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case for each and every k, the kth component NA,

vanishes in the sense just described. Our requirement is
then that if I is such a state vector, then Sm shall
likewise be such a state vector.

Mathematically this may be expressed as follows:
Let M~ and Mf denote the manifolds in H~ and Hy
consisting of those wave functions vanishing on the
given backward ray. The S operator must then be such
as to leave invariant the submanifold of E of the form
(0 0+ M 0+M O'M 0+ . . )S (00+3Ef0+MES 1Mf 0+ ),
where 1 denotes the antisymmetric tensor product.
Equivalently, if P denotes the operation of projection

of E onto this subspace, SP=PSP. Each backward
light ray gives a projection P for which this equation
must hold, but for a covariant interaction it suffices to
take any one such ray.

In the present paper we are concerned not with the
entire S operator, but only with its restriction to the
subspace of E in which exactly one boson and one
fermion are present, i.e., with the operator A 1SA 1, where
A1 denotes the projection of E onto the subspace
H~Hf, or with the corresponding operator in the
case of an arbitrary scatterer. The methods, however,
apply in principle to the complete S operator.
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We postulate a formulation of quantum mechanics which is based solely on a quasi-probability function
on the classical phase space. We then show that this formulation is equivalent to the standard formulation,
and that the quasi-probability function is exactly analogous to the density matrix of Dirac and von Neumann.
We investigate the theory of measurement in this formulation and derive the following remarkable results.
As is well known, the correspondence between classical functions of both the position and conjugate mo-
mentum and quantum mechanical operators is ambiguous because of noncommutativity. We show that
the solution of this correspondence problem is completely equivalent to the solution of the eigenvalue
problem. This result enables us to give a constructive method to compute eigenvalues and eigenfunctions.

I. INTRODUCTION AND SUMMARY
" 'T is well known that, as a general rule, for macro-
' ~ scopic phenomena, classical mechanics furnishes

quite a good description of nature. If we have a me-
chanical system, it is described classically by a Hamil-
tonian function H(qs, ps, t). Classical mechanics asserts
that if we measure the system, we will 6nd it with
unit probability at a point, (qs(i), p~(t)), in phase space
which moves in accordance with Hamilton's canonical
equations,

qs= {qs,&}, ps= {ps,&},
where {A,B}is the classical Poisson bracket. '

We find experimentally, however, that it is not
possible to make the measurements necessary to
establish the classical trajectory. The fundamental
limitation is expressed by Heisenberg's uncertainty
principle which states that it is impossible to ascertain
the position of a system in phase space more accurately
the, n to say that it is in a volume of the order of h",
where n is the number of degrees of freedom and h is
Planck's constant. The uncertainty principle shows us

* Submitted in partial fulfillment of the requirement for the
Ph.D. degree, University of California, Berkeley, California.

t Now at Los Alamos Scienti6c Laboratory, Los Alamos, New
Mexico.' H. Goldstein, Classica/ Mechanics (Addison-Wesley Publishing
Company, Inc. , Cambridge, 1953).

the need for a diGerent representation than the classical,
moving phase-point.

For the case of quantum-mechanical systems in
which all observables, may be expressed as functions of
the coordinates and their canonical momenta (qs,ps),
we may represent the system by a quasi-probability
(not everywhere necessarily non-negative) distribution
in phase space, instead of the more usual Heisenberg
or Schrodinger representations. We shall see that the
impossibility of simultaneously measuring comple-
mentary quantities (such as q and p) will be closely
related to the occurrence of "negative probability. "
We show that the quasi-probability distributional
representation is equivalent to the standard formula-
tion. In our formulation, we replace the classical
condition of a point representation with a corresponding
quantum condition, and with the aid of the corre-
spondence principle, are able to derive the dynamical
law.

