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Brownian Motion of a Mirror in Superfluid Helium*
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This paper treats the Brownian motion of a mirror suspended in a phonon or photon gas. It is shown
that the properties of the medium, such as the statistics and the temperature dependence of the excitation
concentration, inAuence the mean square Fourier amplitudes of the motion of the mirror.

' "N the present theory of superQuid helium we picture
~ . the superQuid as a continuum in which small
particle-like excitations, photons and rotons, move
around. The existence of these excitations is usually
inferred through the analysis of thermodynamical and
hydrodynamical measurements. Would it be possible to
invent a more direct experiment in which the existence
of small distinct particle-like excitations could be
exhibited directly?

In the nineteenth century the same question was
posed to demonstrate the existence of atoms. There the
first, so to say, visual demonstration was given through
the experiments on Brownian motion. Why not try the
same here)

centimeters in length and one or two microns in diam-
eter and perform the experiment at 2'K, the root-mean-
square angular deQection will be of the order of 10 4

radian or about 20 seconds of arc. If, suppose, about
ten modes are excited, this will give roughly 2 seconds
per mode on the average. This is not easy to detect,
especially not in view of the external disturbances.
Moreover, there is the following additional difficulty.
For a quartz fiber of the above size and a mirror of 1. or
2 square-millimeter area, the free period is about one
hour. Since we have to take long time averages, in
length many times the period, the duration of the
experiment will be very large. For this reason we cannot
decrease greatly the restoring force in the fiber which
would otherwise be useful, since it increases the root-
mean-square angular displacement.

If we suspend a small mirror in a gas it will undergo
torsional oscillations due to the impact of the gas
molecules. By the theory of Brownian motion the
mean-square angular displacement is independent of the
gas and its pressure and only depends on the tem-
perature. On the other hand, the details of the motion
depend on the medium. If we Fourier-analyze the
angular motion of the mirror, the mean square of the
Fourier components depends on the density or pressure. '
This is quite natural if we observe the behavior of a
very dilute gas. The mirror will perform torsional oscil-
lations with its proper frequency, and this motion will
be disturbed only seldom by a chance collision with a
gas molecule. Thus, essentially all Fourier components
will be zero except the few in the neighborhood of the
one corresponding to the proper frequency of the
mirror. In a dense gas, however, practically all modes
will be excited by the constant bombardment of the
mirror. If we take the surrounding gas to be a collection
of phonons (and rotons) in superfluid He and describe
the Brownian motion of a mirror in superQuid He, we
could test for the existence and behavior of phonons
and rotons. Unfortunately there are formidable diK-
culties involved in the actual experiment, since the
eGects are so small. If we take a quartz Aber of a few

* This work was supported in part by the U. S. Atomic Energy
Commission.' G. Uhlenbeck and S. A. Goudsmit, Phys. Rev. 34, 145 (1928).
LSee also R. H. Fowler, Statistical IrIechartics (CambrIdge Univer-
sity Press, New York, 1936), pp. 775—783.$

—',DQ (t)')„„=-„'((r')„„at/r)=-,'kT. (2)

Hence, if we calculate from a detailed model of the
medium (I')A„and r, we must be able to verify relation
(2)

H we expand I'(t) and @(t) in a Fourier series for the
long time interval 0 to r, F (t) =P s (A s cosaist+ Bisin~crt),
ais= 2mk/r, / =ps ps(t), we finds

1 As'+Bss
k Av

2I' (0' os/, ')'+ (r/I)'coJ,'—
where Ass+Bs'=(4/r)(P)„„ht and 0= (D/I)& is the
eigenfrequency of the suspended mirror.

Our interest is to find (gs')A„ if the surrounding gas is
phonon gas. We omit the discussion of the roton gas,

' R. H. Fowler, reference 1, p. 781.' R. H. Fowler, reference 1, p. 782.

The motion of the mirror is described by the equation

Ij+rj+Dy =I'(t),

where p is the angular displacernent of the mirror from
its equilibrium position, I its moment of inertia, r the
resistance, D the force constant of the filament upon
which it is suspended, and F is the fluctuating torque.

If (P)A„is the fluctuation in the couple (since (I')A, ——0)
produced by particles arriving during time At, then the
condition of equipartition gives the following relation'.
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=S,((N„N,)'),=S,[N—„+(N~)']

=oi;N, +oi; (N,)'.
(4)

The first equality follows from the definition of rI,;, the
second from the fact that E„and X„are uncorrelated,
and the third from the well-known expressions for the
Quctuation in the occupation numbers in Bose-Einstein
statistics; the last equality follows from the fact that
the number of phase points in cu; is proportional to co;.

