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The one-electron Schrédinger equation is discussed for a periodic lattice. A variational procedure is ap-
plied to a set of trial functions consisting mainly of plane waves of low wave number. Rapid convergence is
obtained by use of one or more auxiliary functions whose Fourier coefficients for high wave numbers approxi-
mate those of the correct eigenfunctions. The orthogonalized plane wave (OPW) method is a special case of
this general method and the equivalence is shown. When applied to lithium the method gives a band struc-
ture in substantial agreement with that of cellular methods.

1. INTRODUCTION

STANDARD treatment of electron energy levels
in pure crystals depends on the solution of a one-
electron Schrédinger equation in which the potential
has the periodicity of the crystal lattice. A large number
of methods have been applied to this problem. Broadly
speaking, they fall into two major categories.! In the
first are the cellular methods, in which the Schrédinger
equation is applied within a unit cell of the crystal.
The condition on the wave function that it be of the
Bloch form (a product of a plane wave and a cell
periodic function) takes the form of a boundary condi-
tion.2 In the second category are those methods which
apply a variational principle to an expansion in terms
of functions which are already in the Bloch form. The
procedure leads to a discrete matrix eigenvalue equation
which may be solved by setting the secular determinant
equal to zero. These methods differ essentially in the
choice of basis functions. For calculational simplicity
one obviously would like to choose these in such a way
as to get rapid convergence to the states of interest.
At the same time it is desirable to deal with functions
which are analytically simple such as plane waves.
These, unfortunately, are unsatisfactory from the
standpoint of convergence. The poor convergence is
well known to be due to the need for many waves of
high wave number in order to give an adequate repre-
sentation to the rapidly varying part of the true wave
function near the nuclei.? On the other hand, cellular
functions probably give the best fit in this region and
are weakest near the cell boundaries. As this discussion
suggests, one should benefit by supplementing a plane
wave expansion with terms made up of cellular orbitals.
This suggestion has already been made for the purpose
of speeding up the slow convergence to certain states
in connection with the method of orthogonalized plane
* Now at Physics Department, Rensselaer Polytechnic Insti-
tute, Troy, New York.

1 Now at Research Laboratories, National Carbon Company,
Division of Union Carbide Corporation, Cleveland, Ohio.

1 For a survey of one-electron methods in periodic lattices, see
the article by J. R. Reitz, in Solid State Physics, edited by F. Seitz
and D. Turnbull (Academic Press, Inc., New York, 1955), Vol. 1.

2 A variational method which is particularly appropriate to
this problem has been developed by W. Kohn, Phys. Rev. 87,

472 (1952).
3 See reference 1, Sec. 26.

30

waves (OPW).4~6 These suggestions, however, do not
make full use of the inherent possibilities in the use of
such auxiliary functions. In Sec. 2 we describe a way
in which such functions may be utilized conveniently.
The procedure makes use of a set of orthogonal func-
tions, thereby resulting in a matrix equation in which
the energy eigenvalues appear only on the main di-
agonal. This feature makes numerical computations
simple and may enable one to handle more terms in the
expansion than would otherwise be the case. It preves
instructive to compare our method with that of OPW
since there are many features in common; by choosing
our auxiliary functions as lower band states of similar
symmetry to the eigenfunction of interest, the methods
are mathematically equivalent. The comparison of
methods is made in Sec. 3. In Sec. 5 our method is
applied to some conduction band states for metallic
lithium.

2. DISCUSSION OF METHOD
General Remarks

For purpose of discussion we envision a solid as made
up of individual atoms placed on a lattice structure of
variable lattice constant. When the atoms are far apart,
the one-electron wave functions of the valence states
may be represented by Bloch sums of atomic orbitals.
As the lattice shrinks, the orbitals begin to overlap
and the wave functions as well as the energy eigenvalue
are altered. If we think of the wave function in any
unit cell as made up of an expansion of products of
radial functions and spherical harmonics, we can see
that the wave functions will be altered least in the
atomic cores near the nuclei. This follows because (1) in
the region of large potential energy the form of the
radial function is insensitive to the energy eigenvalue,
and (2) the introduction of higher spherical harmonics
by the perturbation of the lattice potential has the
least effect here because of the centrifugal repulsive
term /(l+41)/7* which appears in the radial Schrodinger
equation.

