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In this paper the concept of statistical equilibrium of an isolated
mechanical system chosen from a Gibbsian ensemble of such sys-
tems is modified to mean a state in which the observable local
macroscopic properties such as the local density of particles, mean

energy, temperature, entropy, etc., have attained their equi-
librium values, i.e., the values which would be obtained from the
density in phase space which corresponds to the appropriate
stationary solution of Liouville s equation. The approach to equi-
librium in time in this sense (i.e., for the local properties which are
suitable averages over the action variables of the system) of a
wide class of multiply periodic systems, etc., is demonstrated
under the condition that a local property exist initially. Certain
characteristics of such a weak convergence as monotonicity of

approach after a sufFiciently long time has passed and the asymp-
totic magnitudes of the local properties are investigated. The
question of extension of this ergodic result to less restricted
mechanical systems has been discussed and the relationship to
ergodic theory and coarse graining indicated.

On the basis of the above result the general transport theory
and the approach to spatial uniformity of a sufFiciently ideal gas
is investigated, by using as a model a gas of elastic hard-sphere
molecules with vanishing diameter. In particular it is shown that
under suitable conditions the diffusion in density satisfies Fick's
laws and the conduction of heat satisfies Fourier's law, albeit
with time-dependent transport coeKcients.

1. INTRODUCTION

HK fundamental desideratum of statistical me-
chanics asserts that in general a statistical en-

semble of isolated mechanical systems approaches in
time statistical equilibrium unless at the outset this
state has already been attained. ' The precise sense in
which this desideratum is to be understood as well as
the specification of necessary and sufhcient conditions
under which it may be demonstrated has been the sub-

ject of considerable interest (and incidentally con-

troversy) for the past fifty years or more. '' In par-

ticular, for systems of material particles under the
inQuence of forces which depend only on the spatial
coordinates, the Poincare cycle theorem' precludes the

possibility that (in the usual sense of function theory)
the ensemble density of the systems converges to the

stationary ensemble density as the time t—+~ ~ starting
from an arbitrarily given initial ensemble density. Such

a strong mode of convergence, though, is in general not
necessary to explain the observed approach to equi-

librium of actual physical systems. This approach is

observed rather in the study of any of the local macro-

scopic properties of the physical systems satisfying a
suitable phenomenological transport equation such as
a local density, mean velocity, temperature, mean

energy, pressure, entropy, etc. These quantities ap-

proach in time the same value they would have in a
state of statistical equilibrium. These local macro-

scopic properties can in general be exhibited as incom-

plete phase averages over the ensemble density of a

J. %. Gibbs, Elementary Principles in Statistica/ Mechanics
(Yale University Press, ¹w Haven, 1914), Chap. XII in
particular.

~ For general reviews see P. and T. Ehrenfest, Kncykl. math.
Q"jss. 4, No. 32 (1911);S. Chandrasekhar, Revs. Modern Phys.
1$, 1 (1943); D. ter Haar, Revs. Modern Phys. 27, 289 (1955).

3 A. J. F. Siegert, Phys. Rev. 76, 1708 (1949).' H. Poincar6, Acta Math. 13, 67 (1890).

suKciently "smooth" function of some or all of the
canonical coordinates of the system. '

The purpose of the present investigation will be the
demonstration and study of certain characteristics of
such a weak convergence to equilibrium (i.e. , in the
local properties) for certain mechanical systems, in-
cluding a wide class of multiply or conditionally periodic
Hamilton-Jacobi systems. This complements a previous
investigation on multiply periodic Hamilton-Jacobi
systems which led to estimates of the Poincare recur-
rence time and the asymptotic fraction of the time
spent by a system in a recurrence. ' lt will turn out
that the appropriate incomplete phase averages which
exhibit the desired convergence will be with respect to
a suitable set of action variables. The simplest example
of the class of physical systems we shall be concerned
with is afforded by a gas composed of hard-sphere
molecules of vanishingly small diameter, i.e., one satis-
fying the equilibrium equation of state p=ek'1 where

p is the pressure, e the number density, T the tempera-
ture, and k Boltzmann's constant. Since this example
already illustrates the general features of the mode of
convergence of the wider class of mechanical systems
we are interested in, we shall deal with it first. Without
undue restriction in generality for our purposes, we
need consider only the case where the gas is one-dimen-
sional and is restricted to move along the circumference
of a circle of unit radius.

