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The anisotropy parameter E=X /E, = (m~~/mq) (r~~/rz) ' is determined from magnetoconductance
measurements in the temperature range 45'K to 300'K. If one uses the cyclotron resonance value for the
mass ratio IC, the magnetoconductance measurements give E,=1.0 for lattice scattering and X,)1 for
moderate amounts of impurity scattering. For strong impurity scattering, the data show that the scattering
cannot be represented by a simple relaxation-time tensor model.

1. INTRODUCTION

HE observed anisotropy of magnetoresistance in
e-type germanium' ' is due to the anisotropy

of the energy surfaces'' and the anisotropy of the
relaxation time. ' Herring and Vogt' have shown that
under some circumstances the anisotropy can be
described by a single anisotropy parameter which can
be obtained from magnetoresistance measurements.
This anisotropy parameter is the ratio of a mass
anisotropy parameter to a relaxation-time anisotropy
parameter. Since the mass anisotropy parameter is
known for e germanium from low-temperature
cyclotron resonance experiments, '" low-temperature
magnetoresistance measurements can be used for an
experimental determination of the relaxation-time
anisotropy parameter.

In this paper we report measurements of certain
galvanomagnetic effects in the temperature range 45'K
to 300'K. These measurements permit the calculation
of the anisotropy parameter for the case where lattice
scattering is the only significant scattering mechanism
and also for the case where both lattice and ionized-
impurity scattering are important. In order to make
quantitative conclusions about the relaxation-time
anisotropy parameter it is necessary to assume that
the mass anisotropy parameter in this temperature
range is the same as that measured at liquid helium
temperature. With this assumption we find from our
data that, if one uses the relaxation-time tensor of
Herring and Vogt, (a) the relaxation time is isotropic
for lattice scattering; (b) the relaxation time becomes
anisotropic for moderate amounts of impurity
scattering; and (c) the Herring and Vogt model fails
for strong impurity scattering, i.e., the data cannot be
described by a single anisotropy parameter of the
Herring-Vogt type.
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4 M. Glicksman, Phys. Rev. 100, 1146 (1955).'R. M. Broudy and J. D. Venables, Phys. Rev. 105, 1757

(1957).' B.Abeles and S. Meiboom, Phys. Rev. 95, 31 (1954).
7 M. Shibuya, Phys. Rev. 95, 1385 ~1954).

C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956); C.
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or
i(H, E)=S(H) E,

E(H, i)=T(H) i, (2.2)

where the elements of the conductivity tensor S and
the resistivity tensor T are functions of the direction
and magnitude of the magnetic field and, obviously,
S=T '.

Whether one measures conductivity or resistivity
depends on sample geometry. If current is passed
through a long thin sample so that the current is
parallel to the long dimension, then measurements of
different components of the electric field give directly
the elements of the resistivity tensor T. This long, thin
sample geometry is what is used for measurement of
the Hall, planar Hall, and magnetoresistance effects.
Conversely, if the electric field is applied across a short,
wide sample so that the electric field remains parallel
to the short dimension, then the measurements of the
different components of the current give directly the
elements of the conductivity tensor S. Such a geometry
is shown in I'"ig. 1. In such a sample the field will
always be normal to the electrodes if the sample is
thin compared to its other dimensions.

In the next section it will be shown that for the
analysis of our data, we shall be interested in the
determination of the diagonal elements of S. If the
magnetoresistance sample geometry is used, we can
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Fic. 1. Sample geometry used for direct measurement of
magnetoconductance. The shaded areas indicate the electrodes.
(General discussion is in Sec. 2 and the details of sample prepara„-
tion are in Sec. 4.)

2. MAGNETOCONDUCTANCE AND
MAGNETORESISTANCE

The relation between current density and electric
field in the presence of a magnetic field can be given by
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determine the elements of T and invert mathematically
to obtain the desired element of S; Alternatively, using
the other sample geometry we may determine the
desired element of S directly. Determination of an
element of S by direct measurement is more accurate
than by mathematical inversion of elements of T
simply because the latter technique usually requires
two or more experimental measurements, while the
former is, of course, determined by one measurement.
Further, in performing the mathematical inversion of
T it is necessary to take combinations of elements of T,
and the measurements of the different elements of T
do not depend upon the same sample dimensions.
Thus, relative errors in the determination of sample
dimensions can cause an error in the determination of
the conductivity-tensor element that is different for
each element of the conductivity tensor. On the other
hand, an error in the measurement of the sample
dimensions will cause the same relative error in all the
diagonal elements of S if these elements are measured
directly and the ratio of one element to another will

not be affected by the accuracy of the measurement
of the dimensions.

