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Proof of Dispersion Relations in Quantized Field Theories*
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The problem of deriving dispersion formulas is reduced to that of the analytic continuation of all functions
which are regu)ar in certain domains in the space of several complex variables. The dispersion relations
for pion-nucleon scattering are proven for momentum transfers in the center-of-mass system which are
smaller than 202M . This limit can be improved by further analytic continuation. By using causality and
spectral conditions the dispersion formulas for forward nucleon-nucleon scattering could be derived only
under the unphysical condition M~) (V2 —1)M&. We cannot exclude the possibility that this restriction is
weakened by taking into account all symmetry properties of the complete four-body Green's function.
The situation is similar for the representation of the meson-nucleon vertex function taken on the mass
shell of the nucleons. In this case an example of R. Jost shows that the validity of the dispersion formula
cannot be guaranteed on the basis of causality, spectrum, and symmetry properties.

1. INTRODUCTION

HE purpose of the present article is to derive
some analytic properties of scattering amplitudes

on the basis of general assumptions underlying local
relativistic quantum field theories. Most of these
analytic properties are usually expressed in terms of
Hilbert relations, which have come to be called disper-
sion relations. Such equations have been obtained for
various physical processes, and their importance lies in
the fact that in several cases they can be directly
tested by experiments. ' In other cases it is at least
possible to extract approximate relations between
observable quantities. Hence the dispersion formulas
make it possible to test experimentally some aspects of
the basic "axioms" mentioned earlier.

We shall not give here a detailed discussion of these
axioms, since it may be found elsewhere. ' They consist
essentially of the following assumptions,

(a) The existence of linear field operators in Hilbert
space,

(b) the transformation laws of these fields under the
transformations of the inhomogeneous Lorentz group,

(c) the asymptotic condition, and

(d) the so-called causality condition, which implies
that the commutators (or anticommutators) of two
field operators shall vanish if these fields are taken at
points which have a finite space-like separation.
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f Now at the Department of Mathematics, University of
Washington, Seattle, Washington.

f. On leave of absence from Christ's College, Cambridge,
England.

~ For references see, for instance, Goldberger, Nambu, and
Oehme, Ann. phys. 2, 226 (1957).' R. Haag, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd. ,
29, No. 12 (1955); Lehmann, Symanziir, and Zimmermann,
Nuovo cimento 1, 205 (1955); Bogoliubov, Medvedev, and
Polivanov, lecture notes, translated at the Institute for Advanced
Study, Princeton, 1957 (unpublished); A. S. Wightman, preprint
of Lille Conference talk, June, 1957 (this paper contains further
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For the derivation of dispersion relations we need a
few additional assumptions about the existence of
Fourier transforms and some known properties of the
spectrum of intermediate states for the system in
question. These will be discussed later.

On the basis of the axioms (a), , (d), one can
derive representations for the elements of the scattering
matrix, and we shall be especially concerned with the
amplitude for the elastic scattering of particles with
finite rest mass. Let k and k' (p and p') be the four-
momenta of the projectile (target) before and after
scattering. In a special Lorentz frame' where p+p'= 0,
we consider the scattering amplitude T as a function
of the projectile energy ~= ho= ko' for fixed finite values
of 6= —,'~k' —k~ (2A is the amount of the momentum
transfer; we disregard here possible charge and spin
variables). We are interested in the analytic properties
of T(ro,h') as a function of oi, but the representation
obtained from the axioms is valid only for real' co with
oi'&m'+6', where m is the rest mass of the projectile.
(Throughout this paper we set k=c=1.) In order to
continue the scattering amplitude into the complex co

plane, we must consider it as a function of M and other
variables simultaneously. Thus we are led to use the
tools of the theory of functions of several complex
variables.

For the case of pion-nucleon scattering a mathemati-
cally rigorous proof of dispersion relations for non-
forward scattering has been given by Bogoliubov. ' His
proof is valid for values of 6' which are smaller than

, '= (nr/m+Iz)p, ', where li is the pion and ns is the
nucleon mass. Bogoliubov avoids the explicit use of the
theory of functions of several complex variables by
employing parametrizations and using distribution
methods. This makes the proof very involved, and it
seems difficult to generalize it to other processes with
qualitatively different properties of the spectrum.
Because of these diS.culties we think that it may be

s N. N. Bogoliubov (private communication, February 1957).
We would like to thank Professor Bogoliubov for informing us
about the details of his proof.
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worthwhile to present a different approach in which
the essential part of the proof of dispersion formulas is
reduced to the problem of finding the envelope of
kolomorpky of a certain type of domain in the space of
several complex variables. ' ' The eriveLope of holomorphy

E(D) of a domain D is the intersection of the domains

of holomorphy of all functions which are regular (holo-
morphic) in D. The domain of holgmorphy D~ of a
function f, which is analytic in D, is the largest domain
into which f may be continued. In the case of one
complex variable there exists for every domain D a
function f(s) such that D =D~, and hence we have
E(D) =D. But in the space of two or more complex
variables the situation is different and we have the
remarkable fact that there exist domains D such that
alL functions which are analytic in D may be continued
simultaneously into a larger domain. The largest
domain into which all these functions can be continued
is the envelope of holomorphy of D.

For special domains D, which possess certain sym-
metry properties, the corresponding E(D) is known. '
There are also methods for the construction of E(D) for
an arbitrary D.' The domain D which appears in the
proof of dispersion formulas has certain invariance
properties and we hope that future mathematical work
will make it possible to find the corresponding envelope
E(D). In the present paper we consider only a suitable
subdomain Dq which is a generalized semitube. For
this semitube we can construct the envelope of holo-
morphy and obtain thus a proof of certain dispersion
relations for restricted values of 6'. In the case of
pion-nucleon scattering we have for instance 6'(2p, '.
The semitube method is not sufficient to prove dis-
persion relations for nucleon-nucleon scattering; it
would only suKce if the mass ratio p/m where larger
than (v2 —1). However, this limit is due to such points
on the surface of E(Ds) which can be shown to be also
surface points of E(D). Hence we cannot hope to
continue further on the basis of local commute, tivity
and the support properties derived from the spectral
conditions. But there are certain symmetry properties
of the four-body Green's function which we have not
used, and we cannot exclude the possibility that these
permit a continuation beyond E('D) in the relevant
region. 8

The situation is very similar in the case of the meson-

nucleon vertex function FL(k —P)', k', P']=(k~ j(0) ~O).

We can assure the existence of the representation

4H. Behnke and P. Thullen, Theoric der Fgnktionen mehrerer
komplexer Ueranderlichen, Ergebnisse der Mathematische Wissen-
schaften (Verlag Julius Springer, Berlin and Chelsea Publishing
Company, New York, 1934), Vol. 3, No. 3.

5 S. Bochner and W. T. Martin, Several Complex Uariables
(Princeton University Press, Princeton, 1948).

~ Hans J. Bremermann, Math. Ann. 127, 406 (1954).
'Hans J. Bremermann, "Construction of the Envelopes of

Holomorphy oi Arbitrary Domains" (to be published).
We would like to thank Professor R. Jost and Professor H.

Lehmann for enlightening discussions concerning this point.