What we hope to accomplish in this paper is the
following: First, we wish to point out that a plausible,
though perhaps not always totally satisfactory, de6ni-
tion of an equilibrium state of an ensemble of systems
need be associated only with the weak convergence with
increasing time of the sequence of ensemble densities
in phase space. Each member of this sequence corre-

~ Hirschfelder, Curtiss, and Bird, Molecular Theory of Gases and
Liquids (John Wiley and Sons, Inc. , ¹wYork, 1954); see also
H. S. Green, The Molecular Theory of Fluids (Interscience Pub-
lishers, Inc. , ¹wYork, 1952), pp. 130 G.' H. L. Frisch, Phys. Rev. 104, 1 (1956).
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sponds to some arbitrary choice of the initial com-
plexions of the systems in the ensemble. In the specihc
examples discussed below, we show that this process
corresponds to a special kind of coarse graining. Next
we consider three categories of systems: (1) systems in
which the interaction between the degrees of freedom
of the system can somehow be shown to imply the
existence of macroscopic dissipative eGects over reason-
able times of observation; (2) systems with interactions
about which nothing can be said as to whether they
exhibit macroscopic dissipative eGects or not, and
finally (3) systems in which the interaction can be
transformed away. We consider only very special
classes of mechanical systems belonging to the second
and third categories and show that these exhibit an
approach to equilibrium which has features formally
resembling certain of the main features of the particular
approach to equilibrium exhibited by a class of systems
belonging to category one which have been investigated.
Besides exhibiting explicitly by this the existence of
another mode of approach to equilibrium which is inde-
pendent of any dissipative mechanism, we wish to
argue the plausibility that at least certain arbitrary
systems other than those considered below may still
approach equilibrium in our sense even though the more
usual approach to equilibrium, depending on the dissi-
pative mechanisms of the system, fails to function or is
incapable of being shown to function. Whether any-
thing is gained by this description depends on whether
or not the features of this approach to equilibrium
possess only a super6cial resemblance to the desired
features of a physically acceptable approach to equi-
librium. We bias the remainder of the discussion to-
wards the second eventuality.

Needless to say, this does not dispose of the first
eventuality, in which case the calculations of Secs. 2,
3, and 4 of this paper merely demonstrate the fact that
the models introduced with the kind of interactions
exhibited below are "bad" models. They are "bad"
models in the sense that they lead to only a pseudo-
equilibrium state and an approach to this pseudo-
equilibrium whose properties are physically unrealistic
even in limit cases of real systems. If one adopts this
point of view, then much of the discussion of Secs. 3
and 5 becomes irrelevant.

where p'(8i', ,8~', cubi', ,&og'), the initial density, is
a symmetric function in the sets of variables 01', , 0N'

and col', , ~N'. We choose to normalize p over the
whole phase space to the total number density zz =X/2zr.

In what follows, we can assume without undue re-
striction that p' can be written as a convergent infinite
sum of S-fold products of jointly normalizable func-
tions f,'(8, Oar, o), vi»

p 2'
f,'(8,'; s),')d8,'des; = constant = y (e) & ~ ."~ 0

Hence

e=o i=1
(3)

with e, suitable constants and f,'(8, cu, t; cu, ) per—iodic
in 8, &u;t w—ith period 2zr [see (1)] and uniformly con-
tinuous in its arguments. Later we shall need, in order
to discuss adequately the transport theory of this quid,
the existence of third-order moments of p,

' as well as
continuous derivatives of the erst two. The relevant
local macroscopic properties of our gas can be expressed
as averages over an angular velocity of the one-molecule
distribution function (O.M.D.F.) f(8,~; t),

p2%

p (8 G)I) 8z Gdzh) ' ') 8y M@I pJ.
N

coicoz, ' ' ',Mpr) g d8 gkd '=f'(8 cd/, co)
s=2

where 8,' and ~,' are the values of the angular position
and velocity of the ith particle at time t=o. The
density in phase space of a Gibbsian ensemble of such
systems, p =p(8i, ,8& ,'s», ,a»; I), which satisfies
Liouville s equation dpldt=0, is thus given by

p (8i Ml/& ' ' '& 8Ã MN3& 071&
' '&%X)&

2. ONE-DIMENSIONAL GAS

Consider N identical molecules (point particles),
each of mass m, distributed on a unit circle. Let the
angular position and velocity of the ith particle be 8i
and cubi. Since the collisions between the molecules are
elastic and the particles indistinguishable, we can allow
the colliding molecules to move as if they passed
through one another without collision. ' The solution
of the Hamilton canonical equations can then im-
mediately be written down:

,0+i=i y

8 =8'+ra I(mod2m. ), z= 1 ~ X

by virtue of (3), where f' is periodic with period 2zr in
0—cot. If we assume furthermore that the initial
O.M.D.F. is representable by a Fourier series in 8
which is uniformly continuous in 8 and co, we have for
all time'

f(8,(o, t) =f'(8 cot; (o)—
=zz/$0((a)+Q(fz((u) cosfk(8 —(ot)j

k=1

+Pg(co) sinr k(8 —(ot)])j. (5)
' The conclusion that f(B,co, t) =f'(8 —cot; co) follows directly

from (2); we have introduced (4) only to set up a correspondence
with the more general case; see Eq. (25).
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The Fourier coe%cients satisfy respectively. Now (9)—(13) show that the relevant
uniformly continuous local properties A(8; t) are all
averages over f with respect to a& (an action variable)

J ' J„'J '
of a smooth-function (i.e., continuous) h(co;8) which is
periodic in 0; i.e.,and

f(0,cd, t)d(u) 0. A(0; t) =,~ h(co;0)f'(8 —at;cd)dc0

Since f is as usual normalized to e in the kinetic theory
of gases, we have

p2%

J f(8)M p t)d0dcd= Bq
4 —oo 0

and the initial local density of molecules is

po(8) = ~ f'(8; cu)d(u) 0.

w~ere

=A„(8)+P(Lag(8; t) bI, (—8; t)) cosk8
k=1

+[bz(8; t)+ay(0; t)$ sink8}, (14)

A„(8)= Jr h( 8)P ( )d

ac(8; t) =I I h(cd; 8)PI, (~) coskoddku,

In view of (3) and (5), we can immediately conclude
that neither tc nor f approach in the usual sense a sta-
tionary distribution characteristic of statistical equi-
librium: i.e., tM a solution of the time-independent
Liouville equation and f the time-independent (one-
particle) molecular velocity distribution ~qko(cv). Unless
the velocities co, are rationally dependent, p, is a multiply
periodic function whose value, although never becoming
equal to tc(t= 0), approaches it to any desired degree of
approximation infinitely often with probability one,
i.e., Poincare recurrences occur. ' Even more explicitly,
we can see from (5) that f(0,cu; t) is a periodic function
taking on its initial value f'(8; co) whenever t=2me/ c0

(m=0, &1, &2, ). Thus, in the usual sense neither
tc nor f approach an equilibrium distribution in time.

Let us now consider the local macroscopic properties
of our Ruid in terms of which we can formulate its
phenomenological transport theory. The relevant prop-
erties are the density of the fiuid at any point, p(8; t);
its mean velocity, coo(0; t) (this is related to the peculiar
velocity of the kinetic theory 0=cd —coo); the mean
energy E(0; t); the pressure P(0; t)'; the temperature
T(8; t); etc. These are defined, if they exist, by

p(8) t) =
J f(0,a),. t)d(u= J' f'(8 cut; a)de, (9)—

E(0; t)p=-,'m " cPf'(0 cot; co)dk), —

ag(0; t) =I h((o,.8)gc(cd) cosh(utdku,

bc(8; t) =eJ h((o, 8)pg((o) sink(std~,

bI, (8; t) =e h(~; 8)gg(ar) sink(std(o.

A(0;t) ~A„(0) ast~ (16)

This is our fundamental result. It shows the weak con-
vergence of f to its equilibrium value mPo(co) in the
sense given by (16). In particular, if h is a function of ~
only, h=h(cd), then (16) shows that A(8; t) becomes
uniform in space with time; see (9)—(11).

The question that immediately arises is what char-
acterizes the mode of this approach to equilibrium?
The answer to this question depends strongly on the
nature of our initial distribution. This is easily illus-
trated by considering a simple initial O.M.D.F. of the
form

f(0,cd; t) =neo(ar)L1+ yo cos(8—out) j,

Now if the local property can be defined for the initial
O.M.D.F., i.e.,

ac(8; 0), c4(0; 0) (ao,

then the Riemann-Lebesgue theorem' assures us that
aI„aI„bI„bI,—+ 0 as t—& ~ and'0

p(8& t) =Bzj~ co(M Mo)f (8 cOt& &v)dc',

where qo is a constant, —j. (@0&1.Let us consider
(12) the local densities corresponding to various choices of

the form of the O.M.D.F. in statistical equilibrium,

kT(0; t) =—, (co—co )'fo'( 8&et; co)dko, etc. , (13)
P

8 For this Quid the pressure tensor reduces to the scalar pressure.

9 E. C. Titchmarsh, Introduction to the Theory of courier Iwte-
grals (Clarendon Press, Oxford, 1937), p. 11.

'0 Since A (H, t) is uniformly continuous in 8 and t and periodic
in 8 the Fourier series converges uniformly.
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mt p(oi). If It p(oi) is Maxwellian, i.e.,