By introducing the appropriate orthonormal set, we
are able to show that the quasi-probability function
which we use is isomorphic to the statistical operator
of von Neumann. '

J. von Neumann, hfatheraaczcal Folrsdaiiorss of Qgarssum
hIechalics, translated by R. T. Beyer (Princeton Iiniversity
Press, Princeton, 1955).
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As a result of our study of the quantum theory of
measurement, we are able to develop a method for
constructing the solution to any quantum mechanical
eigenfunction problem. The problem of the corre-
spondence between phase space functions and the
powers of a given physical quantity is shown to be
equivalent to the solution of the eigenfunction problem,
and we give an explicit rule to determine this corre-
spondence.

fdqi dqgdpy dpi'= 1)

(normalization) (1)
~+00

I fl'dq& dq dp~ dp„exists,

(boundedness) (2)

f= Iz"(f,f), (quantum),

1
[f,H7, (dynamical),

Bt A

(3)

(4)

where H(qs, ps, t) is the classical
which completely defines the
state of the system.

We have used the de6nitions

Hamiltonian function,
quantum mechanical

IL QUASI-PROBABILITY DISTRIBUTIONAL FORMULA-
TION OF QUANTUM MECHANICS

This formulation of quantum mechanics is based on
the following postulate:

Postllate Q.—There exists a quasi-probability distri-
bution function f(q&,p&,t) of the conjugate coordinates
(q&,pI,) and the time, t, satisfying the conditions

goes to zero,

(A,B)~ A (qs, P2)B(qs,P2),

~ t'~A ~B ~A &BI
-LA,Bj-&A,B~ = P~

~=i I aq; ap; ap, gq;&

The relation for the sine bracket converts condition
(4) into Liouville's theorem and hence in the classical
limit f changes in time like a classical statistical
mechanical distribution would. The relation for the
cosine bracket, together with condition (3), implies
that f tends to a distribution on a set of measure zero
in the classical limit. Thus, in the classical limit, this
formulation reduces to a phase point executing a
classical trajectory.

It is now our purpose to show how the quasi-proba-
bility distributional formulation is related to the density
matrix formulation of von Neumann and Dirac. To do
so, we 6rst show that the distribution function may be
written in the form given by Wigner. ' We then show,
by introducing an appropriate orthonormal set, the
one-to-one correspondence between the quasi-proba-
bility distributional formulation and the density matrix
formulation.

It may be useful in following the derivations given
herein to think of the quasi-probability distribution
function as a particular representation of the more
familiar density matrix, and the sine and cosine
brackets as the commutator and one-half the anti-
commutator brackets, respectively. We show that there
is an isomorphism between the density matrix formu-
lation and the quasi-probability distributional formu-
lation.

We now show that we may write

(2) 2n, ~+ao

(A,B)= i
—

i

qj pi
2 e

cos» —g det 1 r; o,

p+~ 22 a
~ ' exp ——Q ssP2 f(qs, P2)dPi .-dP~

=g*(qs+») g(qs ») (3')—

and

XA(rs, os)B(gs,rts)dg) . d(„drt) ~ ~
where g depends on the state of the system. It follows
from the de6nition that LA,Bj= $B,A j. Theref—ore,

Lf,fj=o. So, by condition (3) of postulate Q,

(2)2~ p+"
[A,Bj

&ai

p
2 e

sin —Pdet 1 r; o; ~

ki j or

f=h-I (f,f)+-Lf,fj I,
( z

)'

XA (rs,os)B(gs,rts)dgg . dg„drt) ~ ~

Xdg„dr j drdo~ d0.

22' (+00 2i
p —ZLp (,-~)- (q-~)

A i-&

We remark that one can show for properly restricted
A and 8, by applying a suitable form of Riemann's
theorem on trigonometric integrals, and an integration
by parts in the second case, that, in the limit as h

—rt~(r~—q~)j f(r , s)ufo(ps, zing)dye ~ ~

Xd/gdzti drtgdrz'''drodoz' 'd0'o»

' E. Wigner, Phys. Rev. 40, 749 (1932).
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Let us make a change of variables of integration:

r; $;—=y, , r;+$;=w,+q, , Jacobian= (s)".

