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Superconductivity in the Periodic System

DAVID PINES
Palmer Physical Laboratory, Princeton University, Princeton, %em Jersey

(Received May 27, 1957)

The empirical regularities in the appearance of superconductivity in the periodic system discussed by
Matthias are considered in the light of the microscopic theory of superconductivity proposed by Bardeen,
Cooper, and SchrieGer. A simple model of electrons and ions interacting via screened Coulomb forces is
used to describe the electron-lattice interaction. With the aid of this model, it is shown how the theory of
Bardeen, Cooper, and Schrie6'er provides both a satisfactory criterion for the appearance of superconduc-
tivity and a good qualitative account of the variation in transition temperature from one metal to another.

I. INTRODUCTION

'ATTHIAS' has emphasized a number of inter-
' ~ esting regularities in the appearance of super-

conductivity in the periodic system. These regularities
hold for elements, compounds, and alloys and appear
to be a property of only the average number of valence
electrons Z and the electron density X, in the solid.
Some of the most important regularities are:

(1) Superconductivity is observed only for metals.
(2) Superconductivity is found only in elements for

which 2&Z&8. Essentially the same rule applies for
compounds, though in the latter case one may find
superconductors with Z slightly less than 2 or slightly
greater than 8.

(3) No ferromagnetic or antiferromagnetic sub-
stances superconduct.

(4) Certain regularities are apparently connected
with crystal structure. No superconductors have been
found which do not possess a center of inversion. No
superconductors have been found in certain space
groups, notably that similar to Cd I.

(5) For a given Z the transition temperature T,
increases as a high power of the interelectron spacing r, .
This spacing r, is dehned by

r,ap ——(3/4n X,)&,

where ao is the Bohr radius.
(6) No such regularities are observed for metals with

Z=2 or Z=8.
(7) The variation of T, with valency, Z, is that

shown in Fig. 1. Note that the nontransition and
the transition metals display a markedly di6erent Z
dependence.

Recently, Bardeen, Cooper, and SchrieGer' have
proposed a microscopic theory for superconductivity
which yields an energy gap of the right order of magni-
tude and reasonable values for other superconducting
parameters (T„penetration depth, etc.) provided one
6xes a certain parameter, V, which measures the average
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strength of the net interaction between electrons very
close to the Fermi surface. Both the screened Coulomb
repulsion between the electrons, and the phonon-
induced electron-electron interaction (which is attrac-
tive for electrons sufficiently close to the Fermi surface)
contribute to V. The criterion for superconductivity is
that V be negative; i.e., the phonon-induced attractive
interaction must predominate over the short-range
Coulomb repulsion.

In the BCS theory, ' ' the critical temperature, T„ is
given by

k T,= 1.14(A&p) A„exp( —1/LE(0) V]), (2)

where (5&v)A„ is the average energy of the phonons which
scatter electrons at the Fermi surface, and 1V(0) is the
density in energy of electron states on that surface.
Thus a knowledge of V will enable us to calculate T,.

In this paper we consider the calculation of V from
first principles. Our aim is to deduce the Matthias
regularities from the BCS theory. Obviously, in the
present stage of development of the theory of solids,
such a deduction cannot be detailed and quantitative.
Thus we cannot hope to obtain accurate values of T,
for all superconductors. [Everything else aside, the
fact that T, depends exponentially on X(0)V puts such
a goal beyond our grasp. ] The best that we can hope
for is a microscopic qualitative" understanding of the
Matthias regularities. By this we mean an understand-
ing based on detailed quantitative calculations carried

' B. Matthias, in progress in Low 1'emperatlre Physics, edited FIG. 1. The behavior of T, as a function of Z (after Matthias ).
by C. J. Gorter (North-Holland Publishing Company, Amster-
dam, 1957), Vol. 2. 3 Bardeen, Cooper, and Schrie6'er, Phys. Rev. 108, 1175 (1957),

2 Bardeen, Cooper, and Schrie8er, Phys. Rev. 106, 162 (1957). hereafter referred to as BCS.

280



SUPERCON DUCTI VI TY IN PERIOD I C SYSTEMS

out with an oversimplified model for the interaction
between electrons and ions in superconductors. Such a
model may be regarded as adequate if (1) it yields the
gross features of. the occurrence of superconductivity
in the periodic system, and (2) the known inadequacies
of the model are consistent with the experimental
observations.