Lk'((m+ p)', p'((m+ p)']

2. CONSTRUCTION OF DISPERSION FORMULAS

As an example we consider the elastic scattering of
neutral scalar bosons of equal mass. If S(k', p', k, p)
describes the relevant S-matrix element for this process,
we introduce the usual causal amplitude M„by the
relation

S(k',p', k,p) =(k
I k)(p'I p)yi(2~)4b(k'+p' k —p)—

&& (16k,'k,p, 'p, )-iM, (k+k'; p', p), (2.1)

where k, p and k', p' denote the momenta of the
particles before and after scattering. Then, by standard
methods, ' we obtain for M, the representations

M„(k+k'; p', p) =2( ppes)'*i I d4x e&'&"+'& *r)(xs)'

&&(O'l(j(lx), j(—lx)l I
p)+P(k+k' O', O), (2 2)

where j(x) may be defined in terms of the Heisenberg
fields P(x) by j(x)= ( +m')P(x) and where P is a
real polynomial in the components of k+k' with arbi-
trary coefficients depending on p' and p. In addition
to 3f, we introduce the corresponding advanced
amplitude M, by

M, (k+k', p', p) = 2(pep—s')'i ~d4x e&'&'+"'& *il(—xs)

&&&O'I Lj(lx) j(—-'x)j Ip)+P(k+k" O', O) (2 3)

Then the dispersive and absorptive parts of M„may
be expressed in the form

D= ', (M,+M.), A =-(M„M.);- —
2i

(2.4)

and are real functions of k+k', p' and p. It is convenient
for our further discussion to go into the special system
in which

—',(k+k') = {cg, (ois —Ea')'e}; p'= pa, p= p a,

where

pa
——{Ea,h}; cL e=0; Er, = (eP+LV)'*;

~
e~ =1. —

In this system the amplitudes M„and 3f can be

9See, for example, Lehmann et gl. and Bogoliubov et cl.,
reference 2.

sN +on p(&2 k2 O2)
pLs k2 psj I its + p Q (k2 O2)sn

s d(s„)s g»(gs —s) n=o

only for k'+p'((m+p)'. In order to reach the mass
shell k' =p' = nts, we would have to require ii) (K2 —1)m.

See Sec. 4 for more detailed discussions of the re-
strictions in mass ratios and momentum transfer.
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written as

M, (gi 62) =D(gi, LV) &iA ((u LV)

= &2Eqi~~d4x expLig~x2 —i(gr2 —Eqz)'e x$

complete set of eigenstates of the energy-momentum
operator corresponding to non-negative values of the
energy. Then we may decompose the matrix element
in Eq. (2.7) with respect to these states. Using trans-
lation invariance we find a spectral representation of
the form

QO

n=o
(g2)~zm (2 5)

where
)—~( '—E '—p+2E )3 (2 g)

One can easily prove that for fixed 6' the dispersive
part is an even function and the absorptive part an
odd function of co.

We assume that the matrix element of the commu-
tator is a tempered distribution in x, but only deriva-
tives of 6nite order of the b functions shall appear. As
far as the singularities on the light cone are concerned,
the latter property is already guaranteed by the
causality condition, which implies that the commutator
vanishes «r ~'=~0' —x'&o. The real polynomi» in ~'
has its origin essentially in the possible appearance of
e(xo) times Si"'(x) in the integrand of the dispersive
part, which is then not dehned for @=0. This fact
introduces a certain arbitrariness in the Fourier trans-
form, which is just expressed by the polynomial with
arbitrary coeKcients.

From the assumptions we have made about the
matrix element in Eq. (2.5) it is clear that these
representations of 3f„and N, are dehned only for
co'&Eq'. Following Bogoliubov, ' we consider therefore
the amplitudes as functions of an additional variable p
such that we have, for &u2) p,

M„,,(gi,p, LV) = +2Eqi t d'x expLig~xg —i(gP —p) 'e x]

N—1

+ P C.(P,D2) g~2". (2.6)
n=o

We note that the appearance of expLi(gP —p)2e x) in
Eq. (2.6) causes no branch points for M„, as functions
of P, since the symmetry properties of the amplitudes
allow its replacement by cosL(gP —p) 'e.x].

Before discussing the analytic properties of iV„ let
us explore the absorptive part A (gi,p,h2). For p&0 the
representation

A(ca,P,A2) =2Eg(-,') d'x expLicgxo —i(g~2 —P)'e xj

x(p~ I I:i(2~), i(—2*)3 I p-~) (2 7)

is defined for all co. We assume the existence of a

' Bogoliubov et a/. , reference 2.

p (g2 P +2 +2)
= 2-(2E~)'(p~l J(o) I1.
= eL~o'(~) —pj' n&('-p-o)'(2p-o)'(12-
=el:~s'(~) —K' nlrb(0) I

p-~&(2E~)'&(p-2 —~2), (2.9)

and
gip(a) = (1/2Eg) (o'—Eg' —p). (2.10)

Here 0- denotes the "mass" of the system described by
I p, n&, i.e., the total energy in its own rest frame. The
summation extends over all possible intermediate states.
We have a continuum of intermediate states with
0-&2m and a discrete one meson state at 0-=m. For
reasons of simplicity let us assume here that there are
no other discrete states (e.g. , bound states) or continua
for 0&2m. More general cases will be discussed in
Sec. 3. Under these assumptions about the spectrum,
we find that p(o', p —62, 62) may be written in the form

p (g 2 P Q2 Q2) —zrnz2g2 (P Q2) $ (g 2 nz2)

+0(o' P—LP 62) (2.11)

where 0'(o', p —62, 62) —=0 for o.&2nz. On the basis of
I.orentz invariance it is easily seen from Eq. (2.9) that
p must be a real, non-negative quantity. Furthermore,
one finds that the function g'(P —62), appearing in the
contribution from the one-meson state, can owly depend
on P—62.

We see from Eq. (2.6) that for P &0 and fixed 62 the
amplitudes 3E., and 3f, are analytic functions of co for
Im+&0 and Imm &0, respectively. This is a consequence
of the causality condition. The amplitudes M„and 3II,
for real co=co„are obtained by the improper limits

lim M„,.(~o„+ze, p, LV) =M„,.(co„,p,h2).
a~0+

If we take P &—LV, we always have a finite gap on the
real gi axis where A(g:,P,LV) —=0. Then M„and M, are
analytic continuations of each other and we have ore
analytic function M(gi, P,A), which is regular in the
cut oo plane except for a pair of poles at g~=&cos(nz).
The cuts run from &gip(2nz) to & ~. From the assump-
tions we have made about the matrix element of the
commutator it follows that for congo (Imr QO),
M(z,p, LP) does not increase stronger than a certain
polynomial. Suppose it vanishes in that limit like 1/gr.
Then we have for p& —LV, ImgiNO, using the Cauchy



A P ROOF OF D I Sp E RS ION RELATIONS

theorem and Eqs. (2.4), (2.8), and (2.11),

M (a),p,h2)

1 t+" A(&o'P 52)
dM

W& ~p(2m) +P/2Zg

d~o' 0~(2Eiiu)'+Eii2 P—52 LV)

X
oi' o. i —P/2—Eg a&'+io —P/2Ez

h(8, 62)
+g'(P —~'),, (2»)

coe2(m) —~2

h(P g2) =——m (P+52)/(4Eq ). Note that the
lower limit of the integral is independent of P. In the
general case we have to supply sufhcient powers of co'

in the denominator, which leads to the appearance of
an additional polynomial in Eq. (2.12). Since these
complications do not cause any principal difhculties in
the proof of dispersion formulas, we shall not consider
them in detail.

We now wish to continue both sides of Eq. (2.12)
from P& —62 to P=Ee2. To do this we must know the
analytic properties of O~(o', P —6', 6') as a function of
P. In Sec. 3 we will prove that there exists a 8)0 such
that for all o'& (2m)' and LV &3, ' 0~(a2, P—LV dP)
is an analytic function of P for PeS (by the notation
aeA we mean that the point. a belongs to the set A),
where S is the strip

5= [P: I ImPI &8, R&ReP&E—q2+8 j; (2.13)

(by "I a: . j"we denote "the set of all a which satisfy
the condition "), R is any positive number, and 8

may go to zero as R—+~; for all PeS we have 0=0
for o'& (2m)'. We know that 0 is a real function of P
for real P=P„&0. Since 0 is analytic in P for PeS, it
must then also be real for real P=P„&Eq2, 6'&6, , '.
The limitation on 6' will be discussed in the next
section. In the following we ossgme only that 6, ' is

mite.