Then

(2 q
e tI+ao II+ao

f=
I I

' ' exp ZLp y —-'o"(q +y.
Ert) " ~ „ h i=i

w)+—rt (q -y —w)$—f((ws+ys+qs)/2, as)

Xf((ws+qs ys)/—2, rts)dwi dw. dyi

Xdgstdgy . dg do] ~ - .80

If we take the Fourier transform of the above relation
with respect to (ps), then, defining the auxiliary function

+00 p+00

G(qs+ss, qs
—ss) =

2i
exp ——P p;s;

a ;=
' 'I

Xf(qs, p&)dpi .dp,

If we think of G(qs+s&, ws) as the kernel of a homo-

geneous, linear integral equation, we see that it has at
least one solution, i.e., G(ws, qs —ss) and its eigenvalue
is unity. Sy a slight modification of the arguments of
Courant and Hilbert, ' we know

00

~
G (qs,wi)

~
dqi ~ ~ ~ dq„dwi. . .dw„+ P

where the X; are the eigenvalues. But, by the relation
we derived above, the integral becomes

p+00

G(qa, qs)dqi dqa,

as G(x,y) =G*(y,x), which is, by definition, equal to

h+

f(q„,Ps)dqi dq„dPi. dP„=1,

by the normalization of f Hence.
00

1&1++
;=s )) .fs

' E. C. Titchmarch, INtrodgctiott to the Theory of Fottrier
INtegrats (Clarendon Press, Oxford, 193I), Chap. III.

e R. Courant and D. Hilbert, 3IIethods of Matheetatical Physics
(Interscience Publishers, Inc. , New York, 1953),Chap. III, Sec. 4.

we obtain, by Fourier's integral theorem, 4

G(qs+ss, qs —ss)

~+oo (+ao
~ G(q&+s&, w&)G(w&, q& ss)dw, d—w„.

Therefore, there is only one eigenvalue, 1, and by the
above-mentioned arguments of Courant and Hilbert,
we see that G(x,y) is a degenerate kernel, and so must
be of the form

G(x,y) =g*(x)g(y),
which is (3').

If we take the inverse Fourier transform of (3') on
(s,) and identify g with the wave function, lf, we obtain
the Wigner form for f He. nce

(2~" t+" t+" 2s
f(q&,p&) =

~

—
~

exp —P psy&
(It ] & & ttt &-i

X4*(q+y)4(q.—y.)dy "dy' (3")

It is this form which Wigner' chose "from all possible
expressions, because it seems to be the simplest, "
although he knew only that it gave the correct marginal
distributions. Moyal' has shown that it also gives the
correct joint distribution if we make the "Acyl corre-
spondence"r (see also, Sec. III below) between operators
and phase-space functions. Moyal investigates the
quasi-probability distribution function from the point
of view of modern statistical theory and the theory of
general stochastic processes. Groenwold and Taka-
bayasi' have also investigated this form and some
equivalent forms of the quasi-probability distribution
function.

We remark that, if we integrate first on p and then
on q that the normalization of f insures that f must be
square-integrable, and hence belong to a Hilbert space.

III. RELATION BETWEEN THE QUASI-PROBABILITY
DISTRIBUTION AND THE STATISTICAL

OPERATOR OF VON NEUMAN¹

Following von Neumann, we introduce an ensemble
of systems each of which is in a "pure state, "and each
state has a certain frequency of occurrence in the
ensemble. The quasi-probability distribution function
for the ensemble need not satisfy condition (3) of
postulate Q, but rather .it is a sum of functions which
do. Hence f for the ensemble will be

f=Z. w.f.(qs, p ).

Let us introduce a complete orthonormal set of wave
functions g;(q&)}. From the form (3') of f, we know
that to each f„ there corresponds a f„which we may
expand as

0r =Xi &.A'i.

It then follows at once that

f= 2 wotsrt ttrif'i)
~ ~

Pr&&7

e J. E. Moyal, Proc. Cambridge Phil. Soc. 45, 99 (1949).
~H. Wey1, The Theory of Groups and Quantum Mechanics,

translated from the German by H. P. Robertson (Dover Publi-
cations, New York, 1931),p. 274.

e H. J. Groenwold, Physica 12, 405 (1946).
e T. Takabayasi, Progr. Theoret. Phys. Japan ll, 341 (1954).
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where we de6ne as the expected value of R(qa, pa) is given correctly by
von Neumann's rule:t+

f;;(q.,p.)=
I

—I, 2$
exp' Z gapa

gZ S-l
for all V. For

(R)=Trace(RU)

X»pi (qa+ya)»I»j(qa ya)dpi ' ' 'dp»» T (RU) p R U

The f;, have certain orthogonality properties which
we shall now note. These properties have been, in
essence, derived by Moyal' for one degree of freedom,
but their proof for e degrees is the same. They are as
follows (variables of integration suppressed):

7»fo

7', m 4

/+00

4I „R(qa, pa) f;, *(qa,pa)

XLP w,a,„*a„]dq& dq„dpi ~ dp„,
P

(i)
~

f;;*fa 0 if ——and only if

(ii) If' I'=I "

(iii) The f; are an orthonormal set if and only if the
h fi; ai'e

(iv) I f;,=8;;, if the set g;) is orthonormal.