The Matthias regularities furnish us with a useful
hint in the choice of a model. Matthias finds that the
properties of superconductors seem more closely linked
to valency and interelectron spacing than to details
associated with crystalline structure. Ke accordingly
choose a model which is comparatively insensitive to
the effects of-lattice periodicity, vis. , a set of electrons
and ions interacting via screened Coulomb forces, in
which all relevant matrix elements are evaluated by
treating the electrons as plane waves. We find the model
leads to a criterion for superconductivity which dis-
tinguishes quite well between the superconducting and
nonsuperconducting metals. %here the criterion fails,
its failure may be attributed to the known inadequacies
of the model. When we turn to the calculation of E(0)V,
and hence T„we find that the model yields results
which are qualitatively correct, but quantitatively in
error. Again one can understand easily where the
model is inadequate and its failings are in the right
direction to explain the quantitative discrepancies.
The difference in the behavior of T, as a function of Z
for the nontransition and the transition metals may
be qualitatively understood, as may the variation in
T, with r, for a fixed Z. Thus, we are able to achieve
our aim of a microscopic qualitative understanding of
the empirical regularities observed by Matthias.

In Sec. II we define and calculate V. Ke discuss in
some detail the present knowledge of the matrix ele-
ments which enter into V before making our simple
approximate calculation. Section III is devoted to a
discussion of the criterion for superconductivity. In
Sec. IV we consider the variation in T, in the periodic
system, while in Sec. V we summarize the conclusions
to which we have been led in the course of these
investigations.

II. CALCULATION OF V

I-et us recall certain relevant aspects of the BCS
theory. BCS begin their considerations with the eRec-
tive Hamiltonian for electron interaction in a metal.
The Hamiltonian may be written as 4 '

H= Ho, „)+Hpa,

where Hg, „i represents the eRective screened Coulomb
interaction between the electrons and H~h is the
phonon-induced electron-electron interaction. If we
follow BCS, and confine our attention to those inter-
actions which scatter a pair of electrons of opposite

4 H. Frohlich, Proc. Roy. Soc. {London) A215, 291 {1952).
~ J. Bardeen and D. Pines, Phys. Rev. 99, 1140 (1955),

momentum and spin (kg, —k$) to another pair state
(k'g, —k'g), the interactions take the form

They are then able to introduce an averaged strength
of the net electron-electron interaction at the Fermi
surface,

M '(k' —k)—V= —2 U L'—
Ao)(k' —k)

(6)

where the average is to be carried out over all electrons
at the top of the Fermi distribution. With the aid of V
and the foregoing approximations, the effective Hamil-
tonian, (3), may be written as

H= —Q' VCa*C a*C aCa,
kk'

where the prime indicates the sum is to be carried out
only over the electron pair states. The Hamiltonian
(7) forms the starting point of the BCS theory. —V is
taken as an arbitrary parameter, and is assumed to be
negative.

The calculation of V requires a knowledge of the
actual eLectron-electron and electron-ion interactions
for the electrons on the Fermi surface in the metal
under consideration. The coupled system of electrons
and ions in a metal displays the following general
behavior. Because the ions are heavy and slow, when
they move the conduction electrons respond quite well
to their motion, cancelling out the great portion of the
ionic field. Thus, the effective field seen by a given
electron or another ion is that of the ion plus its associ-

Ho. i=2 Z &(k—k')Ca *C-a*C aCa,
kk'

2Aa)M, '(k —k')Ca *C a *C aCa

(&a-&a )'-&'~a a'

The C~'s are the creation and annihilation operators
for electrons in Bloch states (the spin index being
understood since we deal only with pairs of electrons
of opposite spin). U(k —k') is the matrix element for
the Coulomb scattering of an electron from state k to
k'. M, (k—k') is the matrix element for scattering from
k to k' (with emission of a phonon of wave vector q)
due to the electron-ion interaction; it is calculated for
zero-point amplitude of the lattice vibration. E~ and
EI, are the energies of the corresponding Bloch states,
and coA, A, is the frequency of the phonon q which
couples the states k and k'.