Using these properties of 0, we proceed to show that
the function g'(P —62) must be analytic for PeS. Let us
denote the integral in Eq. (2.12) by I(oi,P,62). If we

write Eq. (2.12) in the form

Lo~p2 (m) —io2jLM((u, P,A2) —I (co,P,LV) $
=g'(P —62)h(P, 62), (2.14)

then the left-hand side is an analytic function of the
two complex variables co and P for (co,P) eDi with

D,= I (~,P): IIm~l & IIm(~2 —P)~l,

2E~IIm~l & IImPI, P~g. (2.»)
The domain D1 is the intersection of regions in which

M(co,P,LV) and I(a&,P,62) are analytic functions of co
I

and P. First we prove that g'(P —62) is analytic for
Imp/0, PeS, by constructing for each of these points
P an co such that (~,P)eDi. We write co=& „+iso;,
P=P„+iP;, and take ~,&0, IIo;I)IP, I/2Ee. , and ~„
)oi;P„/P~+P;/4oi;, which is evidently always possible
and guarantees that (oi,P)eDi for P,&0, PeS. Hence
g'(P —LP) is analytic for PeS except for a possible cu on
the real P axis. In order to show that there is actually
no such cut, we prove that

lim (g2(P,+i e —62) —g'(P, —i e—62)]=0 (2.16)

for P„+ie=P~eS Le.t us define co~ by oi~=oi, Hie/Ez.
Then (a&+,P~) eDi provided we choose ~o„) (5/4)Eq
+ti/Eq and e)0 and sufFiciently small. But for (oi,P) eD,
we may use the representation (2.6) for M(co,P,62)
and find, recalling Eq. (2.4),

lim fM((o~,P+,h'2) 3E(oi,P—,62)$

= 2iA (~o„,P„,A2); (2.17)

in addition it follows from Eq. (2.12) that

lim
I
I(~o„,P+,D2) —I(~o,P,LP)$

= 2iTO~(2Ee(a, +Ee2+P P —62 62)

—0(—2Egoi„+Eg'+P P —LV 2')j (2.18)

Evidently Eqs. (2.14), (2.17), and (2.18) imply Eq.
(2.16). We conclude that g'(P —LV) may be continued
analytically onto the domain S. Since we know from
Eq. (2.9) that g'(P —62) is real for P=P„&0, the same
must be true for all PeS with ImP =0.

If we relax the assumption about the behavior of 3f
for co—+~, we will have on the right-hand side of Kq.
(2.14) in addition to the g' term a polynomial of the
form

N—1

(P +2)~2n
n=o

The proof that the coeKcients C„are analytic functions
of P for PeS is completely equivalent to the proof of
the corresponding properties for g'(P —62).

For the application of dispersion relations it is
important to show that g'(m) is non-negative. In order
to prove this we consider the invariant matrix element

(2ko)'(klan(o) I p&(2p, )'=mrL(p —k)2g,

(k'= p'= m'), (2.19)

in a system where p=o. From the representation

/21'
rl 2m(m —ko)7= il —

I

—de exp(ik x)2t(xo)
&mi

X(OILJ(*),J(O)7IO,m&+ P ~„k,-, (2.2O)

and our assumptions about the spectrum one can easily
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g'(nZ2) m2 1
+

2Er. M(2)2) —o) M(422)+M
(2.22)

where ImM00, M((r) =M»(o) for P=Er2 and A(M', dP)
—=A(M', Eq2, 6'). For the M thus continued, it remains
to be proved that the improper limits

lim M(M„+i», En2, LV) =M...(M„,LV)
c~0+

hold, provided M, )Eq. For each M,2)Eq2+»2 and
P=Ee2+2ia», we can always find an a such that
M, —(M,2—Ee2)'&a&Eq. But then we have, for» small
enough, (M„&i», Eq &22ia)»D», c D2 and consequently

lim M(M„&i», Ee2, 42) = lim M(M„&i», Er2+i2a», 62)
a~0+ @~0'

see, using the methods described earlier by one of us
(R. O.),"that I' is an analytic function of X= 2422(412—ke)
in the cut X plane, the cut runs from (2222)2 to +~.
Then the function I'(X) is real for X,=0, X,& (2222)2, since
it is for X,&0. Evidently I"(X) has the same properties;
in addition it is non-negative for X=X„&(22)2)2. We
see from Eqs. (2.9), (2.10), and (2.11) that g2(P —LV)

=I'2(X) with X=P—62. Hence we have shown that
g2(m)&0. We could have used the properties of I'(X)
mentioned above in order to demonstrate that g2(P —LV)

is analytic for P»5. However, the method described
earlier is still useful in order to prove the analyticity
of the coefficients C (P,D2) of the polynomial. Let us
now go back to Eq. (2.12). Since 0 and g' are analytic
functions of P for )8»5 we realize that the right-hand
side of this equation is analytic in M, p for (M,p)»D2,
where

D2= [(M,p): 2Ez
~

ImM
~

)
~

Imp ~, p»5]. (2.21)

Hence we can continue M(M, p, h2) into the domain D2
so as to equal I(M,p,LV)+g2(p —LV)h(p, d2) [o)(22(212)
—M'] '. But any (M,p) with p=Er2, ImM/0 is contained
in D2 and hence we obtain from Eq. (2.12) the Hilbert
relation

1 r~&
M(M En' LV) =— dM'O~ (2ErM'+2Er, ' m' lV)

7I ~ ca(2m)

1 1 2 t." M'A (M',6')
+ +— dM'

M M M +M 7rI)En M M

A(plp2plp4) =A(k+k', p', p), (3.2)

where Pl ——P', P2= —P, P2 ——O', P4= —k. For reasons of
simplicity we have not introduced a new symbol in
Eq. (3.2). By standard methods" we have then the
representation

(22r)'~(pl+ p2+ p3+ p4)A (plp2p3p4)

where

dxldx2dx3dx4 exp[i (Plxi+P2x2

+P3x2+P4x4))P(xlx2x3$4), (3.3)

$2

P(xlxlxex4) = 0 Li(~ ),i(*~)) o)
Sy(x,)Sy(x,)

+degenerate terms. (3.4)

The operator ()/()$(x) is that of a functional derivation
with respect to the boson field at the point x, where
this field is regarded as a classical one while the deri-
vation is being performed. We use it here only as a
convenient shorthand and the expectation value Ii may
be easily written out in terms of commutators and
step functions. The "degenerate terms" in Eq. (3.4)
contain equal time commutators; they do not alter the
properties of A(P1 P4) in which we are interested,
and therefore we do not need to consider them ex-
plicitly.

Carrying out the functional derivations in Eq. (3.4),
we obtain

3. ANALYTIC CONTINUATION

In this section we wish to prove that for every fixed
o'& (24)2)2 and dP &A~,„' the quantity O~(o'& p —lV 6')
is an analytic function in P for P»5, where 5 is the
regiOn defined by Eq. (2.13). SinCe o'& (2222)2 it iS

sufficient to show that

(a' 22—2') O(o' p —LV 6') = (o'—m') p(o' p —LV 6')

has the required properties. The quantity p is related
to A(M, p, i)2) by

A (M P 6') =A (M P 149) —A (—M 8 LV) (3 1)
with

A (M,p, lP) =p(2EnM+Eg2+p, p —62, Lg).

Let us define a function A (P1P2P2P4) by the equation

=M„,,(M„,A2), (2.23) P(xlx2x3x4) P(xlx2x8x4) P(xlx2x4x2)

because for (M,p)»D1 the Fourier representations (2.6)
for M, and M, are valid. (By B&A or Ac8 we
denote the fact that all points of A belong also to B.)

Equation (2.22) represents the desired dispersion for-
mula for M(M, A2). The function O~(2EeM'+2Ee, m dP)

appearing on the first integral is the proper extension
of the absorptive part on the unphysical region.