(v) If and only if the set g;) is a complete ortho-
normal set,

Z f';(qa, pa) f';*(qa',pa')

=h "II~(qa —qa')~(pa —pa').
k=1

(vi) If {»p;) is a complete orthonormal set, then h"i'f;;
is a complete orthonormal set in the Hilbert space of
phase-space functions. This is to say that, not only do
the f;, form a basis for the quasi-probability distribution
functions, but they also span the entire Hilbert space
(I.2) of functions on phase space.

If we now compute the matrix

and as f; =f;, this becomes

Tr(RU) = . .
~ R(q„,p„)J „

XI p u», o, *o,f, (qa, pa) j
P»7»m

Xdqi dq»»dpi dp»»

+ +oo

R(qa pa) f(qa, pa)dq

Xdq dpi dp„=(R(qa, pa))

These results indicate that the quasi-probability
distribution is directly analogous to von Neumann's
statistical operator. Where he uses in6nite matrices as
the basis of his theory, we use functions of the real
variables (qa, pa). It is worth noting that, using the
above method to de6ne a matrix for a function, the
matrix for the cosine bracket, (A,B), is one-half the
anti-commutator of the matrix for 2 and the matrix
for B. Also the matrix for the sine bracket, (A,Bj, 18

simply the commutator divided by i of the matrix for
A and the matrix for B.These results serve to establish
an isomorphism between the space of functions of real
variables and the space of in'.nite matrices. They may
be veri6ed by a straightforward formal calculation, which
starts from the following rule for the result of R(q„,pa)
acting only. This rule follows at once from our definition
of the matrix elements E,- . It is

~+00

he

we obtain

fi»' fdqi
' ' 'dq»»dqi ' ' 'dp»»» (+00

(R»p(qi, ~ q„)=h " t
~ ~ exp —P& (q„—p)I4 ~ gg k=1

LZ» »ii»i »~»»j»

which is just the matrix for von Neumann's statistical
operator LU;;). The matrix corresponding to a quantity
R(qa, pa) is seen to be

~+op p+00

R(qa, pa)

Xf», »»» (qa»Pa)dqi' 'dq»»dP] 'dP»»»

XR((qa+pa)/2, ga)g (ga)dh dg„dpi

We note that this rule may also be derived from the
correspondence suggested by Weyl~ by some fairly
straightforward manipulations involving the use of
Fourier's integral theorem. Let 6' be the operator
corresponding to p and g be the operator corresponding
to q. Let them satisfy the commutation relation

o g—go'= (h/i) h,
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where h is the identity operator. If

then, according to Weyl, the correct operator is obtained
by replacing P by g and p by (p. In this derivation,
use is made of an identity of Kermack and McCrea":

correspondence, we shall use the statement which
actually seems to be given by experiments —on the
average, Hamilton's canonical equations hold. It can
be shown, say by using the Wigner form (3") of f and
some of the properties given in the next section, and
making an in6nitesmal change |P, that the most general
in6nitesmal change bf which preserves the normaliza-
tion and quantum conditions is given by

($o7'$ 'f tr g) (to6')'
exp (otv-+ r.g) = exp1 I exp1 1 exp1

&2A) (A) (A)
Our quantum condition, (f,f)=h"f, becomes then,

in matrix language,

which is just von Neumann's characterization of a
"pure state. " The physical interpretation in the two
cases is similar. In matrix language, it characterizes a
projection operator onto some state, while our condition
may be thought of as characterizing sort of a smeared-
out projection operator for a region of phase space. It
represents a modification of the classical delta function
which projects onto a phase-point.

where 8g is arbitrary. Since by "the average of j&" we
mean the time rate of change of the expected value of
q~, we have

Bf
Average (q~) = (qq. f)—= qq —.

dt 8t
Also

8f= et (8f—/Bt)

We must have, by the correspondence principle,

IV. QUANTUM DYNAMICS AND THE
CORRESPONDENCE PRINCIPLE

We show in this section that the dynamical equation
of quantum mechanics can be derived from the quantum
condition, with the aid of the Bohr correspondence
principle. For this demonstration, it is convenient to
define a dot product as

Thus we see, as the above equation must hold for all

q& and p&, and for any possible f, we must (outside an
arbitrary, additive constant, Vo) choose for 5g

bg = —Hbt/il.