It ( )=(0/ )'e p( —0 '),
we find that

p (8; t) =m[1+ q p exp( —P/4P) cos87,

(18)

(19)

i.e., the approach to uniformity in space is monotonic
in time and incidentally very rapid. On the other hand,
if fp(oi) is chosen to be a step function

0 for —~ &u& —0
fp(pp) = —,'Q ' for —Q&oi(Q

0 for 0&or & ~,
(2o)

f'(8—~1;~)=~[A(~)+ 2 b(~)e '"" ""7 (22)
k= —~
k&0

this will certainly be the case if the t&(oi) can be ex-
pressed as Gram-Charlier series in co, i.e., if

4(~) =Z ~ "'G (~)
n=O

where the C '"' are constants and G (oi) = (—2m. l)
Xexp( 7roir)—& (27rioi), with H the Hermite poly-
nomial of order m.

Another way of characterizing the approach to equi-
librium is by the asymptotic behavior of the local
properties, e.g. , the density. Two results" on the
asymptotic behavior of Fourier transforms can be
applied immediately. The erst (see reference 12, p. 44)
assures us that the reduced density p —e is O(e "') as
I —+ po and O(e+"') as t~ —~, X, p)0, in a, P)0,—n&imI&P; as long as the coefFicients $i, in (22) are
integrable (—~, po) and are analytic within the strip
—@&Imp&&X, and as long as within the strip $p(oi)
=O(e e") as oi —++~; )i(o&)=O(e+ ) as p&~ —~.
Similar results can be obtained for the other local

we find that

p(8; 1) =tt{1+iop[sin(Qt —8)+sin(Q/+8)7/2QI). (21)

In this case the approach to uniformity in the density,
etc. , is not monotonic but oscillatory. This immediately
raises the question of how to characterize the class of
initial O.M.D.F.'s whose local properties, e.g. , the
density, approach their equilibrium values mono-
tonically as t~ ~. A completely general answer to
this question is very difficult to find. " Indeed, physi-
cally it would suSce to find conditions so that repre-
sentative local properties after an initial transient
oscillation approach monotonically their equilibrium
values after a sufFiciently long time. If we rewrite (5)
as a complex Fourier series,

properties. The second estimate depends on the number
of continuous derivatives possessed by gi, (see refer-
ence 12, pp. 46 ff.). For the reduced density it can be
stated as follows: If each $i is X times continuously
differentiable in —~ «o& ~, if pi~&(p&) is integrable

(—po, po), and if for each m=0, 1, X—1 the
quantity $i"i (oi) ~ 0 as

~
cp

~

~ ~, then

p n—=o(t ~) as t —& po.

For analytic $&(pp) other asymptotic expansions for,
say, the reduced density can be obtained by the method
of steepest descents. These results should be sufhcient
to characterize the asymptotic behavior in time of the
local properties in most situations of physical interest.

Let us return to the simple example of the approach
to equilibrium, i.e., (17)—(19). We note immediately
that p ~a irrespective of whether we allow t ++po-
or t —+ —~. This model exhibits no true irreversibility
in the sense that the system evolves (in the limit) in a
unique sense in time; there is no "time's arrow" re-
vealed to us. This is to be expected in view of the
time-reversal symmetry of the underlying Newtonian
dynamics. Still we can speak of a quasi-irreversibility
in this sense: Given any initial spatially nonuniform
state, in say the density, the system evolves as t —+ ~
to a uniform state; if the system is initially uniform it
remains so.

As (19) shows, the rate of attainment of the uniform
equilibrium density is essentially governed by the
spread of the initial velocity distribution 1tp(oi). This
spread is conveniently measured by the variance p ';
the larger P ', the more rapid is the approach. In this
is revealed an important aspect of the physical sig-
nificance of the weak convergence to equilibrium. The
modulation in time of the value of a local property is
due to the successive reintroduction in the averaging
process of the uncertainty in the specification of the
initial velocities of our molecules. If, say in (19), the
velocity distribution is completely sharp, i.e.,

Pp(pi) =5(cp —pip) = lirn
(

—
[ exp[ —8(oi —pip)'7,

e ~&~i

we find that the conditions for the application of the
Riemann-Lebesgue theorem fail" and no convergence,
weak or otherwise, can be exhibited. Thus, in this case
the density satisfies the relation

p(8' 1)=B[1+iop cos(8—Mpf)7
'

i.e., we find sound waves. "
Before proceeding to a discussion of the transport

properties of our Quid, we consider the generalization

"By comparison with the theory of distribution functions,
some results may be derived involving criteria such as the positive
definiteness of certain functionals of the 1''s. Since this hardly
yields usable testing procedures, we shall not enlarge on this point.' A. Erdelyi, Asymptotic Expansions (Dover Publications, New
York, 1956).

