionized and un-ionized states relative to I. To

Cap) E ap ) (ao)
find the total cross section, we integrate over solid angle
dQ, and dP, . The limits of P, are 0 to (P,), . (P,),
is given approximately by

which is the energy available in the center-of-mass
reference frame after ionization. For thig condition the
electron carries oR most of the energy.

In a particular application it is superior to use

U(R) =const e """+~

rather than to use the repulsive part of a Lennard-Jones
potential. The reason for this is that at high energies
one molecule essentially goes through another with the
impact parameter p equal to the distance of closest
approach. Under the latter condition our integrals will
diverge. The trajectories will be straight lines and our
method will not be useful. If the relative energy of
collision is an appreciable fraction of U(0), then other .

methods should be used. If, however, we are dealing
with an ion colliding with a neutral structure the latter
difFiculty would not exist.

(Zy& ) Z
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where Z=27/16 and ap is the radius of the first Bohr
orbit of hydrogen. For the final state with an A electron
missing, we take
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APPLICATION TO IONIZING COLLISIONS
OF HELIUM-HELIUM

Helium appears to be a good choice for calculation
because of its simple electronic structure. Also we have
the interatomic interaction energy4 ':

U(R) =577.4e '."~ electron volts.

4 This potential is an approximation of the author's potential
taken from Hirshfelder, Curtiss, and Bird, Molecular Theory of
Gases and Liquids (John %iley and Sons, Inc. , Nerv Ycrz, 1954).' P, Rosen, J. Chem. Phys. 18, 1182 (1950).

The normalization factor is almost 1/v2 because the
overlap between the two functions in P~ is very small

(it involves the integral Re'Ii/4, which we evaluate
later). For the removed electron we have to use a
simple plane wave which is normalized in a box unit
length.

Using the above functions, we lnd for the matrix
element

Vg; ——VZI I,—2I9—2Io+RIi(-', Ip —9I4)j,
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where
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+re lat ive (eV)

24.46(=I)
40
50
60
70
80
90

100

Eiab (eV)

48.92
80

100
120
140
160
180
200

o (A2)

0
1 ~ 10X10 '
2.09X10-2
2.85X10 '
3.42X 10-2
3,85X10 '
4.17X10-'
4.37X10 '

~Ro st agni (A2)

0,57X10 '
0.95X10 '
1.51X10-2
2.27X10 '
3.12X10 '
3.78X10 '
4.00X10 '

For the total cross section for ionization we find

TABLE I. The ionization cross section of helium-helium collisions
versus energy and comparison with experiment.
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Because of f(p), when the energy of atom A relative to
atom 8 is the ionization energy, the cross section will

be zero. Because atom A has the same mass as 8, the
threshold energy in the laboratory reference frame will

be 2I.
In Table I we have tabulated calculated results and

compared with the results of Rostagni' where possible.
The agreement between experiment and theory is satis-
factory. Furthermore it is extremely difficult to obtain
experimental results below 100 electron volts in the
laboratory reference frame. Consequently a theory near
threshold is a necessity if one requires a knowledge of
cross sections for the thermal ionization that takes place
in a shock wave, for example.

Another interesting aspect of this work is the possi-
bility of computing chemical reaction rates at high
temperatures by computing the cross sections. If these
results are then put into the form of the Eyring theory,
activation energies may be computed.

1 ( 2Z p ( Z
I =—1—«vl ——R II 1+—R

I
.

R E ao ) t ao

Because of the difhculty of evaluating I2, we shall
approximate as follows:
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Collecting results, we have

All the integrals except I& and Ip can easily be evaluated.
Both Ip and I4 are known from the treatment of the gl )I=, "Vl
hydrogen molecule. We find
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