(Since the N„'s are uncorrelated, we see that the n s
are also uncorrelated, as we asserted above. ) For a
phonon gas

4Ao Atc l." t
" I'" pi3

((G 'tr) )Av l
dpi dp2 l dp3

since at suKciently low temperatures the contribution
due to this gas is negligible.

For this we have to evaluate (I')a„and r. [In principle
it would be sufficient to calculate (I')A„or r, since by
(2) one is a function of the other. As a check, however,
it is useful to evaluate both independently. )

Let ho be a small element of area on one side of the
mirror at a distance x from the axis of suspension. If 6
is the momentum transferred to it in time ht the
impulse received will be xG, and the Quctuation in the
impulse will be x ((G—6)')„„.Summing over both sides
of the mirror we shall obtain the Quctuation in the total
impulse; upon division by (At)' we obtain the fluctua-
tion of the total torque. Thus our problem is reduced to
evaluating ((G—6)')„„.

Take Ar to have a normal along the 1 axis. Let i
denote a region in phase space which has the following
properties: the particle is in the spatial region e;
=AoAtpi/rn for an ordinary gas or AoAtcpi/I pI for a
phonon gas (collision cylinder) and its momentum is
such that pi&&pi&~pi+dpi, p3&~P3&~P3+dp3; P3&&p3
&~p3+dp3. The extension of this region is oi, =o,dpidp3
Xdp3/k3. I.et n; phase points be in co, ; then the total
momentum transferred to Ao in time At is G=P,
X2pi(i) n;, if we assume specular reflection. If n, and n,
are statistically ind. ependent of each other (as is the
case), the fluctuation is given by

((G—G)') =4 2'P (i)((n' n')')

What is ((n,—n,)')A„ in terms of N„, the number of
particles in unit volume with vector momentum PP By
definition e,=S„X~, where the summation 5„ is per-
formed over all p's in region i. Hence

((n,—n;)')A„=S„S„((X„—N~) (N —N ))a„

AoAt[(pi/I pI)c—33)(ee'l&l —1) 'dpidp3dp3/k3;

(Pi/I P I)c&~.

Each impact transfers 2[pi—(IpI/c)N) momentum.
The total transfer is

(2Ao At/k3)
~ (u/c)l pl

dPi dP3 dP3(IPI/c)

X[(p /3I pl)c —I)'(e' ~ —1)-'. (6)

If ho. is located at a distance x from the axis of rotation
the total impulse transferred to Ao- is x times the above
expression. Now let us expand the integrand in terms
of I, retain only the term linear in u, and put N=x@;
the coefficient of $ will give the friction of the element
Ao-. Summing over all Ao, we get the friction of the
whole mirror. This way we get r = (Sm'/15k3) (kT/c)'A'o,
where ~ is the radius of gyration of the mirror and o is
the surface area of one side of the mirror.

In terms of the pressure, r 6(P/c)~'oor 2p(P/kT)z'o. . .

In terms of p and P, it has the same form as for a
Boltzmann gas.

We easily verify that aa ((I')A„At/r) = 33k T, as required.

I.et us analyze the details of the motion.

2(I"')A,At

from the axis of suspension is then (4Atc/k3)Ex'Ao;
summing over all elements we obtain (4Atc/k')EA32o, if
~ is the radius of gyration and 2o the total surface area,
or o the area of one side; dividing this by (At)', we

finally obtain (I')a, ——(8cE/Ath') ii'o. What is left is the
evaluation of E.

If we transform to polar coordinates, the polar axis
being the 1 axis, and expand the factor (1—e ~'l&l) '
in a binomial series, we can perform the indicated
integrations, and sum over the resulting series. We
obtain E= (12m'/90) (kT/c) 3 or

(I'3)„=(1&ira/15) (kT/k't) (kT/c)'~'o.

ln terms of the pressure P (of the excitations) we get
(I'3)a, ——12P(kT/c)K'o/At. If we observe that the mean
forward momentum p 3kT/c, we get (I'3)A„4pP~'o/At.
In terms of P and p it has the same form as for a Boltz-
mann gas.

The quantity r can be computed as follows. The
element do of the mirror with a normal along the 1 axis
should move to the right with the velocity e. The
number of collisions from the left with momentum pi,
P» P3 is

X
epol nl 1 (eccl nl 1)3

Ic Av

rI2 (0'—~oa')'+ (r/I)'coa3

=—(4AoAtc/k3)E P= (kT) ' (5)

The impulse transferred to element d,o at a distance x

The maximum value will be reached for an ~q Q. For
this value of k, we get

(43)av(resonance) =—(4&ii')av= (2/r) ((I"3)avAt/0'r3). (8)
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Since (P'&Avb, t= 2rkT, we further get