The insensitivity of the rapidly varying core part of

4 C. Herring, Phys. Rev. 57, 1169 (1940).

5 F., Herman, Ph.D. thesis, Columbia University, 1953 (un-
published).

6 J. Callaway, Phys. Rev. 97, 933 (1955).
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the function to lattice parameter will be reflected in a
similar insensitivity of the Fourier coefficients of high
wave number.” From this follows the basic premise of
our method: only the lower Fourier coefficients need be
subject to free variation. The relative amplitude of the
remaining coefficients is frozen so that one depends on
getting a good fit to these from the transform of a
function made up of linear combinations of approximate
atomic or cellular orbitals.

Details of Method

The one-electron eigenfunctions in a periodic lattice
have the Bloch form,

Y () =ux(r)e™r, 2.1)

where uy(r) has the periodicity of the lattice and may
be expanded in a Fourier series

uk(l’)—:z Ak,xeix", (22)
K

where we sum over all principal vectors of the reciprocal
lattice.® It is thus possible to expand ¢ (r) in a discrete
series of plane waves with the general form

lﬁk(r):Z Ak, xe"(K*'k)". (23)
K

We suppose now that we have at our disposal a
specific approximate eigenfunction ¢x(r) which is in
the Bloch form and has the expansion

(1) =2 By, xe! &t r, (2.4)
K

Such a function might be obtained from a simplified
cellular calculation.

Following our premise of dividing Fourier coefficients
into two types, consider a spherical region about the
origin in reciprocal space of arbitrary radius. We denote
the reciprocal lattice vectors inside this sphere by K;
and those of the outer region by K,. We can then write

ox(1) =¢ (1) +¢x°(1), (2.5)
éii(r) =2 Brge!®ith 1 (2.6)

ox°(r)= %: Br g !Xtk 1, (2.7

Let the number of vectors K; be N and to each one of
these associate a plane wave ¢!+ -r Then the N+1
functions consisting of the NV plane waves and ¢°(r)
obviously constitute an orthogonal set. If ¢x°(r) is
normalized to average value unity, the set of functions

7 Actually the insensitivity referred to is in the asymptotic
behavior of the Fourier-integral-transform of the function whose
domain is a unit cell. The Fourier coefficients may be obtained by
sampling this transform at the reciprocal lattice points.

8 We have chosen reciprocal lattice vectors which are a factor
of 2 larger than those defined in the usual way.

can be conveniently used as a basis for a computational
procedure.

We have investigated both iterative and variational
methods, but in the present discussion we shall employ
Kohn’s? variational principle since it yields a particu-
larly well-defined recipe for using the basis functions.
This variational principle states that the solutions of the
Schrodinger equation satisfying the periodic boundary
condition make the functional J=Re(/+G) an ex-
tremum, where

I= f VA (= V-V — E)pdr, (2.8)
ay(r) .
G=f|p*(r’) exp(ik- z.)do. (2.9)
s on

The integrals are over the cell volume and cell boundary
respectively, r and 1’ being points on the cell boundary
separated by the primitive translation =, i.e., t'=r4=;.

We now expand ¢ in terms of the ¥V plane waves and
the (single) auxiliary function ¢x°(r) with the expansion
coefficients Cy, Cy, - :Cy and Cyyi, respectively. The
calculations are shown in Appendix I. The result is an
eigenvalue problem in the coefficients.