A B=) ~ ~ ~

J—00

A (q~,p~)B(q~, pa)

Xdqz dq„dpi' dp .

Thus we obtain the dynamical equation

It is easy to verify from the definitions that

[A,B] C=A [B,C],

and to verify, by formal integration by parts and
Fourier's integral theorem, that

[A,B]= A(A, B),
if A is a polynomial, at most quadratic, where (A,B)
is the classical Poisson bracket.

The large-scale experimental validity of classical
mechanics tells us that quantum theory must, in some
sense, correspond closely to classical mechanics. We
have altered the classical concept of a moving point in
phase space to that of a quasi-probability distribution
which changes in time. This distribution (see Sec. II)
is imagined to be concentrated about the classical
point, so that a crude measurement will be unable to
differentiate between the two theories. To insure this

"W. O. Kermack and W. H. McCrea, Proc. Edinburg Math.
Soc. 2, 224 (1931).

which is given by condition (4) of postulate Q. It should
be noted that this equation is the direct analog of
Liouville's theorem of classical statistical mechanics. '

We see, therefore, that in this formulation, the change
in the formal structure from classical to quantum
mechanics consists in replacing the equation f= (0+)f'
by f=h" (f,f) (See Sec. II fo.r limiting behavior of the
cosine bracket as h—4.) The quasi-probability distri-
butional formulation has the advantage that it does
not depend on the two superQuous constants, the
arbitrary phase factor and the additive constant in the
classical potential energy which appears in the standard
Schrodinger formulation. This lack of dependence on
arbitrary, unobservable constants is .not only an
advantage, per se, but should be a grea' convenience in
the treatment of the asymptotic behavior in scattering
problems. Furthermore, our formulation provides a
sort of intuitive picture of what the system is doing in

phase space.
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f(q.,Ps) = (2/h)"
2i "

exp —Q ysPg,

Xp*(qs+ys)4(qs —ys)dyz . dy'

By the Schwartz inequality, 4 we have

I f(qs, ps) I'((2/h)'"
LtI+tO p +00

—00

2i n

exp —Q ysPs
P re=i

Xp*(qs+ys) dyz dy

~+00

X
~+DO

lt(q~ ys) I'dyt—

which. , as J'~*=1, implies

I f(qs,Ps) I
& (2/h)".

(II) A second property is the following one. Let us
define

~+00 ~ +00

fz=
g r=j. ~

2i n

exp —P P;y,
@ j=l

XA*(q;+y,)4s(q;—yt)dyz . dy. ,

V. FORMAL PROPERTIES

(I) One property of the quasi-probability distribution
which is easy to demonstrate is that it is uniformly
bounded (see also, Takabayasi'). In terms of the wave
function f(qs), we have

Now, as [tz;s] is unitary,

N

tzts tzAR —hkFS.

Thus, by summing over m, it reduces to the definition
of fz

(III) The third group of properties listed below
follow by straightforward, but somewhat tedious,
formal calculation directly from the definitions. They
are, however, obvious from the analogy to the density
matrix formulation with the dot product playing the
role of the trace.

[A,B] f=[fA] B=[B,f] A=A [B,f],
[A,B]=—[B,A],
(A,B)= (B,A),

(A,B) f= (f,A) B, etc. ,
[A,[B,C]]+[C,[A,B]]+[B,[C,A]7= 0,

[A, (B,C)]= ([A,B],C)+ ([A,C],B).