(yg')A„4k——T/0'rr,

thus the behavior of (Pii')A„as a function of the tem-
perature will be determined by kT/rr. At 1'K this ratio
is about 0.06 (with r 10' sec) and it will increase very
sharply as the temperature decreases, since r T4. At
first sight it may be surprising that this ratio tends to
infinity as T—+0. This is due to the fact that v. cannot
be kept constant as T—&0, for the following reason.
The long time interval r for which we performed the
Fourier analysis must be much larger than 1/0, the period
of the free oscillations. For Eq. (1) to have a meaning,
1/0 in turn must be much larger than r„ii;„,„,the average
time elapsed between two consecutive phonon-mirror
collisions. Consequently v.))~„»j„,„. If T—+0, r„»;„,„
—+00; hence we cannot keep 7 (and 1/0) fixed in the
limiting process T—+0. (In practice this is not a very
serious point, since at 1'K rqp»jsjpg on 1 cm' is about 10 "
sec for a phonon gas, and is still 10 seconds at 10 "K.) If
we keep the ratio r/r„ii;„,„——E fixed in the limiting pro-
cess, (gz')A„ tends to a finite value. The quantity r can be
written as r=32(kT/c')a'/r„ii;„, „, or rr=32(kT/c')r/
r„ii;„,„,and consequently k T/rr is independent of T. As
.i —~ the Fourier sum tends to an integral, and conse-
quently we are better off if we deal not with (q4')A„but

with Q'{a&))A„dco. In other words, we write

Q')A. =Z (q4'&A. = " (4'(~)&Ad,
a

" J,
where

Now the expression is independent of r. As T—+0 we
will have a singularity in the integrand, but the integral
is still converging, and converges to the correct value
kT/D. Introducing x=&u/0, we can finally write it in
dimensionless form as

8'&"( )~= (2pQ')"~*/ )/I (1-*')'+p'"j
where (p'&A„——kT/D and p= (r/QI) =free period/relax-
ation time. We see now how the spectrum of the Quc-
tuations behaves. At x=0 it starts out with the value
2p(qP)A„/n. , rises to a high and narrow peak at x=1
with a height 2(qtP&A„/ps and width p, and drops to zero
very fast for x&1. Thus we see immediately that the
integral over all frequencies will be indeed indepen-
dent of p, being approximately

[(qt' (~))A 3 p= (2(4' )A /p7r) p= (2/'r)(0')A'

A precise evaluation of the integral gives just (p &~„as
it should. This is easy to verify for large p. Then

f
(2p/m) (qP&q, [(1—x2)2+p~x~g 'dx~ (2p/m')(qP)A, [1+p2x2j idx = {2p/s') «2)A, (7r/2p) = (qP)q„.

Jo ~0

It is interesting to discuss the fraction (qt &A„{x)dx
= (2p/s. )/[(1 —x')'+p'x'], which gives the fraction of
the average potential energy concentrated in the
frequency band dx. The temperature dependence is
determined by the temperature dependence of p. In
all cases p—+0 as T—+0 and most of the energy is con-
centrated in a narrow frequency range around 1. For
an ideal gas obeying Maxwell-Boltzmann statistics p
is proportional to T&, while for a phonon gas p is propor-
tional to T4. Thus, for a phonon gas the narrowness
and height of the peak will become more pronounced
as we lower the temperature.

One may inquire to what extent this difference in
behavior is due to the Einstein-Bose statistics or to the
fact that the number of phonons varies with the tem-
perature in the medium. The answer is simple. Let us
imagine that we immerse our mirror in an ideal gas
whose concentration is the same at each temperature as
that of the phonon gas at the same temperature. Then
p is proportional to p(E/kT) or to T&T'= T~", since for
a phonon gas the density of phonons is proportional to
T'. The peak will be proportional to T/Tit'= T 'i' and
it will again tend to infinity as T—+0. As we see, it is
the temperature dependence of the excitation density

which causes the strong increase in the sharpness of
the peak. Of course, the above considerations can be
applied without any alteration to the Brownian motion
of a mirror in a radiation field. This problem (and the
Brownian motion of an electron) was first treated by
different methods by Lorentz and by Fokker who have
obtained an incorrect result. 4 Pauli's work' has shown
how this can be remedied. Our method is different from
theirs.

The experiment would then be as follows. We register
the Brownian oscillations of a mirror in superQuid
helium, and Fourier-analyze the resulting curve. We
compute the mean square of each Fourier component,
and plot it as a function of the frequency. We repeat
this for several temperatures. The comparison of these
curves at different temperatures with the theoretical
ones would be the test.

I wish to express my thanks to Professor J.E. Mayer
for many interesting discussions.

4 H. A. Lorentz, Ber. Solvay —Kongress in Brussels, 1911;A. D.
Fokker, Arch. neerl. sci. IIIa, 4, 379 (1918).

5 Vf. Pauli, Z. Physik 18, 272 (1923).