N+1

S Hy.Ch=EC, I=

m=1

1,2, ---N+1, (2.10)

where

H;,m‘——fth*Hl//mdr l,m#N-+1,
0
HN+1,1=H1,N+1*=f¢N+1*Vt[/zd‘r, I#N+1, (2.11)
e
HN+1.N+1=f¢N+1*H¢N+1dT+f¢N+l*V¢N+1-nda.

The evaluation of the matrix elements reduces (Appen-
dix I) to the calculation of a number of Fourier co-
efficients and several finite sums. In particular, it is not
necessary to have an explicit expression for the k-space
asymptotic function ¢x°(r), since relevant integrals can
be obtained from ¢x(r) and its lower-order Fourier
coefficients Bk;. Moreover, we have found that a
further good approximation is to consider ¢x°e—*'r, the
periodic part of ¢x° to be independent of k. In this case
the matrix elements for arbitrary k can be evaluated
by computing the integrals once and for all at k=0.
The energy eigenvalues of (2.10) may be found by
solving the secular equation

det{H} m— Eb;,m} =0. (2.12)

The energy of interest usually corresponds to a
valence or conduction state and is usually not the lowest
eigenvalue of (2.10) as it is in OPW. The selection of the
proper eigenvalue presents no special difficulties and is
discussed in the next section.
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3. COMPARISON WITH OPW METHOD

The method as outlined in the preceding section
bears a strong resemblance to that of OPW. It is inter-
esting to display the similarities and differences of the
two methods with a one-dimensional illustration. A
single plane wave may be specified by its amplitude
(which we assume, for convenience, to be real) and its
wave number. Thus, if we choose a space with wave
number as abscissa and amplitude as ordinate, a plane
wave is represented by a point. (We use a vertical bar
in the diagrams for the sake of clarity.) A Bloch func-
tion will then be represented by a set of points whose
abscissas are separated by reciprocal lattice vectors.
Figure 1(a) shows the function ¢x(r) represented on
such a reciprocal-space plot. The function ¢x°(r) is
shown in Fig. 1(b); it lacks plane waves of low wave
number. The effect of the variational treatment is to
reintroduce into the central region a modified-amplitude
set which makes the functional J stationary.

The OPW procedure requires a slightly more complex
description. We assume, for simplicity, that there is one
band of lower energy than the band of interest. We
assume also that an eigenfunction from this band has
been obtained rather accurately, say, by a tight-binding
approximation. In Fig. 2(a) we represent in k& space
(for a one-dimensional case) such a function. In Fig.
2(b) is shown a single plane wave and in Fig. 2(c) is
shown a linear combination of the two which is or-
thogonal to that of Fig. 2(a). The function illustrated
in Fig. 2(c) is then an orthogonalized plane wave
corresponding to the plane wave of Fig. 2(b). The OPW
procedure is then to form a finite set of such functions,
each corresponding to a particular plane wave, and use
them to extremize the Hamiltonian. Since each of these
orthogonalized plane waves has the same asymptotic
form as that of Fig. 2(a), any linear combination of
them will have the identical form. The variational pro-
cedure is similar to the previous one in that the free
variation of the wave function takes place in the central
domain of % space while the outer form is fixed.?

It is now clear that while a variety of choices of
¢x(r) are possible, the specific choice of a lower-band
state function makes the present method identical to
the OPW method. Any linear combination of N or-
thogonalized plane waves can be expressed as a linear
combination of the N-41 basis functions. In other
words, the NV orthogonalized plane waves form a sub-

F1c. 1. Schematic representa-

tion of auxiliary function by an
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9 This statement must be modified if there are several lower
energy states. The outer form is then a linear combination of those
of the lower states.
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K F1c. 2. Representation of a

(b) ] single basis function used in OPW.
(a) represents a Bloch sum of core
orbitals, (b) is a single plane wave,
and (c) is a linear combination of

(© 1l | l | . these which is orthogonal to (a).

space of our (N-1)-dimensional function space. The
extra degree of freedom in the larger space is due to the
fact that the N+41 functions can also represent the
function to which the plane waves of OPW have been
orthogonalized. Moreover, since this function is pre-
sumably an exact solution of the Schrodinger equation it
will satisfy (2.10). Thus, the lowest eigenvalue of (2.10)
will correspond to a core state. By a well-known prop-
erty of Hermitian matrices, the remaining eigenfunc-
tions will be orthogonal to this state and thus span the
same subspace as do the orthogonalized plane waves.
These remaining eigenfunctions will then be exactly
those which are obtained in OPW since they satisfy
the same variational problem.