If f;; and f,; are orthogonal to each other, then

(f;;,f;,) =0, [f...f;,]=0, and, of course, [f;,,f;;]=0.
VI. MEASUREMENT

We are now in a position to discuss the effect of
measurement on a quantum-mechanical system. In the
standard Schrodinger representation, the measurement
of a quantity, R(qj„ps), leaves the system in a state
described by a P which satisfies the eigenvalue equation,

where (R is the operator corresponding to R(qs, ps). We

f r t '
d I t I

know that this equation is equivalent" to the extremal

n

X'(qt) = E a'sA(q~),
k=1

or
h((R)) =o,

b(R f)=R hf=R [f,8g]=[R,f] kg=0,
and

n f+
fzz= —g

2i n

exp —P P;y;.A i=&

where bg is an arbitrary variation. Because bg is arbi-

trary, we must have

[R,f]=o.

x&'*(q+y')&'(q y')dy " ~y-, —

+00

II ~ ~ ~

2i n

exp —P P,y;
A i=&

then fz= fzz. This means that if f represents an en-

semble composed of equal numbers of systems in E
orthogonal states, then we get the same f no matter in

which way we make up the orthogonal states. To see
this, we expand fzz as

This condition generates a sequence of quasi-probability
distribution functions, fq&„ indexed by X, where it is
understood that several distinct f&,z may be given the
same name by this naming process, and

&=R.fu.
We shall say that the (fez} form a "complete" set if

I =&"Q~ f) ~ f
(conservation of probability) for all quasi-probability
distribution functions f.

N

X P P tz;&a@&e(qt+yt)tz;~@ (qt —y)tfyz. ~ dy„. "H. JeGreys and B. S. JetIreys, Methods of Matheraatscal
Physscs (Cambridge University Press, New York, 1950),Sec. 10.14.
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p, X,v

Yt&p&tsi*&to vtv (qs lPs) ~

The case of the degenerate fi&, (more than one fwith
the same value of X) can be clari6ed as follows. We
know from the standard quantum theory that the f&,
corresponding to diGerent X are orthogonal and hence
(Sec. III) the f&,i are. Further the ipse corresponding to
the same ) can be made orthogonal by the Schmidt
process. By property II of Sec. V, it does not matter
in which way it is done, since Q&, fz&, involves equal
weights to each f&,&,. Thus we must understand by the
above "completeness" condition that all the f&,&, are to
be orthogonal to each other, pairwise. We may now
formulate the following measurement postulate.

I'ostnlute M.—If we have an ensemble represented
by a normalized, weighted sum 5 of quasi-probability
distribution functions, then the measurement of a
dynamical quantity, R(q~, p&,), decomposes the ensemble
into a set of subensembles indexed by the measured
value of R(ge,ps). Each subensemble is represented by
a quasi-probability distribution function fz&„which
satisfies the condition [R,f&,&,]=0, and in each sub-
ensemble R(qs, ps) takes on precisely its measured value,
). In order for a measurement to be possible, all the
conditions of this postulate must be enforceable for all
possible K

Now by the results of Sec. III, we know that we can
expand any quasi-probability distribution function,
and hence any weighted, normalized sum of them in
terms of a complete orthonormal set (h""f;;) Now .if
we assume R(qs, ps) measurable, the condition [R,f&,&,7
=0 must form a "complete" set, or we would not be
able to decompose the whole ensemble. Each f», , implies
a corresponding ltd, and hence we can construct a
complete orthonormal system, (t't"t'fz„), by the method
of Sec. III. We note that this orthonormal system has
the property that the f», , are quasi-probability distri-
bution functions, while the f&,„, XWv are not. Let us
expand F in terms of it. By Sec. III, it becomes

However, we can proceed otherwise to obtain the
cumulative distribution (and it is a true cumulative
distribution for+it&, I &t,&, I &0) and obtain an important
result thereby. We erst obtain the standard statistical
characteristic function

c(s)= 2 (—'s/e)
I

v=o & v! )
where p, is the vth moment of E, given F, computed
from the above cumulative distribution. It can be
shown that there exist functions R &"& (qs p&) (if

I tt„ I (eo )
such that

tt„(5:)=R&"& F-

for all P. According to Kendall, " the cumulative
distribution is then

1 r
+" [1 ep—x(iRS/A)],

F(R)—F(0)=— C(s)dS.
27r— iS

Substituting for C(s) and equating these two expres-
sions, we see, when the appropriate interchange of
limit processes is permissible, that we must have, as 5
is arbitrary by the relations of Sec. III (vi),