BCS remark that (5) corresponds to an attractive
interaction for electrons of sufIiciently close energies.
They work with variational wave functions designed
to take maximum advantage of this attractive inter-
action, and they make the assumption (which later
turns out to be self-consistent) that the important
electronic states of interest are those very close to the
Fermi surface, such that
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ated shielding electrons. In the same way, the eRective
interaction between electrons is a screened, short, -range
Coulomb interaction because an electron at a distance
much greater than the individual electronic spacing
sees not only a given electron but also its associated
electronic shielding cloud. The validity of this general
picture has been established in detail for the free-
electron gas' and for the coupled electron-ion system. '
It has recently been shown that in the nontransition
metals periodicity will aRect the response of the elec-
trons to each other and to the ionic motion only very
slightly. '

Consider the electrons at the Fermi surface. If we
assume that all charged-particle interactions in the
metal are pure Coulombic (a not unreasonable assump-
tion), the direct interaction between the electrons is
given by e / f

r,—r,
f
. The electron-ion interaction is

Z*e'j fr, —R;f, where Z* is the effective ionic valency
seen by the electron. If we approximate the electrons
as plane waves, the matrix elements in which we are
interested are given by

U'(k —k') =
fk —k'f'

47rz*e'i ( 1V) & ( A y
&

o(k
fk —k'f I 2lf I &2sq)

(8)

(9)

M, (k—k') =M, (k—I '), fk —k' f)k. (11b)

where k, is the maximum plasmon wave vector, and eo

is the velocity of an electron at the top of the Fermi
distribution. The quantity e(k) is the dielectric constant
of the metal for wave vector k calculated in the free-

where s is the longitudinal sound velocity and X and
M are the ionic density and mass.

The electrons at the Fermi surface interact with the
other electrons in the metal, and it is'this interaction
which shields out the Geld of a given electron within a
distance of the order of the interelectronic spacing. The
most complete calculation of the eRect of this shielding
on the matrix elements (8) and (9) has been given in
a paper by Bardeen and the writer'; the results are

4m e' (k —k')'
U(k —k')——

f
k —k' f' 8m'f ~~'+(k —k')'ass(-s) j I

fk —k'
f
&k„(10a)

U(k —k') = U'(k —k'),
f
k —k'

f )k. (10b)

4rrz*e's
M, (k—k') =

f
k—k'

f
k, (11a)

=k'+k, s

where k, is the inverse Fermi-Thomas screening length,
defined by

(k,/ks) =0.814r,~. (13)

In the derivation of (10) and (11) the long-wave-
length response (k&k,) of the electrons to the motion
of a given electron or ion is calculated quite accurately
through the introduction of the plasmon modes; the
short-wavelength response (k) k,) is neglected. Bar-
deen has calculated the short-wavelength response of
the electrons to the ionic motion using the Hartree
approximation, which begins to fail somewhat in this
region. His result is identical with (11a), so that it
extends (11a) into the short-wavelength region.

Further complications arise with the electron-electron
interaction matrix elements. There are no calculations
available for the short-wavelength response (although
undoubtedly some screening persists), and the long-
wavelength matrix element, (10), is altered somewhat

by subsidiary conditions which act on the electronic
wave functions. However, recently Nozieres and the
writer' have shown that when one can separate out a
minority group of electrons at the Fermi surface, their
effective interaction (for low-frequency excitations)
may be written as

U(k —k') =
2g

(10a')

where e is defined by (12). In other words, the effect of
the subsidiary conditions on (10a) is the slight alter-
ation, (10a'). Again, (10a') should not be regarded as
completely reliable because of the complications which
arise in separating out the electrons at the Fermi
surface, as discussed in reference (9).

On the basis of the foregoing considerations, we
believe that the following expressions for the relevant
matrix elements,

U(k —k') =
(k—k')'+k '

4 Z*asfk —k'f p a cV~&
M, (k—k') =

(k —k')'+k s &2sg MJ
(15)

represent a simple, tolerable approximation for all
values of

f

k' —k f. Of course we could have decided on
(14) and (15) at the outset; the purpose of the discus-
sion above was to compare this choice with the best
available values for the matrix elements. As will be

electron approximation; it is given by

l 1 4ks' —k' 2ks+k
k's(k) =k'+k, s ~ -+- ln —, (12)

f 2 Sksk 2ks —k

' D. Bohin and D. Pines, Phys. Rev. 92, 609 (1953).
' P. Nosieres and D. Pines, Phys. Rev. (to be published).

' J. Bardeen, Phys. Rev. 52, 688 (1937).' P. Nozieres and D. Pines, Phys. Rev. (to be pubHshed).
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4irX(Z*)'e'

M

(k—k')'

[(k—k')'+k ']' s'(k —k')'

4n-e'

(17)
(k—k')'+k '

where the average is to be carried out over
~

k' —k
~
&kn.