"Since imp(co) and h(pi; e)imp(o&) are not in I,( ap, Qp) Lsee (15),—
(16)].

'4The dependence of the "effective" relaxation time on P&,
which is proportional to the reciprocal of the asymptotic rms
velocity (and is a parameter of the initial distribution), is clearly
unrealistic.
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of our fundamental result to other systems. This will
reveal more fully that the results obtained for the one-
dimensional gas are not due to the weakness of the
interaction (if one prefers, the absence of "real" colli-
sions) between the molecules.

3. MULTIPLY PERIODIC SYSTEMS, ETC.

Consider a multiply periodic system whose canonical
coordinates are q, and p;, i= 1, 2, , 1V. We can always
introduce a unique set of canonical action and angle
variables J; and t);, respectively (i=1, ,1V), which
possess the properties: (A) the configuration of the
system is periodic in the t), s with period 2sr, (8) the
Hamiltonian function H transforms into a function of
J,'s only, H=E(Jt, ,J)i), and (C) the generator of
the transformation from the variables q, , p, to the
variables J,, t), (t'= 1, ,1V)is a periodic function of the
8,'s with the period 2m. ."The fundamental frequencies of
our system, J;, are found to be

v, =BE//B J,= v, (Jt, ,j)v).

Henceforth we will denote by J the set of J s, by 8
the set of 0 s, and by v the set of v s. The solution of
Hamilton's equations in terms of these variables is
Lcompare with (1)j

A (8; t) = h(v,' 8)tt(8, v; t)d J
Bn(J)

h(v, 8)ts'(8 vt; J(—v))—dv
&1V(~) Bv

=A„(8)+ Q' a h, i. , h(8;t) exp( —ik 8), (26)
k1 ~ ~ ~ k1V

by virtue of (25), where

A„(t))=
4 Z~(v)

BJ
h(v; 8)—4 (J(v))dv,

Bv

r

ttht, ,k~(8; t) =
~ Bn {v)

BJ
tt(v; 8)—

Bv

one-dimensional gas, y does not converge in time to the
solution of the stationary Liouville equation; again we
find Poincare recurrences. Yet if we examine any
uniformly continuous local macroscopic property A (8; t)
which can be formulated as an average of a smooth
function h(v; 8) over tt with respect to the action vari-
ables J, we find that these do converge to the value
they have at statistical equilibrium. To see this, we
note that

J.—J.O
e;=B,s+v;(J)t

(23) xi)hi, ' ',htj'( J(v)) exp(ik vt)dv.

The density in phase space (J,8) of a Gibbsian ensemble
of systems can be written

ts(Bb' ' ')B)vi ~4' ' '~J» t)

=tt'(lit —vi(J)t, , Brr vtr(J)t; Jt, )J)—r) (24)
=tt'(8 —v(J)t; J),

where the initial density ts'(Bio, ,B&', Jrs, ,Jeers) is
periodic with period lm in the 8'. If the initial density
tt'(8'; J') is representable by a convergent Fourier
series in 8', then so is tt in 8—v(J)t, t)t's

tt(8; J; t) =tso(8 —v(J)t; J)=C'(J)

+ P' its, h~(J) exp{ ik (8——v(J)tj), (25)
kI, ~ ~ ~, kvs

where the sum is to be taken over all values of the
integers k except hi= ——her ——0.

In what follows we restrict ourselves to the set of all
those multiply periodic systems for which the v span
the space E)v(v) defined by —oo &v;(oo (t=1, ,1V)

as the J span Etr(J) defined by —~ (J,(oo (i =1,
,1V). This excludes certain trivial cases, for example

coupled harmonic oscillators for which the v are inde-
pendent of J. Since the system is assumed to be non-
degenerate Lsee (23)g, the Jacobian Bv/BJWO every-
where. In complete analogy with the case of the

If the property exists initially, i.e., A(8; 0) (eo, then
the Riemann-Lebesgue theorem" assures us that it
exists and is bounded for all time and

A(8; t) ~A„(8) as t —+a~. (2&)

Again we find the same type of weak convergence to
equilibrium, without the true irreversibility that we
had found before.

Even if the multiply periodic system is (1V—s)-fold
degenerate, the preceding theorem goes through if we
restrict our integrations to the space of the s incom-
mensurable v's, E,(v), the other t)'s being identically
zero."A further important property of these systems is
the fact that the distribution in J space is stationary,
'VM.