A sample with the geometry shown in Fig. 1 can be
used only to measure the diagonal elements of S. The
o6-diagonal elements cannot be measured directly
because the components of the current density trans-
verse to the field cannot be measured. The most that
can be determined is the set of elements of the sym-
metric part of S.

The coordinate system in which the elements of the
tensors S and T are most conveniently described is one
consisting of the cubic axes of the crystal with the
subscripts 1, 2, and 3 referring to the [100], [010],
and [001]axes, respectively. Superscripts will be used to
indicate the crystallographic direction of the magnetic
field. With this coordinate system, e.g. , S&2'" refers to
the effect of an [010]electric field and a [110]magnetic
Geld upon the current density in the [100]direction.

3. MAGNETOCONDUCTANCE ACCORDING TO
THE HERRING-VOGT MODEL

In order to use Boltzmann transport theory to evaluate
the elements of the conductivity tensor, it is necessary
to have a model that describes how the scattering
mechanisms tend to restore thermal equilibrium when
electric and magnetic fields are applied. The model
described in this section is essentially that of Herring
and Uogt' who represent the electron scattering by
means of a relaxation-time tensor with the same
symmetry as the energy surface.

The results of cyclotron resonance experiments'"
indicate that the energy surfaces for electrons in
germanium are ellipsoids of revolution about the [111]
axes. Near a given minimum the correct form for the
electron energy in terms of electron momentum is

where the subscripts refer to the directions parallel
and perpendicular to the appropriate [111] axis in
momentum space. Equation (3.1) suggests the defini-
tion of the mass artisotropy parameter,

K„=m~ &/m&. (3.2)
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Equation (3.4) suggests the definition of the relaxatiort
time artisotropy parameter,

(3.5)

In this paper it will be assumed that while 711 and v-&

may be energy-dependent, the parameter E, is in-
dependent of energy.

It can be shown that with the Herring-Vogt scattering
model there will be no longitudinal magnetoconductance
in a single ellipsoid when the electric and magnetic
fields are parallel to a principal axis of the ellipsoid.
The conductivity of the crystal as a whole, however,
consists of contributions from each of the ellipsoids.
Since the ellipsoids are oriented along the [1117axes,
there is no crystallographic direction which is a principal
axis for all ellipsoids simultaneously and thus the
crystal will exhibit some longitudinal magnetoconduc-
tance for any arbitrary orientation of the fields.

It can be shown" that the absence of longitudinal
magnetoconductance for a single ellipsoid leads to the
following weak magnetic-field relation when the
conductivities of the individual ellipsoids are properly
summed:

2(T )110

lim
H~O (QT )001

(3.6)

where DTrr= Tii(0) —Trr(H). This relation, sometimes
called the symmetry relat~ors, has been previously
expressed in the literature"' as a relation between

The most recently published cyclotron resonance data"
give E =20.0&0.4.

Using an ellipsoid model, let us congider an energy
shell in momentum space. When the crystal is in
thermal equilibrium the electrons in this shell will carry
no net current. When electric and magnetic fields are
applied, the crystal will no longer be in thermal equi-
librium and the electrons in this shell will carry a net
current dj. We define a tensor relaxation time so that
r~~ is the time constant for the rate of decay (due to
scattering) of the component of dj parallel to the axis
of revolution and w& is the time constant for the rate
of decay of the component of dj perpendicular to this
axis of revolution. The above says that

(3.3)
where

0= —,'[(P,P/m„)+ (Pi'/mi)], (3.1) "R.W. Keyes (private communication).
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Sgr (0)—Sr r (H)"' (AS, )"'
(3 7)

Szr (0)—S»(H)oor (AS»)oor (2E+1)(E+2)

2(E—1)s

certain magnetoresistance coeKcients and has been
experimentally verified for fairly pure rt-type
germanium. If the data did not agree with (3.6), this
would be evidence that the Herring-Vogt model was
inapplicable.