The merit of our method is its greater flexibility as
compared to OPW. In the first place, even an approxi-
mate function ¢ (r) obtained from a cellular calculation
can be expected to be as good or better a starting func-
tion for the valence state as the somewhat artificially
constructed orthogonal plane wave. Moreover, two
particular situations which cause trouble in the OPW
method are not critical here: first, if the required sym-
metry type does not appear in the core functions,®
OPW convergence is slow—the present method takes
care of this easily; second, if core functions are not
accurate, the OPW valence energy can be quite in-
accurate—the corresponding question here is whether
the major part of an approximate (cellular) function is
a better representation of the valence state than a
minor part of an approximate core function. This latter
question can be critically tested only with specific
calculation, but in many cases it seems to us that the
choice of a cellular approximation would lead to less
labor. A less serious drawback of OPW is the lack of
orthogonality of the basis functions, leading to a secular
determinant nondiagonal in energy. Finally, mention
was made of the identification of eigenvalues. In actual
modern computation it is quite practical to calculate
all the eigenvalues for reasonable numbers of plane
waves. One of these is very close in energy to the
approximate energy corresponding to ¢x(r). In the test
calculation discussed in Sec. 5, the identification was
perfectly straightforward.

4. EXTENSION OF METHOD

The previous discussion has been based on the use
of a single auxiliary function. The method is easily
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extended to incorporate any number. The basic pro-
gram is to subtract from each of these functions the
first NV terms of its Fourier expansion, resulting in
functions which are orthogonal to each of the corre-
sponding plane waves. In order to have a completely
orthogonal set these functions must be orthogonalized
to one another by means of the Schmidt process. The
necessary mathematical steps are shown in Appendix II.
The resulting functions are then used as a basis for a
variational procedure. If the method is applied to points
of high symmetry in the Brillouin zone, group theory
may be applied to reduce the order of the matrix equa-
tions in the same manner as is used in OPW.

5. APPLICATION TO LITHIUM

As the one-electron Schrédinger equation which is
our starting point is the result of extensive approxima-
tions, it proves difficult to test the accuracy of a solu-
tion by a comparison with experiment. We have there-
fore chosen a crystal potential for which calculations
have already been made with which to compare our
method. Lithium was chosen for convenience. The
potential was that originally used by Seitz!® and modi-
fied by Kohn and Rostoker.!

The auxiliary function was obtained by numerical
integration of the Schrodinger equation for the 2s func-
tion corresponding to an energy of —0.6832 ry which is
the energy calculated from the spherical approximation.
Fifty-five plane waves were used. However, because of
symmetry the size of the matrix equation was effectively
reduced to 6 by 6 at k=0, 16 by 16 along the [111]
direction and 15 by 15 along [100]. These were solved
by an iteration procedure developed by one of us to
handle large matrices of this type.?

The procedure was used to obtain energy eigenvalues
and eigenfunctions at several points in the [100] and
[1117] directions of the Brillouin zone. The results are

TasLE I. Comparison of energy eigenvalues at several
points in the Brillouin zone.

Wave vector Fxgenvalues

units of Kohn and
2n/a Rostoker sphencal approx.b Present
. 0,0,0 —0.6832 —0.6832 —0.6827
0.2,0,0 —0.6542 —0.6542 —0.6525
0.5,0,0 —0.4979 —0.5033 —0.4948
0.2,0.2,0.2 —0.5962 —0.5964 —0.5896
0.4, 0.4, 0.4 —0.3322 —0.3409 —0.3358
0.5, 0.5, 0.5 —0.1314 —0.1543 —0.1754

’

a The accuracy of the present method at the zone corner is questionable
because of the need for a different auxiliary function.
b R. A. Silverman and W. Kohn, Phys. Rev. 80, 912 (1950).