~

C(J)=
~0

tt'(8 vt J)d8— .

by virtue of (25). The previous considerations concern-
ing the long-time monotonic character of the approach
to equilibrium and the asymptotic order of the Fourier
coefFicients appearing in (26) derived in connection
with the one-dimensional gas, can be made to apply
here also with only trivial modi6cation.

Finally, our result can also be extended to systems
which can be separated into an independent multiply

's M. Born, The hIeohagios of the Atotn (G. Bell and Sons, Ltd. , i~ H. S. Bochner and K. Chandrasekharan, Fottrier Transforms
I,()ndon, 1927), pp. 8$ 6, (Princeton University Press, Princeton, 1949), p. 57,
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periodic part and a nonperiodic part. An. example of
such a system is the Kepler problem, i.e., a sun sur-
rounded by several small planets, which separates into
a perturbed periodic central motion about the center of
mass and a nonperiodic motion of the center of mass.
We denote the generalized coordinates of the multiply
periodic part by J,, 8, (i = i, ,s) and the coordinates
of the nonperiodic part by q;, p; (j=s+1, ,$). In
terms of these variables the Hamiltonian H =H( J,6;q, p)
separates into a periodic and a nonperiodic part,
H=H„(J,6)+H (q; p). The density in phase space,
tt(J, 6; q, p; t), can be written as a product of densities,

t =~,(J,6; t)~„(q,p; t).

If g„remains bounded for all t, then those local prop-
erties A(6; p,q; t) obtained by averaging some smooth
function h(v, 6; p, q) with respect to tt over all f s
satisfy (27), as long as the frequencies v satisfy the
previously discussed conditions.

The question of whether these results have any
bearing on the behavior of real physical systems needs
to be considered. Certainly the preceding results apply
to classical gases" in the limit of su%ciently high tem-
perature or low pressure where they may be considered
to be perfect Knudsen gases. Similarly the preceding
theory applies also to the classical. limiting case of
almost perfect solids insofar as these can be considered
to consist of coupled oscillators which are so weakly
anharmonic that N normal frequencies still exist albeit
being weak functions of the amplitudes (i.e., insofar
as they are described by the equivalent linear system
in the sense of Krylov and Bogoliubov). But other
than these two classes of limiting cases, most real
physical systems are probably distinguished by the fact,

that they possess very much fewer than N analytic
time-independent integrals of the motion. Such systems
can at best be represented only locally (in phase space)
as multiply-periodic systems. In view of this, our model
is at best suggestive of the behavior of the far more
complex systems with which we deal in practice. Under
certain conditions real systems can be approximated
su%ciently by a secular perturbation of a multiply
periodic system which is constructed so as to destroy
most of the N time-independent integrals of the motion
(the J). Brout and Prigogine'P have developed a formal
classical theory for a particular choice of the perturbing
potential suggested by the quantum transport theory
of Van Hove. "

We proceed now to give an outline of the transport
theory of a typical system for which (27) applies, the
one-dimensional (perfect) gas.

"The extension of this theory for quantum-mechanical systems
is straightforward.

' R. Brout and E. Prigogine, Physica 22, 621 (1956)."L.Van Hove& Physica 21, 517 (1955),

P(8; t) =pkT(8; t). (28)

The hydrodynamic transport equations follow from the
continuity equation satisfied by f=f'(8 p&t; —tp), po

Bf 8f df—+p»—=—=0.
Bt 80 dt

(29)

On multiplying (29) by 1, tttto, and —',ttttpo respectively,
and integrating over all values of co, we find after some
manipulations the equations of continuity, motion, and
energy balance'.

(30)

dcop 8P
mp +—=0,

dt 80
(31)

dE 8
p + (0+—o»oP) —=0»

dt 80
(32)

respectively by virtue of (9)—(13), with the heat flux tt

given by

lt
=—m (p» p»o) fdp»

(~ ~o) (~' 2~~—o)fd~. —(33)

Equations (30)—(32) together with (28) completely
determine the macroscopic behavior of the gas."

Our previous considerations would lead us to expect
that beside these orthodox transport equation. s, prop-
erties such as the density, etc. , would under suitable
conditions satisfy equations which are generally thought
of as being characteristic of a truly irreversible trans-
port theory, e.g. , in the case of the density, Fick's laws.
We shall show that in at least two fairly general cir-
cumstances the density p does satisfy a simple diGusion
equation, albeit with a time-dependent diffusion co-
e%cient. In what follows, we shall assume for simplicity
that initially there is no mass motion of the fluid as a
whole, i.e., top(8, 0)=0. This implies in general that

'0 Equation (29) for the O.M.D.F. f is identical in this case
with the Boltzmann equation. For, making the usual Stosssahl-
ansuts, we 6nd

d
do»»

~
o» —~»

~ (f(tt o»; t)f(tt»»o»» t) f(tt»o»» t)f(e»p»»; t) }, —

where co and coi are the velocities of the molecules before collision.
Noting that for elastic collisions between molecules of the same
mass, ~=co& and coi=co, we regain (29).