1
&

+" [1—exp(iRS/i't )]Z' f»(v. ,p.)=
0&),& R 2gk~~ iS

( " (—S)"R'"'( p ) lxIZ

Thus we see that the f&,&, must be constructed from the
R& "&(qi,ps). Conversely, we must have

R'"'(qs, p~) = It" Q & "f&,&,(qs,p&)
all X

p+00

&&"dF&,(gs,ps), (Stieltjes integral),

If we make a measurement, by postulate M, the f&...
XW v, are destroyed. (This results in no loss of normal-
ization as J'f&,„8&,.by Sec——. III, iv.) Hence a measure-
ment of R(qs,pi) transforms F into

& =2 to &t i &t &,f~& (qs,ps).
p, X

We may now compute the distribution of measured
values of R(qs, ps) by means of the orthogonality rela-
tions as

F(R)—F(0)=
0&X&R

where F(R) is the cumulative distribution of R. By
Q', we mean that if there is a contribution at either
end point, we take only half of it. This is done to
adapt the function F to I'ourier analysis.

where we de6ne

F~(q~,p.) =t't" Z' f.,(qs,ps)
0& @&5,

It can be shown by use of the relations of Sec. V,
property III, that the R'"&(qs,ps) satisfy the equation

R&& ~=(R,R&-») V

for all F, as we would expect from the analog pointed
out in Sec. III. As Royal has shown, E&') =1, so that
we may use the above relation to construct successively
the 8&v)

This result gives an explicit method of solving the
eigenfunction problem for the measurement of E. We

. use the above equation to compute the E&"~ and then

»M. G. Kendall, The Adeartoed Theory of Stattstses (Charles
Green and Company, Ltd. , London, 1947), Chap. 4.
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use them to compute the fqq. We see that the problem
of which quantity corresponds to the vth power of an
observed quantity is equivalent to the eigenfunction
problem.

VII. SIMULTANEOUS MEASUREMENT

where

with

»;(qa, pa) = E' f.,(qa,pI),
0& ~g& Tg

LT f']=0 r =T"f'
Two quantities E and S are clearly simultaneously

measurable if and only if postulate 3E can be imposed
for both at once. This means that 5 must be decom-
posable into a set of subensembles represented by
quasi-probability distribution functions f», „indexed by

and the condition (T;,TI,] P=O must hold for all j, h,
and K Then the expected value of any function

G(T),Ty)

is given by

p=~'f». «i 4'=S'fan. «& (G)= . G(Tg . ,Tg)dF(Tg . TN)
where [R,f», „]=I S,f», „]=0,and R and S take on
the precise values p and 0., respectively. We must also
have

I=h" Q fop, .
p, &

for all f. We now have, as before, for the cumulative
joint distribution

F(E,S)—F(0,0)=h" P' f„... s.
p, lf

0&p&R
0&~&S

An argument analogous to that given above (Sec. Vl)
shows the quantity (R'"'S'"') corresponding to the
(v,p)th moment of the above distribution is

(E&"&S~»)=h" P I "~~f (q, p,)
all (p, o)

We compute symbolically the cosine bracket

(E&"&,S~»)=h'"( P p"f„..., P ~~f„,„)
all (p, a) all (p, e)

where use has been made of the relations of Sec. V.
Sy virtue of their nature as weighted sums of the same
quasi-probability distribution functions, we see that

LZ,S] s=o
for all F. That is to say, if two quantities are simul-
taneously - measurable, their operators commute, a
well-known result of the standard formulations.

Let us define an Sth order cosine bracket as

(Tg)T2~ ' ' ' )TN)—
Q t all permutations

&& (Ti,l T~,(,T)r) ]}
This is totally symmetric in the TI,. We see at once&
from the work of this and the previous section, that the
joint distribution of E simultaneously measurable
quantities T~, , T~ must be