"Reinhard Oehme, Nuovo cimento 10, 1316 (1956).

and correspondingly

A (plp2p3p4) A (plp2p8p4) A (plp2p4pl)y
where

-Sj(x,) Sj(x,)-
P(xlx,x,x4) = 0 0

Sy(x,) Sy(x,)

()2j(x4)+ 0 j(x2), 0 . (3.5)
&~(")&~(*)-
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The causality condition may now be written as

~j(x)/h4 (y) = —in(ro —*o)Lj(y),j(*)j=o
for (yo —xo) &

~ y —x~. (3.6)

From the causality condition it follows that F(xl ' ' 'x4)
is retarded in the variables (xl—xs) and (xs—x4), and
so will be denoted by F„„(xl x4). The four functions
which are obtained from E„(xl x4) by interchange
of the variables x» and x3, x2 and x4 any number of
times will be denoted ky P, j( xlxsxsx4), with i, j=r, a.
The subscripts i, j correspond to the advanced or
retarded property in the variables (xl—xs), (xs—x4),
respectively. For example, we have

bj(xl) 8j(x4)
'

F,„(xlxsxsx4) = 0 0
-&~(")~~(")-

By the use of the relation

~i (x) &j(r)
=iLj(x) j(r)j

~(y) ~~(*)

and the condition on the spectrum, we obtain

~ (p p) ~(p p)-=o

3.7
for pl'& (2m)', ps'& (2m)'

j1' (pl p4)-&' (pl "p4) =o
for p22 & (2m)', p4' & (2m)'.

Also, by the same condition,

I:(Pl+Ps)' —m'j&' (Pl P4) =o (3 g)

for (Pl+ Ps)' & (2m)' or Plo+Pso &2m, and all i, j= r, a.
We consider from now on only the function B,;, 6;,

which are dehned by the expressions

&' (p "p)=L(p+p)' '3&' (p p) —(3.9)"
|";j(xl . x4)

p8 4| qs
+

~

—m' F;;(xl .x4). (3.10)
&ax, axsi

The analyticity property of O~ (a', P—6', 6') which we
desire is then proved by Theorem 1' (for 6 '= ms)

Theorem 1.—We are given four generalized functions

The condition on the spectrum, which we have dis-
cussed in Sec. 2, implies that the Fourier transform of
(0

~ [j(xs),82j(X4)/8$ (xl)8$(xs)) ~
0) is zero for Ps' & (2m)'.

Since we are only concerned with the region pss& (2m)',
p4'&(2m)' throughout this paper, we may, without
error, take as zero the second term on the right-hand
side of Eq. (3.5).

An expression for j(x), equivalent to that used in the
last section, is

j(x)=i S+.
Sy(x)

of the four-vector variables x», , xc,

f,,(xlxsxsx4), i=r, a, j =r, a.

The f;; are assumed to be tempered distributions,
multiplied by certain step functions, so that their
Fourier transforms are defined to within certain arbi-
trary polynomials. The quantities f;; are assumed
invariant under the transformations of the inhomo-
geneous, orthochronous Lorentz group, and are retarded
or advanced in (xl—xs), (xs—x4) as denoted by the
subscripts i, j. The Fourier transforms of the f,;,
defined by the expressions

(2x)'f"(plpspsp4) o(pl+ ps+ ps+ p4)

dxlthxslgxsdxs exP/i (Plxl+Psxs

+P3x3+P4x4) jf,,(x,xsx3x4)y

are assumed to have the properties:

f„, f„=0—for p—ls& (2m)', and p32& (2m)',
and j=r or u;

f;„—f;,=0 for p22 —& (2m)', and p4' & (2m)',
andi=r or e;

f;;=0 for (p—1+ps)'& (2m)' or (plo+pso) &0,
s=r or 8) j=r or c.

Then we wish to prove that there is a function
g (zl 82 83 z4 85 zs) of the complex variables 81, ~, zs
and the real variable z6, which is in general a tempered
distribution in z6 and which has the following properties:
(1) For each real 83, X(zl, ,zo) is analytic in 81, , 85

in the region D,

D=E»„",8, : lz, -m'I &~, lzs-m'I &6,

]»3—P( &b, ]84—&) &a, (85+4m'( &Sj, (3.12)

where —E&p3fm', for any positive number E, and
where 8 is some small positive number, which may
become zero as R-+~. We require also 62&ms. (2) For
pl, ",p4real, pl+p2+p3+p4 0 plo+pso&0, »1=pl',
82 p2 83 p3 84 p4 85 (pl+p2) and 83 (pl+ p3)
with (zl, ,zs) 5D, we have the representation

fjj (plpspsp4) =g (81~82~83p84~85 p Zs) ~

(3) y=—0 for 83& (2m)'.
Proof. For convenience we—introduce the inde-

pendent four vectors q», q2, and q3, by

Pl ql+qsp P2 q2 qsp P3 ql+qsy P4 qs q3 ~

Then, writing g;, (qlqsqs) =f;; (P1P2P3P4), where forj = r
then j'= a, and for j=a then j'= r, we have

g j(qlq2q3) = drldy2~rs PL (qlyl

+qsys+qsys)gg;j(ylysys), (3.13)
where

f,; (xlxsxsx4) = g;;(ylysys)

«yl xl X3 y2 (x2 X4), y3 (xl xs+xs x4) ~
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From Eq. (3.13) and the retarded and advanced
character of the g;; we see that the functions g;; are
analytic in certain regions. If we take these functions
as one function g(qlqlqs), then g(qlqsqs) is analytic in
the region (ql, qs) sWX W for each real qs, where

w= Lq: I Imqo I
& IImtll l «qo l & ~, lRetll & ~ 3.

l Note that qs= —,'(Pl+Ps) is always real. )
Let S be a set in the four-dimensional real space E4,

which is defined by

S=l q: Imq=0, (Req+qs)2&(22tt)2 (Req —q,)2&(2233)sj

for each q3. Then the equality properties between the
various g;; for real q&, q», and q&, or q2 in S, which
correspond to Eq. (3.11)for the f;;,may be immediately
extended to equalities satisfied for q& in S and q» in
WU R4 or vice versa. (By Au B we denote the union
of the sets A and B.) Explicitly, we have

g j (qlq2q3) g j (qlq2q3)

for q&e5 and q»t. IVY E4,

g~r(qlq2q3) grs(qlq2q3) =0
for q»sS' and qy6$ H E4,

g;;(qlqsqs) —=0 for qss &2332,

(ql, qs) e (Wu R4) X (Wu R4).

We thus see, that, for fixed qs, the function g(qlqsql)
satisfies the conditions of the edge of the wedge theorem,
which we have formulated in the Appendix. Hence by
this theorem, we may continue g(qlqlqs) in (ql, qs) to
be analytic in the region (Wu E)X (Wu E), where E
is some neighborhood of the set S.

Since q3'&m', we may now, without loss of generality,
choose a frame of reference in which q3=0 and write
q30= t. Then, for a given t, g is a function of q&0, q»&, and
the two 3-vectors q&, q». With respect to q& and q» it
is invariant under the transformations of the orthogonal
group and analytic in a region which is also invariant.
One can prove that g depends only upon the inner
products q&', q»', q& q», and of course upon q&0 and q20.

It will be analytic in these variables in the domain
corresponding to (ql, qs) e(WV E)X (Wu E). The proof
in question makes use of the compactness of the
orthogonal group and invariance of the Haar measure. "
Instead of the variables qio, q20, qi', q»', qi. q» we choose
to consider the variables s~, s», s3, s4, ss, which are
defined by the equations

zl= (ql+qs)', zs= (qs+qs)', zs= (ql —qs)', z4= (qs —q.)',
zs= (ql —qs)', zs ——4q32 (qsp=t, des=0),

and are related to the above-mentioned variables by
a simple analytic transformation. We write g
=X(zl, ,zs, zs), where 7f is analytic in zl, , zs, for
each fixed, real s6, in the domain corresponding to
(Wu E)X (Wv lit').