(2) U processes

(k—k')'4irlV(Z*)se' 4ire'—V~=
M [(k—k')'+k, s]' s'kDs

4vre'+, (18)
(k —k')'+k, s

"As has been emphasized recently by H. Jones LHandbnch
der Physik (Springer-Verlag, Berlin, 1956), VoL 19, p. 227], the
separation of scattering processes into U processes and X processes
is somewhat arbitrary for polyvalent metals. However, this
simple separation appears to be the only procedure we might
adopt which, within the spirit of our general approach, has some
chance of proving useful for a wide variety of metals."D. Pines, Rev. Modern Phys. 28, 184 (1956).

seen below, there is good reason to believe that the
approximation made in our use of (14) and (15), rather
than some other "plane wave" matrix elements, is the
least of our diKculties.

Two cases arise for the electron-ion matrix element,
(15). These correspond to the long-wavelength normal
processes (X processes), for which ~k' —k~ &kn, and
k' —k=q; and the Umklapp processes (U processes),
for which ~k' —k~)kn, and k' —k=q+K~, where Eiv
is a reciprocal lattice vector. ' For the U processes we
make the further approximation that q= k~, an approx-
imation which certainly underestimates the eGective-
ness of the U processes. Finally, we remark that within
the spirit of the approximation which yields the
expressions (14) and (15), we should take as the ion-
ion interaction, (Z'e'/~ R;—R;~) exp{—k, ) R;—R;~ }.
This latter approximation leads to a sound velocity s,
given by'

1ms=——Z sp.
3M

For Z*, the ion valency, which determines the
eBective number of electrons taking part in the screen-
ing processes and the state density at the Fermi surface
(X.=Z*Ã), we shall take the number of electrons
outside the last closed shell or the number of holes in
the last shell, whichever is the smaller. In the case of
a compound or alloy Z* represents the average valency,
defined according to this prescription. Evidence that
this is a good approximation for the number of electrons
free to take part in screening processes in the non-
transition metals comes from the plasmon spectrum of
solids. "

With the foregoing approximations, we find the
following expressions for V:

(1) iV processes

where the average to be carried out over ~k' —k~ )kD.
We first remark that —V& is always positive, so that

X processes alone would never yield a sufficiently
attractive phonon-induced electron interaction to give
superconductivity. To see this, substitute (16) and
(13) into (17); one finds

i~(4Z*) y

—Viv —— ~ dx 2x
u;&,

(19)
x2+ g2 (x2+g2) 2

1 (+ (4Z*)'u') (4Z*)~a'

+ (4Z*) 'u' ln—
~

(21)
l (4Z*)4' ) 1+a'

We have used the free-electron value of E(0) in
obtaining (21). We see that with our model, $(0)V
depends only on Z* and on the interelectron spacing.

III. CRITERION FOR SUPERCONDUCTIVITY

The criterion for superconductivity in the BCS
theory is that —Y be negative. In Fig. 2 we plot the
relation V=O, derived from Eq. (21), as a function of
Z* and r, . We thus have a smooth curve, which should
accordingly distinguish between superconductors and
nonsuperconductors (the superconductors should be
found above the curve). For comparison we have
indicated the positions of the various superconducting
and nonsuperconducting elements which are metals.
We have omitted those elements which are ferro-
magnetic, or antiferromagnetic, as well as the semi-
metals and semiconductors; we discuss these below.

We see that the requirement that our expression,
(21) be negative furnishes a rather accurate criterion
for the appearance of superconductivity in the periodic
system. The reason that for a fixed r, a larger Z*
favors superconductivity lies in the increased impor-
tance of the U processes, which enable the attractive
interaction to play a more important role. For the
same reason, for a fixed Z* an increased value of r,
favors superconductivity.

We see that our criterion is in worst shape for Z*=2;
this is also the region for which Matthias observes no
regularities. Such a situation is not surprising. It is for

where we have made use of

~

k' —k~ = 2ks sin(8/2) = 2kox,

0 being the angle between k and k', and we define

a' = (4/9s. 4) 'r, =r,/6.02.

Since the maximum value of r, is 5.57 (for Cs), it is
clear that the integrand of (19) is always positive, so
that —V~ is always positive. On carrying out the
indicated integrations, one finds for the parameter of
direct interest in the BCS theory,

(1+a')—X(0)V =u' [1—(4Z*)*a'] ln] Ea&)
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Nb
V

FIG. 2. The critical r, for superconductivity as a function of Z .
The superconducting elements are denoted by +; the nonsuper-
conducting elements by .

just this region that our major approximation, the neglect
of periodicity in the evaluation of our matrix elements,
may be expected to be at its worst. In the absence of
band overlap, there are just enough electrons to fill the
Brillouin zone. Of course there is overlap, so that ele-
ments with Z*=2 are metals, but we may still expect
the proximity of the Brillouin zone boundaries to alter
markedly the electronic wave functions. Hence we may
expect the failure of regularities which are insensitive
to effects of periodicity, as are the Matthias rules, and
predictions based on our result, (21).A similar situation
should not occur for Z*=4 or 6, because here the
Brillouin zones are sufficiently complex, and overlap is
sufficiently large, that periodicity plays a much less
important role.