~' The mean internal energy U(8; t) relates E and T; vis.
U(~ ~) =&(0 t)--' '=-'~».

4. TRANSPORT THEORY

We note first that (12) and (13) imply the equation
of state of our gas,
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f'(8 ru—t; ~) =f'(8 cot—; —cv), i.e., that the Fourier co-
eKcients in (5) are even functions of co."

The first set of circumstances in which we expect that
the density satisfies a diGusion equation is when we are
initially not far removed from spatial uniformity in
the density, i.e., the infinite sum in (5) reduces to a
single term, e.g.,

can rewrite (5) as

f'(8 ~i; ~)=~~ —
I exp( P—~')

X{1++(cxscosLk(8 ~t)7+ns sinLk(8 —a&t)7};
k=1

ns, us constants. (38)

Let

This leads to the density

p(8; t) =n{1+Pexp( —t'k'/4P)
k=1

{-(8,i; m) = Jt co"f'(8 oot, ; oi)—dto, X$ns cosk8+uk sink87}, (39)
(35) which satisfies

fo(8—cot; co) =ego(oy)+pi(u) cos(8—~i)};
(34)

t o(~)=A(—~), kt(~)=Pi( —~).

m=0, 1, 2,

then by virtue of (34), if f(8,0; m) exists,

with
ap/at =D(t)a'p/a8',

D(t) = t/2P.

(40)

(41)

where

P(8,t; m) =P„(8;m)+B (i) cos8; m even

g(8, i; m) =+B (i) sin8; m odd

(8;m) =N)~ a Po(oi)da, ,

(36)

Bs~(t) =I oP"Qt (cu) cosarid~ = 2n oP'Qi(co) cos~id~,

The unrealistic form of this diGusion coefficient again
warns us that our analogy with conventional transport
theory may be more superficial than real. The dis-
turbing feature is not so much the fact that D is a
'function of the time but rather that the time-dependent
term, instead of decreasing in importance with increas-
ing

~

t t actually grows.
Whenever the density satisfies (40), we can identify

a&o with the drift velocity by virtue of (30).Thus, we find
4p

coo= -D(i)a lnp/a8, (42)

Bs~+i(&) =n a) +'1 t (n) sin(std(g

=2e a&'"+'Pt ((v) sin(std(o.

as expected from diffusion theory. Introducing (41), we
can rewrite cop formally as a gradient of a "chemical
potential" p= po+P ' 1np.

(us = 7(t)ap/a8, —

From (36), it follows that P satisfies the diffusion with a mobility p(t) =t/2. For t&0, we are in formal
equation, agreement with the thermodynamics of irreversible

a{(~)/ai=D„(i) as' (~)/a8', (37) processes in that y(i)&0, etc.
Finally, to illustrate the importance of P in (38) on

the approach to spatial uniformity, we compute the
Bs~()/Bs"+i()' values of the local properties and fluxes. It suffices to

Ds +t(i)=L—dlnBs +,(t)/d[7 =B, +,(i)/B, +s(]). takent=C'o, —I&4'o(1; (xi=0; ns, ~s ——0 for k&2. We
find by virtue of (9)—(13) and (33) that

where

Particularly interesting are the even f since f (8; t; 0) =p,
g(8, t; 2) =Ep, etc.

The approach to equilibrium of a gas is believed to
occur under suitable circumstances by a fairly rapid
relaxation to a Maxwellian velocity distribution fol-
lowed by a much slower approach to spatial uniformity.
Since the relaxation to a Maxwellian distribution occurs
presumably through the action of the integral term on
the right-hand side of Boltzmann's equation, our model
of the gas cannot account for it. Still, we can study in
our model the subsequent approach to spatial uni-
formity. We shall find that in this case the density will

again satisfy a diffusion equation. Thus, for an arbi-
trary initial spatial distribution of the molecules, we

p (8; i) =et 1+4o exp (—t'/4P) cos87—m as t—+ ~,
Cot exp( —t'/48) sin8

~o(8; t) = ~0 as t~~,
2d8L1+C o exp( —i'/4P) cos87 (43)

ns 8 lnp mcop' m~—as t—+~ etc. ,T(8; t) =
2Pk k aP k 2/k

in agreement with (16).The final temperature attained,
T„, is identical with the translational temperature of
the initial Maxwellian velocity distribution; i.e.,