I~ We are indebted to Professor L. Khrenpreis for discussions
concerning this proof.

qlp ——qsp
——(2N' y)/—4t,

tll= p(t,y) el+Des,

412 P(t y)el EC2

(3.16)

where el e2=. 0 and ps(t y) =Lf+(2332—y)/4t)2-Eas. We
wish to show that for y&m', for each t&m and 5'&m',
the values of (ql, qs) lie in the region of analyticity of

g(qlqsqs). This will show that the corresponding value
of s&, ~, ss lies in the region of analyticity of

7f(zl, ,zs, zs). Let us first take a small b&0 and
assume that c9&52. Then we see from Eq. (3.16) that
for 7&ms, t&m the inequalities lImq;l &8, (Req;p~t)'
—q &m' hold with i = 1, 2, and if 8 is sufBciently small

(8&8) the 4-vectors ql and qs both lie in E. We see
that the edge of the wedge theorem is suQicient to
prove the theorem for 0&LV&b' and hence the disper-
sion relations for forward and near-forward scattering
(derivative amplitudes) ."

For general 6' it is true that all relevant, correspond-
ing values of (ql, qs) lie in X for each t&Ea, but this is
no longer the case for t &Eg. Hence we need to extend
the region of analyticity of g. To consider this in more
detail we have drawn in Fig. 1 the curve (III) for

/

l

/
/

/

FIG. 1. This Ggure is drawn for d'=m~. The region of interest
is given by t&rs, y&m'. The corresponding values of (q&,qs) lie
in the region of analyticity given by the semitube method (shaded
region) or the edge of the wedge theorem (unshaded region).

"K. Symansik, Phys. Rev. 105, 743 (1957).This paper contains
further references.

We are interested in the behavior of x near the points

zl=ttt' zs=sm' zs=y, z4=7, zs ———4tV, zs=4t' (3.15)

where —E&y&nz' and t&m. At these values of
s~, -, ze we have
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p'(t, p) =0. In the region defined by ps(t, p)) 8—s, which
is given by

(E s Ss) ljr) (gs Ss+~)

we always have the corresponding values of q&, q2 lying
in S, while for other values of t, y this is not true. This
latter region is completely contained within the region
m&t&Eg, 7&m'.

The ideal solution of the problem would be to
obtain the envelope of holomorphy of the domain
DVv D(t,hs) XWv D(t,h')], where

D(t,LV) = pq: Imq=0, (Reqo+t)' —(Req)s&4m'

(Reqo t)' —(Re—q) '&4m', m & t &Eag.

There are several methods of obtaining this region of
holomorphy, for example by means of the continuity
theorem, "or by the general method of Bremermann';
we shall not attempt to solve here the general problem.

For 6'&3m' the region D(t,dP) is as in Fig. 2, while
for 6'&3m' we also have the other topological possi-
bility for D(t,h ), as shown in Fig. 3. We shall restrict
ourselves here to 6'&3m'. Then, for m& t &Eq, we have

D(t,hs) v D'= (q: Imq= 0, l Reqo l &p(t), l
Re& l & oo j,

where p(t) = (2m —t). For this case we apply lemma 3
of the Appendix to g(qr, qs, qs), where E of that theorem
is now the subspace D' of E4. Then the lemma shows
that g(qr, qs, qs) is analytic if (qr, qs) e(Wv tP) X (Wv 1P)
for each q~'=8, and tn&t&E~, where N'is a semitube
neighborhood of D'.

We now write (Wv1P) to exhibit its property of
being a semitube,

WvtP=Cq: q«» lImel &v(qo) IReel & ~ j
where B=

l qo-planej —Lqo.' Irnqo= 0, l Reqo l & &(t)g

v(qo) = supl l Imqo l,v'(qo) 7

and v*(qo) = a Lrt (t) —
l Reqo l ], according to Lemma 3 of

the Appendix.

Fro. 3. The set D(t,Ao)
for h~)3m' t)2m.

One can prove on the basis of the continuity theorem
that the envelope of holomorphy of this semitube will be

E(Wvlq')=Lq: qoe» IImql &V(qo) IReal &~3
where V(qo) is the smallest superharmonic majorant
of v(qo). '

We now prove that V(qo)= V(qo), where U(qo) is
defined to be the function Im(qos rt'(t—)ji For . U(qo)
is harmonic in 8, and it may be seen by a straight-
forward calculation that U(qo)&v(qo). Hence V(qo) is
a superharmonic majorant of v(qo), and so

U(q,)& U(q,).
To obtain the reverse inequality, we note that V(qo)
satis6es the same boundary conditions on the cut and
asymptotically for qo~oo as does v(qo), and we have
V(qo)&v(qo). Since the Dirichlet problem for such a
"boundary" has a unique solution, then this is V(qo),
and hence by the de6nition of superharmonic functions"
V(qo) & U(qo) for all qoeB.

The envelope of holomorphy of (Wv 1P)X (Wv N')
is then E(Wv 1P)XE(Wv 1P), which we shall denote
by H. At the points of interest LEq. (3.16)j we have

q&p, q2ptB provided

(ms —q)/4«~(t). (3.17)

The curve of equality in (3.17) is drawn in Fig. 1, the
required region being inside the parabola I.

Then the points of interest lie in H if lImq;l
& lIm(q;o'-rt'(t))il, (i=1, 2), which implies

(m' —yq '
IImp(t, v) l

& Im
l l

-n'(t) . (3.»)
4t

Fzo. 2. The set
D(t,iso) for cg&3ms

"See reference 4, p. 49, Satz 17; also reference 6.

(Reg l

The curve of equality of (3.18) is also drawn in Fig. 1,
the required region being outside the parabola II.

In the region t&m, y&ns' we see from these curves
that for 5'&m' the part of this region not covered by
the edge of the wedge theorem l the part for which

p(t, p) is pure imaginaryj is now contained in the region
inside I and outside II. Hence the corresponding points
qj, q2 lie inside H.

This proves our Theorem j:.
'~ For the de6nition and discussion of superharmonic functions

see F. Riesz, Acta Math. 4S, 329 (1926); also references 4 and 6.
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4. EXTENSION TO OTHER CASES

Our discussion in the previous two sections has given
a proof of the dispersion relations for the scattering of
bosons with equal mass, provided 6'&m'. We know
that this specific restriction is merely due to our
limited analytic continuation, because, by employing
the semitube method, we have not made suN. cient use
of those regions of the domain E, which are important
for larger values of 6'. By the methods of Bremer-
mann " it is possible to make better use of E, and
further calculations show that we can obtain d, =2m'.

Let us now discuss how the proof may be extended
to other cases of more physical interest. One can easily
see that the essential changes are due to diferent
spectral conditions. Therefore it is useful to formulate
the assumptions of Theorem 1 in a more general form
using adjustable parameters.

Instead of the conditions (3.11), we now require
that the Fourier transforms f;, (pi, ps, ps, p4) satisfy the
following relations:

for Pts&a' and Pss&b', j =r, tt;

for Ps'&a' and Pes&b', s=r, tt;
(4.1)

for (p,+p,)'&x' or piii+pso&0.
i=r a; j=r, u.

Then there is a function x(zi, zs, zs, z4,zs, ze) with the
properties (1), (2), and (3) of Theorem 1, except that
we are now interested in values of y, with —E&y
&&phys These values of p give values of q&, q2 which
are in the region of analyticity given by the semitube
method, provided 6'Ch, „'.Furthermore, we have in
(3) x=—0 for zs&a'.

First we consider the dispersioN relations for pion
nucleon scattering. The discussions of Secs. 2 and 3 can
be readily applied to this case, and from the spectral
conditions we find

a=ttt+p, b=3p, a'= (ttt+p)'.