F(Tg ~ ~,TN) —F(0 ~ ~ ~ 0)
=P'»(qa, p~), ",»N(qa, pa)] &,

entire range
of the Th

As we can form F(T~, ,Ty) F(0, ,0—) in an
unambiguous manner according to our above de6nition
for any (T&), whether they are simultaneously measur-
able or not, we might wonder what its signi6cance is,
if any, for nonsimultaneously measurable quantities.
Now for this case, von Neumann' (Chap. IV, Sec. 2)
has shown that F cannot be a true cumulative distri-
bution function for all possible states of the system as
this would lead to dispersion-free ensembles, which are
impossible. We have exhibited an F which is a true
distribution, if the (Tz) are simultaneously measurable.
We see that the only way it can satisfy von Neumann's
theorem. in the case of nonsimultaneously measurable
variables is that it must imply "negative probabilities. "
Thus we arrive at the important physically meaningful
conclusion that the F de6ned above is a true distribution
function if and only if the (Tq) are simultaneously
measurable. This is to say, when quantum mechanics
predicts an impossible result like a "negative proba-
bility, " then the interpretation is that there is no
physically realizable experiment to measure the joint
distribution. It is worth noting that in the case T~=q
and Tm=p, that

d'E~(q, p)]
«(4(q)4*(p) e p( —~pq/&) }

dqdp

which is not the quasi-probability distribution function.
Nor could it be expected to be, because of the basic
impossibility of establishing an isomorphism between
a commutative and a noncommutative linear algebra.
As we have seen, it is necessary, to satisfy the measure-
ment postulate, to have the operator of the "square"
of a quantity be the square of the operator; thus, if
the operators do not commute, we are forced into
trying to establish the above-mentioned impossible
correspondence, in order to try to make a definition
which correctly gives the distribution for the simultane-
ously measurable variables also give the quasi-proba-
bility distribution for the conjugate variables p and q.

We emphasize that these results are in accord with
the fact that a dynamical quantity R(q&,p&) which is a
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function of noncommuting variables is a separate and
distinct entity which should be denoted by a separate
symbol, R. R(@,p&) has the property that (R)
=(R(q)„p&)) for any distribution; however, we do not
expect

It is also of interest to compute the generating
function,

G(s) =P ( —is/h) "H&")(q,p)/(v!)
v=0

but instead
(R')= (~'(q~, p~))

(R') =(&")(q~p~)).

By the relations we have obtained, this is also equal to

G(s) =h P exp( —is!(/h) f),), (q,p),
all X

In this formulation, we can correctly find the expected
value of R by using E(q&,pt,), but it is not possible,
in general, to study a function G(R) in terms of
G[R(qt„px)). As we have seen above, the solution of
this correspondence problem in general is equivalent to
the solution of the corresponding eigenvalue problem.

APPENDIX. EXAMPLE OF THE QUASI-PROBABILITY
DISTRIBUTION: THE HARMONIC OSCILLATOR

It is a matter of straightforward calculation ' to
show that for the one-dimensional harmonic oscillator,
the energy eigen-quasi-probability-distribution-func-
tions are:

f„(H,8)dHd8 = [(—1)"/(2srn, !)]I.„(4H/hv)
Xexp (—2H/h v)d (2H/h v) d8,

where L„(ss) are the Laguerre polynomials, " and we
have made the algebraic change to the variables

8= tan '[p/(2srstsvq) j, H= (p'/2s)s)+2sr'srtv'qs

The dynamical equation satis6ed by f, in this example,
is the same as the classical equation. It is

af 8f 8f—=—(p/srt) —+4)r's)sv'q —.
8$ Bq 8p

"See, for example, P. M. Morse and H. Feshbach, Methods of
Theoretical Physics (McGraw-Hill Book Company, Inc. , New
York, 1953),p. 784.

which we may compute by means of the formula for
the generating function for the Laguerre polynomials. "
Thus

G(s) =h P exp[ regis(2rt+1)hv/Af(2/hv)
n=0

)& (—1)"(st!) 'L„(4H/hv) exp( —2H/hv)

=exp[—(i/h) (2H/o)) tan(-,'so)) j/cos( —,'so)),

where co= 2xv.
We now obtain the various H&"' from G(s) by the

relation

)tt Bq"
H'"'=

I
—.—I G(s)

i 8si

and the eigenfunctions by the relation

p+00

f„=(2 h7)r' exp(i&osst)[1 —exp(i(ds)7(is) 'G(s)ds.

We obtain by diGerentiation

H(o) = 1 H(&) =H H(&) =H& (rhv)2

H&') =Hs —5(-,'hv)'H, etc.,

which agree with what we obtain by the direct appli-
cation of the recursion relation.