We do not predict superconductivity for the trivalent
metals, Ga, Al, and Re. Again this result is not sur-
prising, because in approximating VU we have replaced
leo by k0~, an approximation which certainly under-
estirnates the attractive contribution there. We accord-
ingly expect our criterion to be somewhat on the
pessimistic side, and it is. (On the other hand, in

improving our estimate of V, we would not expect the
monovalent elements to become superconductors, since
the relative importance of the U processes increases
with increasing Z*.)

On the basis of these considerations, we expect the
following metals to become superconducting: Sc, Y,
Pa, Mo, and W. A similar conclusion has been reached
by Matthias' on the basis of his empirical regularities.

It is also clear from Fig. 2 why semimetals are not
superconducting: Z~ is far too small. In a metallic
phase they are superconducting. Hence we expect that
metallic As and Sb, if made, will be superconductors.
A similar conclusion doubtless applies for the semi-
conductors, Se, and Te, though the case of degenerate

TABLE I, %{0}V for the superconducting elements. T, and 8&
are taken from the American Institute of Physics Handbook;
the values of r, and 0& indicated by an asterisk are estimated.

Metal

Al
Zn
Qa
Cd
In
Sn
Hg
Tl
Pb
Tl
V
Zr
Nb
Tc
Ru
Ia
Hf
Ta
Re
Os
Th
U

3
2
3
2
3

2
3
4

5

5
3
2
3
4
5
3
2

4

&s

2.06
2.30
2.18
2.58
2.40
2.21
2.66
2.48
2.28
1.92
1.61
2.14
1.78
2.12*
2.20
2.70
2.08
1.79
1.98
2.17
2.36
2.04

1.20
0.93
1.10
0.56
3.37
3.74
4.16
2.39
7.22
0.39
4.89
0.55
8.8

11.0
0.47
5.0
0.35

1.7
0.71
1.39
0.8

375
235
240
165
109
195
69

100
96.3

430
338
265
252
350'
350*
132
213
230
210
2804
168
200

K(0)V

0.193
0.200
0.206
0.196
0.345
0.296
0.446
0.316
0.493
0.155
0.274
0.178
0.357
0.345
0.165
0.370
0.171
0.296
0.236
0.185
0.236
0.202

semiconductors in general deserves further consider-
ation.

Ferromagnetic and antiferromagnetic metals are not
superconducting for a rather different reason. We re-
mark that in Eq. (21) there is a near-cancellation
between the contributions from the attractive phonon-
induced interaction and the repulsive Coulomb inter-
action. Hence any factor which prevents the electrons
from taking maximum advantage of the attractive part
of the phonon-induced interaction will strongly inhibit
superconductivity. As BCS have shown, the phonon-
induced interaction is most attractive when we work
with variational wave functions containing paired
electrons of opposite spin and momentum. Such pairing
is opposed by the exchange interactions between the
electrons in those metals which display ferromagnetic
or antiferromagnetic behavior; in fact the energy gain
from the exchange-induced spin correlations is large
compared to that achieved in a super conducting
transition at absolute zero. Hence ferromagnetic or
antiferromagnetic metals should not superconduct. The
rare-earth metals should not be superconductors for a
similar reason: the unpaired electron spins prevent the
electrons from taking proper advantage of the phonon-
induced electron interactions.

I et us now turn to the possible inhuence of crystalline
structure on the appearance of superconductivity. Our

expression (21) is, as we have remarked, not dependent
on the crystalline structure. However, if we improve
our treatment of the U processes, by taking q=k' —k
+K„ in the matrix elements deriving from (15) which

appear there, a dependence on crystalline structure
emerges. We have carried out preliminary calculations

using an improved model for the U processes, that
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introduced by Jones" for the monovalent metals. The
principal difliculty in carrying the calculations through
arises from the large number of reciprocal lattice vectors
which are of importance in the U processes. The use of
the Jones model does bring in a slight dependence of
T. on lattice structure. Face-centered cubic and body-
centered cubic metals of equivalent Z* and r, have
negligibly different values of $(0)V, while hexagonal
close-packed metals (again with the same Z* and r,)
should show a slightly higher transition temperature
than their cubic counterparts.