The physical value for p is p»~, =p', and by means of
the edge of the wedge and the sernitube theorems we
And A,x'=2p'. Since there are no other restrictions on
6' thun those connected zith the anaLytic continlation in
the proof of Theorerrt 1, we have given a derivation of
the pion-nucleon dispersion formulas for 6'&2p, '. As
we have discussed in the equal-mass case, this limit
may be removed by further analytic continuation. )

«Hans J. Bremermann, Trans. Am. Math. Soc. 82, 1/(1956).
)Note added in proof. We have constructed —examples" of

functions x(z1 ~ z~,'ze), which have the properties described in
the text and are such that for zi=z2=m~, z3=z4=y, zg= —4',
ze= 4P they have singularities for as& G(t,y, a,b), where a& b and

@8+AD ~

G(t,y, u, b) = P+ ',ab-
a+b a—bm2 —y ~ a —b 2

In the equal mass case we have a=b= 2m, y =m2, t&m and And
G; =2ms for t VSm/V2 H=ence oar limit n s=. 2ms cannot be

We turn now to the problem of deriving dkspersiott
relatiorts for rtlcleort NNc-leol scattering. Again the con-
siderations of Secs. 2 and 3 go through straight-
forwardly and a brief discussion corresponding to those
of Sec. 1 has been given by Goldberger, Nambu, and
one of us (R. O.).' For the parameters in Theorem 1,
we have

u= b= rrt+p, x'= (2p,)', y,s„=ttt'.

One finds, that even for 6'=0 the points (qi, qs) with

(y, t) values

y=ttt', ', ((t—N+p) P(—rN p)—' 2p—']1) &t
&-,'((nt+p)+L(nt —p)' —2p']1) (4.2)

fqi, qs are given in forms of p, t by Eq. (3.16)], do not
lie in the region of analytic continuation of the absorp-
tive part. Since the function x becomes zero only for
t &~~=p, we cannot assure the validity of the nucleon-
nucleon relations. The troublesome region of t given in
Eq. (4.2) vanishes only for

p) (K2—1)stt, (4 3)

which is much larger than the experimental mass ratio.
The limitation (4.3) is stot due to our use of the semitube
method, because one can easily give examples of
functions g(qi, qs, qs) =x(zi, zs, zs, z4,zs, zs) which are ana-
lytic in z&, , z5 in the region corresponding to
(qi, qs) eLW'UD(t, O)]X[WuD(t, O)], but have singu-
larities at the points z~=z2=m, z~=z4=y and z5=0
if y = 2 (rl+ p —t) '+2t' —ttt'. For y = rtt' this gives
t= s f (ttt+p) &P(rrt —p)' —2p']f}, which is in the range
l&p. The functions'7

p(t)
g(qi, q„t)=

Lixs q 2]fl Lirs q 27 e
(4.4)

with p(t)=0 for t&p, p(t))0 for t&p, rt)1 and u'
=(nt+p —t)' have such properties. For the corre-

improved. For pion-nucleon scattering the parameters are a=m+ttb,
b=3ti, y tie, t&s(m=+ti). The minimum of G is at t=xs(m+ti)
Lti/m=experimental mass ratio), and we obtain G~;~(x) =n~„'
= (Stss/3) (2m+ti/2m —ti). In order to prove that the points si es
given above are contained in the region of holomorphy for all
t & ,' (m+ts) and 2tss &ns -&G; (x), we go back to the vectors qi, qs
(see Sec. 3) and use a general representation for functions which
are analytic in W ~X, where E is some complex neighborhood of
the real set S=Lq: (qe+t)' q&as, (qii ——t)' —q &b'g. LA proof for
such representations has been given by F. J. Dyson, Phys. Rev.
(to be published); see also reference 17 and L. Garding and A.
Wightman (to be published). g We find that we have analyticity
for ns &G(t,y; a,b), where G is the same quantity we obtain from
our examples. Hence the dispersion retations for pion nncteon-
scattering can be proved for momentum transfers 2a in the center of-
muss system, which are smatter than 4a( ', )f((2m+ii)—/(2m ti)51—
At present it is not known whether a discussion of the complete
envelope of holomorphy of the four-body Green's function (a
function of six complex variables) will lead to an improvement of
our limit. Results corresponding to those described above have
been obtained also by H. Lehmann (private communication).

'~ These examples were inspired by the paper of R. Jost and
H. Lehmann, Nuovo cimento 10, 1598 (195/). We are indebted
to Professor Lehmann for bringing this paper to our attention.
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sponding x(zr, , zs) we find, using Eq. (3.16),

p(t)
x(zr, . ,Zs 4t') =

L2t' —2(rn+ts) t+ (rn+ts)2 —
z (zr+zs) )"L2t'—2 (ns+ts) t+ (ns+ts)2 —

z (zz+z4) j"
(4.5)

These examples show that those points s~, . , ss, which
give rise to the limitation (4.3), lie on the envelope of
holomorphy. Using only causality and spectral condi-
tions we cannot hope to continue beyond these points.
But there are certain symmetry properties of the four-
body Green's function which we have not explored.
We cannot exclude the possibility that these permit a
further continuation in the relevant region.

The problem of proving a dispersion formula for
the meson nucl-eon eertesc function Fl (k—p)', 0', ps)
=(&

I j(0) I p)(4hppp)b, is intimately related to the prob-
lem of deriving nucleon-nucleon dispersion relations.
In essence we need only disregard the second four-
vector variable q2 in the discussions of Sec. 3. Then
we can prove the representation Lks & (en+is)',
p'& (ns+ts)'1

~ao p(az hs ps)
F(Z hs p2) I Otas + p Q (h2 p2)Zn (4 6)

(as z)as%

fo»z+pz& (ns+ts)' and the requirement kz= p'=en'
leads again to the condition ts) (V2 —1)ns. In Eq. (4.5)
we have omitted spin and isotopic spin variables, which
are unimportant for the analytic properties of the
vertex. The lower limit of the ~' integral corresponds
to the case of pseudoscalar mesons; for scalar mesons
it is (2ts)'. An example corresponding to Eq. (4.4) shows
that we cannot improve this limit. However, in view
of the symmetry conditions, an extension of the region
of analyticity of F(zr, zz, zs) at the relevant Points
cannot be excluded. In any case, Jost" has given an
examPle for F(zr, zz, zs), which satisfies sPectral and
causality conditions and is completely symmetric in
all three variables. This example shows that, even in-
cluding the symmetry conditions, one cannot derive the
representation (4.6) for F(z,ns', sns) if is&(2/V3 —1)ns.
This value is above the experimental mass ratio. At

"R.Jost (private communication). Professor Jost was so kind
to permit us to quote his example. We write it in the form

Ps(zl z2 zs) ~f(zl z2 z2)+f (zl z2 zs )
where

f(z2,22&zs)=L(1+a2 z2m 2)t+—(1+a2 zsm~)t-
+(I+a'—zsm 2)t—b —icg ', (a)0, b&0, c)0).

The conditions on the parameters are

b) 2a, 1+a'—(b+c)'&0.
Since we may take c as small as we please, these two inequalities
imply a' &—,'. Taking m (1+as)&=m+a, we have to require
p, & (2/VS —1)m in order to avoid a contradiction with a dispersion
relation of the form (4.6) for zs=z2=m'. The condition 1+a'—(b+c)')0 is sufficient to assure that Fs is analytic in the
domain obtained on the basis of causality, spectrum and sym-
metry. For the proof the region of analyticity obtained by G.
Kalian and A. S. Wightman is very useful fProceedilgs of the
Seventh Annua/ Rochester Conference on High-Energy Nuclear
Physics (Interscience Publishers, Inc., New York, 1957)j.

present it is not clear, what further conditions one has
to impose in order to assure the validity of the dispersion
formula (4.6) for the pion-nucleon vertex. It has been
shown by Nambu" that this relation holds in perturba-
tion theory in every 6nite order.