1 F. Seitz, Phys. Rev. 47, 400 (1935).

11'W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954).

2E. Brown, Ph.D. thesis, Cornell University, 1954 (un-
published).

TaBLE II. Fourier coefficients of wave functions.

Along [111] direction®

Kb k=0 k=0.2,0.2,0.2 k=04, 04,04
0,0,0 0.9455 0.9432 0.9071
1, 1,0 —0.0624 —0.0266 —0.0113
1, —-1,0 —0.0624 —0.0511 —0.0055

-1, -1,0 —0.0624 —0.1166 —0.2246
2,0,0 —0.0435 —0.0279 —0.0047
-2,0,0 —0.0435 —0.0481 —0.0347
2,1,1 —0.0301 —0.0180 —0.0039
2,1, —1 —0.0301 —0.0217 —0.0065
2, -1, -1 —0.0301 —0.0265 —0.0113
-2,1,1 —0.0301 —0.0265 —0.0113
-2, —-1,1 —0.0301 —0.0338 —0.0245
-2, —1, —1 —0.0301 —0.0445 —0.0581
2,2,0 —0.0214 —0.0142 —0.0040
2, -2,0 —0.0214 —0.0190 —0.0087
-2,-2,0 —0.0214 —0.0276 —0.0271
Cwny1 —0.1438 —0.1292 —0.0641
Along [100]

Kie k=0 k=02,0,0 k=0.5,0,0
0,0,0 0.9455 0.9442 0.9419
1,1,0 —0.0624 —0.0431 —0.0137
0,11 —0.0624 —0.0596 —0.0379

-1,0,1 —0.0624 —0.0851 —0.1197
20,0 —0.0435 —0.0311 —00146
0,2,0 —0.0435 —0.0420 —0.0316

-2,0,0 —0.0435 —0.0596 —0.0956
2,11 —0.0301 —0.0237 —0.0135
1,2,1 —0.0301 —0.0262 —0.0171

-1,2,1 —0.0301 —0.0325 —0.0311

-2,1,1 —0.0301 —0.0365 —0.0448
2,2,0 —0.0214 —0.0178 —0.0110
0,22 —0.0214 —0.0207 —0.0162

-2,2,0 —0.0214 —0.0245 —0.0267
Cny1 —0.1438 —0.1390 —0.1114

s All but the last term are the coefficients of the wave of wave vector
fK.‘—i—k. The last term is the coefficient of the orthonormalized auxiliary
unction.

b Reciprocal lattice points which differ by a permutation of the arguments
are equivalent along [111

¢ Points which differ by permutations and/or changes of algebraic sign of
the latter two arguments are equivalent along [100].

shown in Tables I and II. The eigenvalues of the cellular
methods with which comparison is made are obtained
from a series expansion in which the original data were
presented.! This expansion is not expected to hold all
the way out to the zone boundary so that the energy
at k=(0.5;0.5;0.5) is not to be taken seriously for the
cellular methods. Also, the iteration procedure used to
solve the matrix equation at this value of k converged
too slowly for us to obtain an accurate eigenvalue. The
comparison at other points is rather good.

The amount of labor involved in making these calcu-
lations on a computer of moderate capacity is relatively
small. The lithium problem was done quickly on an
IBM card-programmed calculator. It is true that the
lithium example is probably the simplest system one can
choose; nonetheless, the excellent agreement with Kohn
and Rostoker (Table I) is satisfying.