We believe that metals without a center of inversion
fail to superconduct because the number of useful U
processes available to the electrons is markedly reduced.
In other words, the effects of crystalline symmetry
(rather, here, the lack of it) are such as to prevent the
electrons from taking maximum advantage of the
phonon-induced attractive interaction. In general we
expect crystalline symmetry to play a role through the
U processes. *

Finally we remark that we expect the conclusions of
this section apply equally well to superconducting
compounds and alloys, an expectation which is certainly
borne out by the Matthias regularities.

Hg

.35 .
Nto)V

'3,6
Tc

l.9

U» ~ Ga
~Ai ~ Os

Hf ~ Zf ~R
I I

2. I 2Z
's

I

2.0

~ Cd

2.3 2.4 2.5 2.6 2.7

Fto. 3.N(0) Ir for the superconducting elements as a function of r,

*H. Jones, in Hundblch der Physi& (Springer-Verlag, Berlin,
1956), Vol. 19, p, 227.

"For the purpose of this discussion we regard the behavior of
the electrons in metals with Z=2 or 8, or the variation in'state
density in the d band in transition metals, as having origins
elsewhere.

IV. VARIATION OF I', AND N(0)V

In the BCS theory, T, is given by Eq. (2). It may
vary from one metal to another because (pcs)A„varies
(and this variation yields the isotope effect), or because
X(0)V varies, the latter variation being the more
important. We are primarily interested in the behavior
of 1V(0)V, since it is this quantity which reflects the
electronic behavior. [We remark that in searching for
empirical regularities amongst the superconductors it
would now seem more sensible to compare T./(A~)Av for
various superconductors, rather than T,.$ In Table I,
we give our determination of X(0)V for the supercon-

«Nh

20 = eTO

.15
~ r

JS,p-

I

~U
~ oZr
Hf

I

~ Re

'Al

ojh

~ 1n
~Tt

~ Lg

g4

~ Hg

2

.l5.p
L6

~ Zfl
~ Ru

I

K2 24fs~

~Cd

I I l

26 KS

FIG. 4. $(0)V for the superconducting elements as a
function of r, for diGerent Z*.

ducting elements, under the assumption that (fuo)A,

=8&&/2. The results are displayed in Figs. 3 and 4. We
see that the regularities of Matthias still persist for
X(0)V (although of course in weakened form, since we
have removed the exponential dependence):

(1) For a given Z* (aside from the divalent metals),
X(0)V increases with increasing r, .

(2) For the nontransition elements, there is an
increase of N(0) V with increasing Z*, for metals with
approximately the same r, .

(3) The variation of X(0)V with Z* is quite different
for the transition elements; for roughly the same r„
X(0)V displays the same periodic variations (though
correspondingly less marked) that T, does in Fig. 1.

Similar results hold for the superconducting alloys and
compounds. ,

We first remark that our calculated values of 1V(0)V
fall well below the experimental values. [For example,
we obtain X(0)V=0.074 for Sn.) Again, the reason we
underestimate the attractive phonon-induced electron-
electron interaction is our underestimate of Vg. In
carrying out the calculations leading to (21) our two
principal approximations tend to cancel one another.
By neglecting the inhuence of the periodic potential on
the electronic wave functions, we overestimate the
matrix elements, U(~k' —k~) and M, (~k' —k~), while
our use of kD for the V-process phonon wave vector
leads to an underestimate of VtT. Qualitatively, it is
clear that the net eBect of improving both approxi-
mations will be in the right direction, since the perio-
dicity correction will reduce both M, ( ~

k' —k
~ ) and

U ( ~

k' —k
~ ) by roughly the same amount, while an

improved treatment of the U processes will increase
only M,'(k' —k)/hco. Thus X(0)V for all supercon-
ductors will be increased over the values predicted by
(2&).



DA VI D PINES '

I ) II Ill I I I II I I I I) I I I II I I [ I l I I I I l I I II

iINi—
II PJ-

F'e („
N(E) — )Q ( p~Co I

» I I I 1 I I « II I l I I l I 1 I I I I » I l » 11 '

4 5 6 7 8 9 lo ll

FIG. 5. Density of states in the 3d band (after Daunt" ). The
circles give the density of states, N(E) at the Fermi level as
deduced from the observed electronic specific heats for the metals
as marked. The shaded path indicates the possible region in which
the N(E) values for the other, as yet unmeasured, transition
metals may fall.