P =~/(2k'„).

is imp]ies in turn that when "equi]ibrium" in Our sense is The heat Aux q' separates as expected into two terms,
attained, the Quid exhibits no mass flow. one describing heat convection (of the temperature
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T„), the other heat conduction (see Appendix):

g = oe—o (rtrrt/p) + g„e, (43)

where q„„& is given by Fourier's law,

q,.e= ,'D—(t—)kp8T/88, (46)

with a thermal conductivity ) =X(t) satisfying

)I, =-',D(t)kp,

in complete analogy (except for the time dependence)
with the results of kinetic theory. By virtue of (43),
q' —+0 as t —+ ~.

5. DISCUSSION

The weakening of the usual notion of equilibrium of
isolated systems presented in this paper allows us to
conclude that a certain very restricted class of mechanical
systems approaches in time, in a weak sense, statistical
equilibrium. If nothing else, these considerations sug-
gest the plausibility that a much wider class of systems
satisfy an ergodic theorem reminiscent of (16) and
(27). Such a theorem, implying more than the results
of the theory of weak or strong mixing, most probably
would use much more direct mathematical tools than
those employed by us."The averaging over the action
variables in obtaining the local macroscopic properties
can of course be interpreted as a kind of coarse graining.
Seen in this light, our model comes very close to the
original discussion of these questions by Gibbs, ' who
used the example of the stirring of two fluids, one black
and one white, " i.e., L(X—1)-fold degenerate multiply
periodic system).

Our considerations for a finite number of particles
(Ã) refer to averages of observations made on repeated
experiments rather than averages of repeated observa-
tions on the same system. The distinction between the
two interpretations is important. In order to exhibit
approach to equilibrium by means of observations on a
single system, we must allow N to approach oo to
prevent Poincare recurrences. Furthermore, to observe
the desired behavior, we require the limits to be taken
in the order X—+ ~, first and t —+ , second. ""This
observation was already made by Gibbs. ' Many of
these statistical considerations play a role in the
formulation of a classical uncertainty relation, as has
been shown by Born" and by Born and Hooton. "

Rather than proceeding with a further discussion of
the general points just raised, we wish to focus atten-
tion on another physically important element which is
lacking in our model. We are able to describe circum-

"H. Grad (private communication). Professor Grad in a forth-
coming publication has also treated the gas model much more
directly by means of measure theory.

~4 P. S. Epstein's article, "Critical Appreciation of Gibbs' Sta-
tistical Mechanics, " in Commentary on the Scientifi Writings ofJ. W. Gibhs, edited by A. Haas (Yale University Press, New
Haven, 1936), pp. 509 G."M. Born, Physik. Bl. 11, 49, 314 (1955)."M. Born and D. J. Hooton, Z. Physik 142, 201 (1955).

stances under which systems tend monotonically (or
at least monotonically after an initial short transient
response) to approach "equilibrium. " These circum-
stances, however, depend on the selection of a suitable
class of initial states from which this "generalized re-
laxation" may commence. In a large class of physical
systems, on the other hand, this relaxation appears as
a result of certain properties of the dynamical structure
of the systems themselves and not of their initial states.
An example of such a property is provided by the work
of Van Hove. "Certainly there also exist exceptions to
this behavior; nonetheless, any realistic theory of the
approach to equilibrium must be able to account for
this behavior and this appears to require more than the
modification of the equilibrium definition and the idea
of weak convergence.

One local property which we have not discussed is
the local entropy; e.g. , for our gas, 5=5(8; I) is given by

5= —k f lnf dto

This property is considerably harder to deal with be-
cause of its nonlinear dependence on f. If f is positive,
integrable (over to in L

—oo, oo]), bounded from above,
and Bp/8t~ 0 as t~ ~, we can at least conclude from
the first theorem of the mean that 85/Bt —+ 0 as t ~
Much less restrictive theorems can be found. "

APPENDIX

By virtue of (13) and (33),

g= —nt (to —oro)(~ ohio) f du

=-,'I(8; t) ,'tookTp. ——

To find I(8; t), consider

(47)

nerd'o( —
f exp L

—PoP (eo—too)' sin (8 oot) doej, —(pl *

&.)
by virtue of (43). Integrating by parts and collecting
terms, we find

(D(t)kp) BT tookpT toomnt
—',I(8; t) = —

~ (
—+ — . (4S)

2 )88 2 P

Substitution of (48) into (47) leads directly to (45)
and (46).
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