It is a pleasure to acknowledge the assistance of the
Watson Scientific Laboratory, and the personal help of
Richard Pappert, Cornell University, in the numerical
calculations.
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APPENDIX I. DERIVATION OF MATRIX EQUATION
FROM KOHN’S VARIATIONAL PRINCIPLE

We wish to make stationary J=Re(/+G), where

I= f V*(H—E)ydr, (AL.1)

G=f1//*(t’) exp(ik- <) (VY- n)do, (A1.2)

for the particular ¢ given by

N41
v=2 Cou(r), (AL3)
=1
where
Yr=ei R r ot N (A1.4)

Yn1=¢x’(1).
When (A1.3) is substituted in (Al.1) we get terms of
the following types:

Il=Cz*Cm9{[(Kz+k)2*E]5z.m

1
+—fe““'(Kl—K'""'VdT],
QJq

Iz=CN+1*sze_ik'r¢k°Veixl'rdT,
Q
(A1.5)
13=cl*cN+1[ f i I
Q
_fe—i(KHk)-rVqSkO.ndo-},

S

I4= CN+1*CN+1f¢k0*H¢kOdT:
Q .

where in evaluating /; we have made use of Green’s
theorem and the fact that ¢x° is continuous at the cell
boundary (but not necessarily its derivatives). Sub-
stituting (A1.3) in (A1.2), we get the following terms:

Gl=Gz=0,

Gs=Cr*Cyi1 f iKHD 1Yg 0. nds,  (A1.6)

S

G4=CN+1*CN+1f¢k”*V¢k°-ndo.
s

When we combine terms to form J, we see that the
surface integral in I3 is canceled by that of G;.
Combining I, and G4, we get

]4=CN+1*CN+1|f¢ko*(V_E)¢kodT
Q

+ f Vd)k"*-VqSk"d‘r], (AL.7)
1Y
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where we have used Green’s theorem in combining the
surface integral with the volume integral. Making the
function J an extremum by equating its derivatives with
respect to the real and imaginary parts of the coefficients
to zero, we obtain the matrix equation

ZmHl,mszECl, (A18)

where

Hym=0,.(Ki+ k)2+9—1fe““xl“x’") Vdr,

Q

Hyyy1=Hng, ;*=Q—1fe—ixl"V¢k°e—ik"dr, (A1.9)
[+}
HN+1, NH:Q—lf{ |¢koe—¢k.rlzv+ [ Vd)k"fZ}dT.

For practical reasons it is desirable to simplify the
above expressions. In particular, since the method is a
Fourier method by nature, it is useful to use Fourier
coefficients as effectively as possible.

For the plane waves /, m>% N4-1 the result is straight-
forward and we have

Hl,m=al,m(k+ Kl)2+ V(Kl_ Km);

where V (K) is a Fourier coefficient of the expansion of
the crystal potential.

Of particular interest is the fact that integrals in-
volving ¢x° can be expressed in terms of the Fourier
coefficients of ¢ for K; only. From (2.5) and (2.6),
we have

Sr°=dr— Y Br KKtk r,
Ki

Defining gix(r)=Ve¢re *'* and denoting its Fourier
coefficients by Gx(K), we can find that
Hl,N—H:Gk(Kl)—Z BKiV(Kz~Ki). (Al.lO)
Ki

In similar fashion, using Green’s theorem and peri-
odicity properties of the functions, we find

Hypyp1=2" f (V| éu |+ | Vou | B dr
]

+ Z BKi*BKjV<Ki'—‘ K])

K, Kj

—2Re Y Br#*Gr;—Y. (Ki+k)?| Bx; |2
K; K

(A1.11)

In deriving this expression we used the approximation
(usually quite good for our purposes) that the cell
periodic function ¢x% ** is independent of k; if
necessary, the specific k dependence can be introduced
easily.