Despite our lack of quantitative accuracy in the
calculation of X(0)V, we may still draw certain quali-
tative conclusions of interest concerning its variation
throughout the periodic system from (21).We 6nd that
(21) yields results for X(0)V which are consistent with
regularities (1) and (2) above Lor with the Matthias
regularity (5) and that part of (7) applying to the
nontransition elements7. These results are obvious from
inspection of Fig. 2, which tells us that —E(0)V
becomes more negative with increasing r, for a fixed Z*,
or with increasing Z* for a fixed r, .

The situation is quite diferent for the transition
metals, a diR'erence which we believe can be traced to
the variation in the density of states in energy in the
d band with valency. The close relationship between
the variation in T, and the or,-band state density (see
Fig. 5) has been pointed out by Daunt" and Matthias. '
Let us see how it might follow from the BCS theory. "

In (21), the dependence of X(0)V on the state
density /{0) is not particularly simple, since the state
density in the free-electron theory is proportional to
r, ', and hence to (1/a'). The rather complicated
dependence is due to the fact that the value of V, in

(21), is quite sensitive to the value of the screening
radius k, ' we assume. For our simple model,
k, o- [1V(0)7 I, and the variation of V with k, tends to
counterbalance the appearance of X(0) in the expression
E(0)V. This conclusion appears to be valid for the
nontransition metals. Let us now consider the transition
metals.

The physical situation for the coupled electron-ion
motion in the transition metals di6ers substantially
from that obtaining in the nontransition metals. The
overlap of the s and d bands, with their quite diferent
state densities, leads to rather complex electronic be-

'3 J. Daunt in Progress in Iom Tempera''ure Physics (North-
Ho11and Pnb1ishing Company, Amsterdam, 2955), Vol. 2, p. 202.' The ideas in the remainder of this section were developed in
collaboration with P. Nozieres.

havior, which cannot be analyzed on the basis of the
foregoing simple model. Consequently, we shaH only
endeavor to present a qualitative account of the elec-
tronic behavior, and the way in which it may account
for the superconducting properties of the transition
metals. T'he ideas which follow are intended to be
suggestive of how an account of that behavior may be
formulated, rather than representing the fruits of such
a formulation.

The basic difterence between the transition metals
and the nontransition metals is that the effective
screening wavevector, which so largely determines V,
is not simply related to the state density $(0). As a
result X(0) and V are more nearly decoupled in the
transition metals. One therefore expects a transition
temperature which varies more nearly as expL —$(0)7,
where X(0) is determined almost entirely by the
"d"-band state density, that being much higher than
the corresponding "s"-band density. Such a variation
accounts quite well for the variation of T, with Z* in
the transition elements, since the appearance of X(0)
in the exponential certainly emphasizes the role of the
state density.

Let us consider the problem in more detail. We have
both Coulomb repulsive and phonon-induced attractive
interactions between d electrons, between d electrons
and s electrons, and between s electrons. In the BCS
theory, because it is a variational approach, only the
"d—d" or "s—s" interactions will be of importance.
Hence, the s—d interaction plays a role only as, in

higher order, it modifies the "direct" "d—d" and "s—s"
interactions. The s electrons are fairly mobile, and
behave very much like the nontransition element elec-
trons. Thus, their effective interaction, and their contri-
bution to X(0)V, may be expected to go in much the
same fashion. However, as we have mentioned, the d
band is responsible for the major portion of the state
density at the Fermi surface. As a result, we may
expect that it is the d—d interactions which are of
primary importance for superconductivity, and the
role played by the "s—s" electron interaction may be
neglected to a good degree of approximation.

For the short wavelengths in which we are interested,
the screening of the interaction between the "d" elec-
trons cannot be as complete as that implied by the use
of a Fermi-Thomas model which contains the "d"
electron state density. "The effective screening action
of the "d" electrons appears to be nearly constant
throughout a given transition-metal series (extending,
indeed, to those metals just beyond). Evidence for
such behavior may be found in the plasmon spectrum
of the metals, "where there is observed a nearly constant
plasmon energy (of 22 ev) from Ti through Zn, for
instance.

'~ J. Friedel, Nuovo Cimento (to be published). We should like
to thank Professor Friedel for an illuminating discussion on this
question.
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Again, it is not unlikely that the phonon-induced
"d—d" interaction is fairly constant for the transition
metals with Z between 3 and 7. The matrix elements
for the scattering of a "d" electron from one valley to
another are the ones of importance (corresponding to a
large k' —k) and these would not be expected to vary
radically with changes in Z* or r, . Thus we are led to
take V as approximately constant for the transition
elements, confirming the speculations above. It should
be emphasized that V is not strictly constant, as a
comparison of X(0)V with the known values of X(0)
quickly discloses.