If the Herring-Vogt model is used to evaluate the
elements of the conductivity tensor, it is found' ' that
for arbitrary values of magnetic field,
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where E, the anisotropy parameter, is

E=E /E—,. (3 g)

The quantity (hS»)'oo is the change in conductance
when the electric and magnetic fields are parallel and
thus is a loegitldiea/ magnetoconductance. Similarly,
(ESrr) ' is a tratsseerse magnetoconductance. Equation
(3.7) thus indicates that the anisotropy parameter
can be calculated from a measurement of the ratio of a
longitudinal to a transverse magnetoconductance.

4. SAMPLE PREPARATION.

The samples that were used were half-inch diameter
disks of germanium. Figure 1 shows the cross section
of such a disk. The measured magnetoconductance ratio
was independent of the disk thickness for thicknesses
varying from 0.5 to 1.0 mm, indicating that the
diameter-to-thickness ratio was large enough to
eliminate any edge effects.

When using a sample with the geometry of Fig. 1
to measure 5~~, it is necessary to measure both the
current and the electric field in the [100$ direction
since S»——i&/E&. The current i& can be measured by
an ammeter in the external circuit. It is necessary to
measure the voltage across the whole crystal including
the electrodes in order to find E~ and for this reason
it is necessary that the contact resistance between the
electrode and the crystal be very low. Furthermore, the
electrodes must be put on the crystal in such a way that
the contact is uniform over the crystal face.

To meet the above electrode specifications, tin was
put on the crystal faces by use of an ultrasonic soldering
iron. The ultrasonic technique was used to obtain
100% wetting. The crystal was then heat trea, ted at
450'C for about ten minutes. This results in a small
amount of tin-germanium alloying and gives the
desired low-resistance contact. We are convinced that
the contact resistance is negligible since the measured
resistance of the disks (which would include any
contact resistance) had the same temperature de-

pendence in the range 45'K to 350'K as the resistivity
of germanium samples with conventional magneto-
resistance geometry with which contact resistance is
eliminated.
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FiG. 2. Temperature dependence of the magnetoconductance
ratio. The values of the anisotropy parameter shown on the right
are calculated from Eq. (3.7). The number of carriers per cubic
centimeter of samples A, 8, and C are. approximately 4)&10",
3&(10'4, and 6)& 10",respectively.

5. MAQNETOCONDUCTANCE RATIO MEASURE-
MENTS AND DISCUSSION

Figure 2 gives the measured values of the magneto-
conductance ratio obtained for samples with three
diferent impurity concentrations. On the right-hand
side of the figure are given the values of the anisotropy
parameter corresponding to the values of the magneto-
conductance ratio on the left-hand side. LSee Eq.
(3 7) j

Sample A is of high purity and the eGect of impurity
scattering should be slight throughout most of the
temperature range used. The effect of impurity scatter-
ing on the properties of sample 8, which is of inter-
mediate purity, should be slight at high temperatures
and moderate at low temperatures. The effect of
impurity scattering on the properties of sample C,
which is the most impure, should be moderate at high
temperatures and strong at low temperatures. (We
realize that the adjectives sIight, moderate, and strorIg
are relative and have not been rigorously defined
here. We are using these terms for convenience only,
however, and rigorous definitions are not necessary
for our present purposes. )

For sample A, the eGect of intrinsic holes can be seen
above 230'K. Below this temperature the magneto-
conductance ratio varies by only a, few percent. Starting
at 48'K, the magnetoconductance ratio slowly increases
with increasing temperature and decreasing importance
of impurity scattering. Between 130'K and 230 K,
the ratio is essentially independent of temperature.
If there was any eBect due to impurity scattering, it
would be temperature-dependent so it is concluded that
the value of the magnetoconductance ratio found
for this pure sample in the range 130'K to 230'K is
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the earlier measurements were magnetoresistance
measurements and the magnetoconductance ratio was
obtained by mathematical inversion, so that it would
be expected that the data shown in Fig. 2 would be
more accurate than the more indirect results of the
earlier work. (See discussion of this point in Sec. 2.)
Furthermore, the values of E reported in the earlier
work depend on zero-field extrapolations of magneto-
resistance and Hall coefficient measurements. These
extrapolations can also cause appreciable error especially
at the lower temperatures. Broudy and Venables' have
calculated E from magnetoresistance and Hall coeffi-
cient measurements in a way that eliminated the
necessity for zero-field extrapolations, and their data
are in agreement with Fig. 2.