Finally we would like to mention that our methods
may also be applied to the case of dispersion relations

for K sneso-n nucte-on scattering. Here we have again an
unphysical continuum due to states of one A. particle
and one or more pions. The parameters of Theorem 1 are

a=Mx+2ts, b= en+is, c=My+is, y„h„2=en',

and for y= nss there is a small region near t= z (Ms+is),
for which the corresponding points (qr, qs) are not in-
cluded in the envelope of holomorphy.
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APPENDIX

In this Appendix we prove the "edge of the wedge"
theorem, which has been extensively used in Sec. 3.
It is convenient to prove 6rst Lemma 1.

Lensnsa 1.—Let the function f(zp, zr) of two complex
variables (zp zr) be given as the Fourier transform of
two tempered distributions f„and f, such that it is
analytic in the "wedge" 8',

~=L(zp, zr): lyr I
& lyo I I» I

&" I» I
&"j

For a given domain F- in the (xp, xr) plane, we say that
a sequence of pairs of complex numbers (zp„,zr„) is an
"E-limiting sequence" if it satisfies the following
conditions,

(1) lim yp„——lim„yr„=0,
(2) lim„(xp„,xr )ZE,
(3) there is a number c)1, and independent of n, so

that for all n Iyp„l)clyr I. Then we assume that
f(zp, zr) has the limiting property that for any E-limiting
sequence the limit lim„f(zp, zr ) exists and is inde-
pendent of the particular sequence, only depending on
the limit point.

We wish to prove that f(zp, zr) is also analytic in some
neighborhood X of the set

L(zp, sl): yp=yt=o, (Xp $1)eZ).

"Y.Nambu, Nuovo cimento (to be published).
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To achieve this, we shall prove analyticity in a
neighborhood of each point of S.Since the origin of the
real coordinates (xp, xi) has not been fixed, we may take
this origin to be at the particular point of 8 that we
are considering. Thus we wish to prove analyticity at
zp=si=0, where (0,0)oE.

If we suppose that f(sp, zi) is analytic in some
neighborhood of so= zi= 0, then for some r and

~
sp

~
&r,

~zi~ &r, f(zo, z&) has the uniformly convergent power
series expansion

c,(o,)= P u, „,„n".
n=p

(AS)

In order to verify this statement, we have to show
that do+'c (a)/dn~'=0 for p=1, 2, . The equation
for p=0 is evident, since

inequality
ic, j &M(c,d)/d . (A4)

For
~
a~ &c, the coeKcients c, (n) are polynomials in

n of order p,

f(zo,zi)= P u zo zi".
s@,n=p

(A1)
cp(n) = limt f(z„z,)j., =g ., =.g

'A~

On the analytic plane II:sp=npX, s&=0,&X, with Qp, O. y

real and (ni/np ( (1, then

f(zp, zi) = P u .no ni X"+"
mi n

is independent of o.. For p= 1, we have then

dci(n) 8f(zp, zi)= lcm zp =x, s1 =axp
do, "~ Os'

(A6)

= Q X o+ u „,„moo "n&" -Pc,X——o, (A2)
p=p p=p

where the rearrangement from the second to the third
expression in Eq. (A2) is permitted since the power
series is absolutely and uniformly convergent. The
coefFicients cp are obtained in terms of the coefficients
cmn as

which again is independent of n. This follows from the
Fourier representation and the E-limiting property of
f(zp, zi). The proof for higher p proceeds by induction
on p.

Equation (AS) may now be solved for the u „ in
terms of the c,(n) and n. This requires the use of a
number of diferent analytic planes. The erst few
equations of (AS) are

P

Cp= ~ Gp n, nO!p 0!yp—n n

nm
(A3) cp upon cl ulo+uoiy co uop+ullo'+ups+ ~

The method we shall use here is to reverse this
procedure and determine the u„ from the cp for
diBerent II . We may take o.p=1 without loss of
generality, and write 0. in place of a&. Any analytic
plane II with real co satisfying ~e~ &1 lies completely
inside 8', except for Imp=0. Hence, by our initial
assumption, f(zp, zi) is analytic in II except possibly
on the real X axis. The limiting property assumed for
f(zp, zi) is equivalent to requiring that f(zp, zi) has the
same limit as we approach the real axis in II either
from above or below, and similarly for the partial
derivatives of f(zp, zi), provided (X,nX) oE. Since (0,0)oE,
~n ~

(1, and E is open, then (X,uX) oE for a small open
interval of X near X=O. Thus f(zp, zi) is analytic in a
small neighborhood of the origin in II . Then there is
some small positive number d so that we may expand
f(zo,zi) as in Eq. (A2) for (zp, zi)oli and (X( (d. We
note that d may be chosen to be independent of n for

It is immediate that f(zo, z&) is bounded on any
bounded subset of 8" which has a positive distance
from the boundary of W'. In addition, one can show by
distribution methods using the Fourier representation
that there is a positive number M, depending only on
c and d, such that

s„z,) I &m(c, d)

for (zo,zi)o11, [a~ &c&1, (X[ &d. Then by Cauchy's

n M(c,d)
up —n, aci

n=p dp
(A7)

for p=0, 1, 2, We wish to obtain bounds on the
coeKcients u„„so that on replacing the c, in Eq. (A2)
by their expression in terms of the u „as given in
Eq. (AS) the resulting series of Eq. (A2) may be shown
to be absolutely convergent for small enough ~zo~,

~zi~, and so rearranged to give the expansion of
Eq. (A1).

To determine u~p and up~, we also have

ci(o ) =uio+uoi&,
and so

uoi ——(ci (n') —c&(n) j/(n' —n)

uio= r.~'ci(~) —«i(~') j/(~' —~),

provided e'Ao, . Evidently such n' and 0. can be chosen
to satisfy n'Wa,

)
n'~ &c and (a ( &c. In general we may

determine the quantities c„p c y, y
. 8 „,„.. Qp, „

in terms of c„(a) for n analytic planes IIai& ~ ~
& IIa„,

provided that the corresponding determinant

II (~'—~ )&o.
n)i)j) 1

Such e~ o.„can evidently be chosen in the interval

(—c,+c) for any I
Equation (A4), written in terms of the u „, now

becomes
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Let us consider the polynomial

P(x)= P b„x",
n=p

and we assume that for real x satisfying
I
x

I
&c, then

IP(*) I
&m.

We wish to determine bounds on the coefFicients b„.
The Cauchy inequalities cannot be used here, since
though we may immediately extend P(x) to P(z) for
complex s the bound on P(x) may not extend to the
inside of the circle Izl =c.

We defj.ne'0

f(s) =P(z) Cz+i(c' —z') &g
—~

Then f(z) is a bounded analytic function in the whole
complex s plane, including infj.nity, with a cut from
—c to +c along the real axis. By the maximum modulus
theorem,

I f(z) I
&Max

I f(*) I
& iif/c

The Cauchy inequality for b„ is thus

f(z)
Ib„l &—~ Cz+i(c' —z')i] dz

2z ")g)=g z"+'

sup I
s+i(c' z') &

I

—& CR+(Ez+ c')'j~.
gncx ).(=z c~E

Taking E=c, we obtain

lb„l &jy3N/c;
hence we have

lo.—. I &M(c,d)3&/d&c".
Then

00 P

Pzo'Pa, „,„z,"z;"
p=o

00 3P p 2'y

& P lzol ~M(c,d)—2 . (AS)
p=o dp n~ Mp

~f lzol &s4 Iz&l & scd, the right-hand»de. of Eq. (AS)
is less than

M(c,d) g pd&,
p=p

and so is finite provided d&1 (which is assumed).
Hence the series (P&=p zp~P p~o& „, zr zo~ ") is
absolutely and uniformly convergent in

I
sp

I
& sd,

"Compare M. Riess, Acta Math. 40, 43 (1916). During a
series of lectures which one of us (R. O.) gave at the University
of Maryland in July 1957, Professor Marcel Riesz kindly pointed
out that he had done similar calculations in 1916,

I
st I

&-,'dc, and so may be rearranged inside this region
togtve Zm, a=o ommzp zt

So it has been shown that the power series expansions
on the analytic planes II can be joined together to
give a power series expansion, convergent for

I zpl &-',d,
lz&l &scd, which equals these separate expansions on
the various planes, and so equals f(zp, zt) from which we
started.