The above considerations appear consistent with
experiment for the variation in Z with r, fixed. Com-
pare, for instance Nb with Ta for Z*=5, or the transi-
tion elements with Z*=4 with those with Z=3, 5, or 7.
It should be noted that once we consider appreciable
changes in r„ the quantity E(0)V is no longer simply
related to X(0). Thus Zr and Ta have larger values of
X(0)V than Ti and V, respectively, despite the fact
that the latter pair possess the larger values of X(0).
We note also that the values of X(0)V for the transition
metals with Z*-=4 lie substantially below their counter-
parts for Sn and Pb. It appears that E(0)V is somewhat
smaller for the transition metals than for the normal
metals, where the state densities are roughly com-
parable, and that the large values of 1V(0)V for the
transition metals should be attributed to large values
of E(0).

V. CONCLUSION

The BCS theory, together with the simple model of
electrons and ions interacting via screened Coulomb
interactions, aRords a good qualitative understanding
of the appearance of superconductivity in the non-
transition elements. We may also understand qualita-
tively the different behavior of the transition elements.
Can we go beyond this, without carrying out detailed
calculations of the electronic wave functions for each
individual

metall'

The variation of the portion of AT(0) V arising from
II&,„& is comparatively smooth. In fact on our simple
model this part depends only on r, . It seems therefore
likely that the inclusion of various eRects of periodicity
will not markedly alter the contribution Hz, „& makes to
N(0)V. The complications reside in the contribution
made by H», which does seem sensitive to the details
of the calculation. One might hope that one could
estimate the latter from the resistance of the metal in
question, since at first sight the relaxation time and
this part of E(0)V depend only on slightly difference
angular averages of M~(k —k'). Such is indeed the case
for any metal for which intraband scattering is the

primary cause of resistance. (These are just the metals
for which our simple model is most appropriate. ) On
the other hand, where interband scattering is important,
as in the transition metals or the divalent metals, the
matrix elements which are important for resistance are
not those important for X(0)V, so that no simple
estimate of X(0)V along these lines is feasible.

One would also like to derive the shift in T. with

pressure from the BCS theory. The quantitative esti-
mates of X(0)V from (21) are certainly not suKciently
reliable for this purpose. However, it does seem feasible
to attempt to estimate $(0)V more accurately in a
semiempirical way for the nontransition metals, in
order to study its variation with pressure. "We may
anticipate that the variation of iV(0)V with pressure
will prove more decisive in its eRect on T. than the
known variation in Og.

We have not discussed in this paper the empirical
correlation between T, and X(0) noted by Daunt" and

by Lewis. '~ The regularities they obtain are not con-
sistent with the isotope eRect. If they are made con-
sistent, by considering T,j8q for example, one then
arrives at the regularities we have been discussing for
X(0)V. As we have seen, the latter quantity does not
depend on state density in any simple way. It should

perhaps be noted that the apparent variation of T.with
isotopic mass (T,~1/M) proposed by Matthias' be-
comes somewhat ephemeral when one considers the
difference in state densities for the metals discussed by
Matthias. We do not expect X(0)V to depend on the
isotopic mass, even under the extreme assumption that
1V(0) V in the transition metals is determined by the
higher order corrections from the s—d interactions.
Hence we expect the variation of T. with isotopic mass
to follow entirely from the variation in (5&a)A„.

Finally we wish to reiterate our belief that the
criterion for superconductivity expressed in Fig. 2

should aGord a reliable positive test for superconduc-
tivity since the criterion is on the pessimistic side. If a
metal is not divalent, ferromagnetic, or antiferro-
magnetic, if it is not ruled out by one of the crystalline
structure arguments (for example, no center of sym-

metry, CdI crystal structure), and if it lies above the
curve in Fig. 2, it should superconduct. Thus we expect
Mo, W, Y, Sc, Pa, and metallic versions of Sb, As, Se,
Te, and Po to superconduct.

We should like to thank Professor John Bardeen,
Dr. Bernd Matthias, and Mr. Philippe Nozieres for a
number of stimulating conversations on these and
related topics.

"This possibility is currently being investigated by Mr.
Pierre Morel.

'7 H. W. Levris, Phys, Rev. 101, 939 (1956).