FIG. 3. Experimental test of the symmetry relation (3.6) .
The data indicate that (3.6) is approximately correct for moderate
amounts of impurity scattering but is incorrect for strong impurity
scattering.

characteristic of lattice scattering and is unaffected
by impurity scattering.

In the temperature range from 130'K to 230'K all
magnetoconductance ratio measurements on sample A
are in the range (65~~)M'/(65 i)"'=0 798&0.002.
Equation (3.7) gives E=E/E, =19.8+'0.2 for this
magnetoconductance ratio.

The cyclotron resonance value" of E =20.0&0.4
was obtained from measurements at liquid helium
temperatures. If it can be assumed that this mass
anisotropy parameter has the same value in the
temperature range 130'K to 230'K, than E,=1.01
~0.03. This means that for lattice scattering the
relaxation time is essentially isotropic. The theories of
Herring and Vogt' and Dumke" indicate that for
acoustical-mode scattering the relaxation time should
be more isotropic than the energy surfaces. According
to these theories, however, that the relaxation time
should be exactly isotropic (E,= 1.0) would be
fortuitous.

Our experimental results for samples 8 and C show
that increasing the amount of impurity scattering
increases the anisotropy of the relaxation time with
E,& 1. This is in qualitative agreement with the
theoretical work of Ham" who finds E, 12 for im-

purity scattering.
However, our data on samples in regions of strong

impurity scattering cannot be analyzed in terms of a
relaxation-time tensor. The basis for this statement will
be discussed in the next section.

Some previously published data'4 indicate that the
anisotropy parameter E is relatively independent of
temperature and has a value of approximately 12.
The reasons for the discrepancy between these earlier
results and those shown in Fig. 2 are not clear. However,

"W. P. Dumke, Phys. Rev. 101, 531 (1956)."F.S. Ham, Phys. Rev. 100, 1251(A) (1955).

6. APPLICABILITY OF THE HERRING-VOGT
MODEL TO THE CASE OF STRONG

IMPURITY SCATTERING

As indicated in Sec. 3, the symmetry relation (3.6)
is a test of the applicability of the Herring-Vogt model.
This relation can be checked experimentally by measur-
ing the planar Hall coefFicient' 6~00'" and the transverse
magnetoresistance coefficient' %~00'" since

2 (7' )110 2G 1lo

(6 1)lim
H~o (g 2' )001 ~100

"M. Glicksman, Phys. Rev. 108, 264 (1957).

Previous measurements'' indicated that Eq. (6.1)
was valid from 77'K to 300'K for a sample with a
carrier concentration of approximately 10" cm '.
Figure 3 shows measurements of I2Gioo'io/Mioooo'I for
less pure samples. It can be seen that at the higher
temperatures where the impurity scattering is moderate,
the data approximate the symmetry relation (3.6).
As the temperature is lowered and the impurity
scattering increases, the symmetry relation is invalid
and, hence, the Herring-Vogt model is inapplicable.

As Keyes" has pointed out, if the energy surfaces are
given by (3.1), deviation of the left-hand side of (3.6)
from unity must be due to the existence of longitudinal
magnetoconductance for a single ellipsoid when the
fields are parallel to one of the principal axes of the
ellipsoidal energy surfaces. The relaxation-time model
used here could give no such longitudinal magneto-
conductance.

From magnetoresistance measurements on samples
with high carrier concentrations, Glicksman'4 has also
found a failure of the symmetry relation (3.6). How-
ever, his measurements do not agree with ours since
he finds that the ratio plotted in Fig. 3 is greater, not
smaller, than unity. If this ratio is actually greater
than unity and the energy surfaces are given by (3.1),
the longitudinal magnetoconductance in an ellipsoid
must be opposite in sign to that which one usually
finds, i.e., Glicksman's data indicate that Sii(H)
&S (0).
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Ke do not yet understand the origin of longitudinal
magnetoconductance in a single ellipsoid. However,
our work provides clear-cut evidence for the failure of
the Herring-Vogt model for the case of strong impurity
scattering. *