APPENDIX II. EXTENSION TO SEVERAL
AUXILIARY FUNCTIONS

If we have a set of auxiliary Bloch functions fi,
far+ " fm, we first orthogonalize these to the set of
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plane waves in the usual way:

fro=fa=2 Ja(Kj)eiKito r, (A2.1)
Ki

We normalize each f,° to average value unity. This
is equivalent to adjusting f, so that

Q“‘flfnlzdr—glﬁ(&)vﬂ. (A2.2)

Calling the first normalized function ¢,°, we proceed to
orthogonalize f,° to this. We obtain, after several
obvious steps,

b22=(fo2—Co1°) (1 —C?)4, (A2.3)

OF Li 35

where

c=a-t [ gthar—% FHRORK),  (A24)
Q Ki

and fy, f2 have been adjusted in accord with (A2.2).

We can carry through the remaining orthonormaliza-
tion by repeated application of the procedure used in
(A2.3). For example, f3° may be orthogonalized to ¢,°
by replacing f.° by f3°. If the resulting function is then
resubstituted for fy° and if ¢.° is substituted for ¢,°,
the function ¢3° results. The coefficient C must be
calculated for each case.

The matrix elements can be computed in the same
manner as before.
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K-Emission Spectrum of Metallic Lithium*

D. E. Bepot anp D. H. ToMBOULIAN
Cornell University, Ithaca, New York

(Received September 3, 1957)

The emission spectrum of an evaporated lithium target has been investigated in the spectral region
extending from 60 to 600 A. The intensity distribution of the characteristic KX emission band has been
determined photometrically. Some features of the distribution I (E)/»? are as follows: the band has a maxi-
mum at 54.02 ev (229.50 A); the distribution drops to one-half of its maximum value on the high-energy
side at 54.58 ev; and the decay in intensity from the peak to the high-energy limit of the band occurs in an
energy interval of 1.18 ev. In agreement with the results of earlier investigators, the band does not show a
sharp high-energy cutoff. A second band, similar in shape and having a maximum at 82.83 ev, has been
observed and is presently identified as a K satellite.

INTRODUCTION

HE present investigation was undertaken with a
view to re-examine the intensity distribution of
the lithium K emission band which lies in the soft
x-ray region. The spectrum is observed when the metal
is bombarded by electrons possessing energies of a few
hundred electron volts. The K emission spectrum is a
result of electronic transitions from valence levels
(2s band) into vacancies created in the K shell. The
radiation was first detected photoelectrically by
Skinner,! the band was observed previously by O’Bryan
and Skinner,? and its shape was examined by Skinner.?
These observations first pointed to a somewhat sur-
prising lack of sharpness prevailing over the high-energy
region of the band.

Unlike the case of the band spectra emitted by metals
such as magnesium or aluminum which possess a more
complex electronic structure, the K emission band of the
lightest alkali metal is expected to be more susceptible

* Supported in part by the Office of Ordnance Research,
. S. Army.
1 Corning Glass Foundation Fellow.
L H. W. B. Skinner, Proc. Roy. Soc. (London) A135, 84 (1932).
( EH.) M. O’Bryan and H. W. B. Skinner, Phys. Rev. 45, 370
1934).
3H. W. B. Skinner, Trans. Roy. Soc. (London) 239, 95 (1940).

of theoretical interpretation. It was therefore considered
worthwhile to determine the spectral characteristics
of the lithium K band with attentive concern for
operational details in conducting the experiment and
with adoption of a more critical attitude in the reduc-
tion of the experimental record.

In the radiative process referred to above, the core
level is sharp, energy-wise, and has well-defined
symmetry properties. Hence the spectral distribution
of the observed radiation emitted in these transitions
should provide some information of the nature of the
level structure of the valence band for those transitions
which are allowed.

If one writes the usual radiation formulas in a form
appropriate for transitions from a group of closely
spaced levels to a sharp inner level, the power radiated
by the source in the frequency range dv is found* to be

)

i 0x;

2 f dSdv, (1)
s |grad;E|

4D. H. Tomboulian, Handbuch der Physik (Springer-Verlag,
Berlin, 1957), Vol. 30, p. 259.
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