Hence we have proved analyticity of f(zo,zt) in a
small neighborhood of s'p= zy= 0.

We now consider a function f of four complex vari-
ables z= (zp, z) = (zp, zt, zo, zo) and prove Lemma 2.

Lemma Z.—Let the function f(z) be analytic in the
four complex variables sp, z in the wedge 8" in four
dimensions,

W=C(zo, z): lyol &
I yl, Ixol &", lxl &"j

where it is the I'"ourier transform of two tempered
distributions. We aRume that f(s) has the limiting
property of Lemma 1, extended by replacing s& by z.
Then we can find a neighborhood E of the set

S=Cz:yp=0, y=0, xeEj,

so that f(z) can be continued analytically throughout
FvX

The proof of this lemma is obtained by simple
extension of the proof of Lemma 1.

We now prove the "edge of the wedge" theorem.
"Edge of the Wedge" Theorem. —Let f(s,z') be a

function of 8 complex variables,

z= (zp, zr, zz, zz) = (zp, z), z'= (sp', z').

We suppose that f(z,z') is analytic in the'double wedge
8"&(5",

W=Cz: lypl&lyl I*oI &" Ixl &"3
where it is the Fourier transform ' of tempered distri-
butions. We further assume that f(z,z') has the limiting
property that for any E-limiting sequence of complex
numbers z„= (zp„,z„), then

hm-Cf(z-, z') jl" wvR and hm„Cf(z, z'-) jl "w~~

exist, and are independent of the particular sequence,
only depending on the limit point.

We wish to prove that there is some neighborhood 1V

of the set
S=Cz:y=o, x.Ej,

so that f(s,z') may be analytically continued to
(Wv N)X (WuN).

Proo f. We may prove the theo—rem by applying the
method used in the proof of Lemma 1 to the variables
s and s' simultaneously. In order to avoid repetition,

zr As an equivalent assumption we could require that f(z,z') is
bounded by a polynominal for (z,z') eWX W, with (z,z'), restricted
to any compact E'~Rs. Compare L. Schwartz, Meddelanden fran
Lunds Universitets, Supplementband, p. 196 (1952).
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we give only a brief sketch of the generalization. We
may consider z and z' as two-vectors, since the extension
to four-vectors is straightforward.

Consider a point in S, say (0,0), and the analytic
planes II p which are given by zp=X zy=AX zp =X',
zi' ——PX' with n, P real and In I, II8 I

&c& 1.As in Lemma
1, we have

and
P d

cpp(irqP) = Z P A p—n, n; p m, m&—~P (A9)

Equation (A8) follows from the E-limiting properties
of f(z,z'); it can be solved for the A,, „... by using a
sequence of diferent planes II p. As in Lemma 1, we
obt»n

I
f('z')I &tIf(c,d) «r (z,")oil-e; l~l, 11'I «

and find IA, „,n, , I
&M(cd)Qp"'/dp+'c"+ . Con-

sider now the series P„,,~„„,, zp"zi zp zi, it is con-
v«gent for Izol, lzp'I &od lzil, lzi'1&ocd and equ»
to f(z,z') on an infinite sequence of planes 1I„e.Hence
the series represents a continuation of f(z,z'). Per-
forming the corresponding construction for all (s,z')oS
we obtain a continuation to (Wu 1V)X (Wu 1V).

In the "edge of the wedge theorem" we proved that
we have analyticity of f(z,z') at each point of (Wu 1V)

X (Wu 1V), for some neighborhood 1V of the set S.The
neighborhood 1V is the union of all 1V(X) with XoE,
where 1V(X) is some neighborhood of the point s=X.
The dependence of X upon X is as yet arbitrary, except
that 1V(X) vanishes as X tends to the boundary of E.
In Sec. 3 we And it useful to take for E the set
E=lx: Ixpl &g(t) Ixl &~7.

We must construct a semitube from 8'u E in order
to apply the semitube method. Since W is already a
tube, then it is necessary to construct a semitube H
contained in E. Because x is arbitrary while xp is
restricted, in E, then we expect B to be a semitube of
the form

H=Lz: lxl &", lyl &~(z), lxol &~«), lyol «7
for some small o. The quantity z(zp) will tend to zero
as Ixol tends to g(t) We have Hc. 1V only if 1V(X) is
independent of X. This independence does not occur for
any function analytic in S, as is easy to show by simple
examples. We cannot conclude that there exists a
semitube H cE without using analyticity in 5'.

We wish to show that f is analytic in some semitube
neighborhood H of the set.S. It is evident from what
we have said above that, to do this, we will have to
continue f from Wu1V to WuH. We achieve this
continuation by the direct method developed by one of
us (H. J.B.).'

For simplicity we replace the three-vector by the
complex number z~. By a simple extension our result
in terms of z& may be immediately generalized to the
case z instead of z~.

We take the analytic plane z&
——I&. In the zp plane

the domain of analyticity of our function is the cut
plane, with cuts running from rt(t) to + pp, and —rt(t)
to —~. In the cut plane we take any point xp, with

I
xo

I
&rt (t). Furthermore we take the circle c(xo) in that

plane, with center xp and radius r less than g(t) —
I xpl.

We may assume 1V(X&) to be the region

1V(Xi)=l (zozi):xi=Xi lyol «
lyil « l*ol &rt(t) —~(o,X )7,

where 8(o,Xi)—+0 as o~0. Then we have that 1V is the
union of the 1V(Xi) for all Xi. We de6ne D=Wv 1V,

with 1V=u1V(Xi), where 1V(Xi) is given above. The
circle c(xp) is completely in D. The Euclidean distance
Bii(zp) of any point z on c(xp) from the boundary of D
is then BD(zp) =

I yp I/v2+O(o). We evaluate h(o)
= (1/2~) Jp' 1 ogb n(re")d8 and 6nd h(o) = (r/2v2)
+O(o). Now the theorem of reference 7 allows us to
analytically continue f(zp, zi) into the sphere Ils—Zll

&h(o) about the point Z with Zp=0, Zi=Xi. Since o

is arbitrarily small and r is as close to I g(t) —
I xpl 7 as

we please, we may continue to the sphere Ilz
—Zll

&(1/2%2)l rt(t) —Ixpl7. In particular, we have ana-
lyticity in the set

H(Xi) =Cz: »=Xi lyil &~(q(t) —Ixol),

lyol &-:(n(t)—I*oI), I*oI &n(t)7,
and hence

H =v H (Xi)= I z: I xi I & pp
~ I yi I

& ~ (n(t) I
xo

I )»

lyol &-:(~(t)—I*oI), I*oI &n(t)7.

B is now a semitube.
Lemma 3.—Let f(z,s') be a function satisfying the

conditions of the "edge of the wedge" theorem. Then
we can And a neighborhood H of the set S=Lz: y„=0,

I xpl &g(t), I xl & op 7 which is of the form

H=l z: lxl & ~, I yl &-'(~(t) —I*oI)
lyol &-:(~(t) I*oI) I*oI «—«)7

and such that f(s,z') may be analytically continued
into (WvH)X(Wv H).

To prove this lemma, we use the above process to
continue f(z,z'), as a function of z, to Wu H. We can
show that f(z,s') is an analytic function of (z,z') to-
gether in (WuH)X(WuS). We continue on z' now to
Wu H, and again we have that f(z,z') is an analytic
function of (z,z') together in (WuH)X(WuH). This
proves the lemma.