*Note added in proof. —Recent magnetoresistance measure-
rnents by the author in collaboration with W. E. Howard indicate
that the deviations from the symmetry relation are small for
samples with carrier concentrations as high as 3&(10' and that
the deviations reported in Sec. 6 are probably due to small sys-
tematic errors. A report of this new work is being prepared for
publication.
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Precise measurements of lattice expansion of high-purity
copper held near 10 K during deuteron bombardment were made
using a rotating single-crystal method. An expansion of (4.1&0.2)
)&10 " per 7-Mev deuteron/cm' was found. No broadening
of the Laue-Bragg intensity around the (4,0,0) reciprocal lattice
point occurred. These effects are broadly consistent with the
introduction of small point centers of dilatation. On the assump-
tion that the damage consists of Frenkel defects, published cal-
culations for the volume expansion due to interstitial atoms and
vacant lattice sites in copper and the observed expansion lead
to a concentration of defects which is only 0.08 to 0.22 of that
predicted by the simple theory of displacement. Several independ-
ent measurements of inhomogeneity of the damage indicated
an E ' variation of the probability of lattice-atom displacement

with deuteron energy, E., in agreement with the simple theory.
The ratio of resistivity increase (as determined by Cooper et al.) to
lattice expansion is 7)& 10 ' pohm-cm for such deuteron irradiation.
Use of the empirical defect concentrations then gives a value for
the resistivity of 1/& of Frenkel defects as 2.1 to 5.6 pohm-cm.

Thermal recovery of the expansion in the temperature range
10—302'K was measured. It was strikingly similar to the recovery
of electrical resistivity changes produced by deuteron irradiation.
About 55 jo of the recovery occurred in a range below 42'K and
the recovery was essentially complete at 302'K. Whatever the
activating mechanism may be in each stage of recovery, the
observed recovery appears predominantly due to mutual annihila-
tion of interstitials and vacancies.

I. INTRODUCTION

r OPPER is a particularly interesting crystal for~ radiation damage study. ' ' Extensive theoretical
calculation has been carried out for this metal; most
bulk physical properties are well known; it is readily

worked; and it is obtainable in relatively pure form.

On the other hand, liquid-helium temperatures are

required in order to prevent immediate thermal re-

covery of the damage produced by irradiation. ' The

* Supported in part by the U. S. Atomic Energy Commission.

f Based upon a dissertation submitted by R. O. Simmons in
partial fulfillment of the requirements for the Doctor of Philosophy
degree at the University of Illinois.

' For a recent review of radiation effects in solids see F. Seitz
and J. S. Koehler, in Solid State Physics (Academic Press, Inc. ,
New York, 1956), Vol. 2, p. 305.

2 Other recent surveys include J. W. Glen, Advances in Physics
(Taylor and Francis, Ltd. , London, 1955), Vol. 4, p. 381; G. H.
Kinchin and R. S. Pease, Repts, Progr. in Phys. 18, 1 (1955);
A. H. Cottrell, Metallurgical Reviews 1, 479 (1956); Action des
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Vol. 6, p. 215; G. J. Dienes and G. H. Vineyard, Radiation sects
in Solids (Interscience Publishers, Inc. , New York, 1957).

' Cooper, Koehler, and Marx, -Phys. Rev. 97, 599 (1955).

necessity of working at such low temperatures makes
damage and annealing studies dificult.

In recent years a few helium-temperature investiga-
tions of irradiated copper have been carried out using
electrons, ' neutrons, ' and deuterons. ' While electron
irradiation under suitable conditions is thought to
produce the simplest disarrangement of the crystal
lattice, the relative ine%ciency of electron bombard-
ment in producing atomic displacements has limited
the variety of measurable effects and prevented the
production of defect concentrations greater than
chemical impurity concentrations. In nuclear reactors
conditions are complicated by the incident-neutron
energy spectrum, possible anisotropies in the neutron
scattering cross section, gamma- and beta-ray Aux,
nuclear transmutations, and, most important, the large
mean energy transmitted to the initially struck lattice
atom. Cyclotron irradiations do not produce the simplest

4 Corbett, Denney, Fiske, and Walker, Phys. Rev. 104, 851
(1956).' Blewitt, Coltman, Klabunde, and Noggle, J. Appl. Phys. 28,
639 (1957); Coltman, Blewitt, and Noggle, Rev. Sci. Instr. 28,
375 (1956); Blewitt, Coltman, Holmes, and Noggle, in Creep and
Recovery (American Society for Metals, Cleveland, 1957), p. 84.


