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Discrete States for Singular Potential Problems*f
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The solutions of the quantum mechanical wave equations for singular potentials are re-examined. It is
shown that a set of orthonormal wave functions with complex energy eigenvalues (Z„=W„&-',il'„) is
obtained if certain natural analyticity requirements are imposed on the form of the potentials. In general,
the result is interpreted in the following way: W is the most probable position of the energy level for
various types of cutoff and I'„ is a measure of the probable error.

possible because the logarithmic derivative of a wave
function is large if the potential is singular and attrac-
tive, or if it is strongly repulsive; thus, solutions for the
two cases can be joined smoothly.

1. INTRODUCTION

2. NONSINGULAR POTENTIALS

Throughout the years attempts have been made to
solve anomalous nonsingular problems by imposing new
boundary conditions (together with the normalization
requirement) on the solutions of the quantum mechani-
cal wave equations. ' In most cases, as pointed out by
von Neumann and others, ' the extra conditions are
unnecessary and not generally applicable; von Neu-
mann maintained that (II) is sufFicient to give correct
results if problems associated with the ordinary con-
tinuous spectrum are excluded.

As an example of this reasoning, consider the one-
dimensional Schrodinger equation for an attractive
potential:

U(x) = —Vpf(x)x ", f(0) = 1.

u"+[Upf(x)x "—si']u=0,
Then

where Up ——2nzVp/A', and r)'= —2tisE/0'(rf =i)i, E)0).
If 0&@«1,and 0(k(2, the two linearly independent
solutions of Eq. (1) behave like

uo&(x) =x[1+0(x)],
ui" (x) = [1+ax Inx][1+O(x)]. (2)

Both I"& and I(" are quadratically integrable near the
origin, so that for any g, some linear combination is
normalizable in the interval 0&x& ~ if U(co))0.
Thus, when V(x) = —Vpx

—', 0 &x & oo, V(0) = po, a con-
tinuum results if (II) gives the only restriction on
P= A[ut'i+Butsi] (several of the boundary conditions
of reference 1 eliminate u&", leading to a discrete
spectrum). However, (I) cannot be used if the potential
has an infinite discontinuity at the origin. In fact, the

' G. Jaffe, Z. Physik 66, 770 (1931);R. M. Langer and N. Rosen,
Phys. Rev. 37, 658 (1931);G. Araki, Progr. Theoret. Phys. Japan
3, 97 (1948);G. Falk and H. Marschall, Z. Physik 131,269 (1952).

2 J. von Neumann, 3IIathematica/ Foundations of QNaetlm
Mechalics (Princeton University Press, Princeton, 1955), p. 29.
See also K. Kodaira and T. Kato, Progr. Theoret. Phys. 3, 439
(1948), T. Tits, J. Exptl. Theoret. Phys. U.S.S.R. 30, 948 (1956)
[translation: Soviet Phys. JETP 5, 777 (1956)].
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~~OR nonsingula, r potentials, the solutions of the
quantum mechanical wave equations are unique

and of great value in the discussion of physical problems.
Thus, an idealized, unbounded potential (U= Ze'/r—)
leads to a meaningful description of the hydrogen
atom, even if the physical cutoff (finite proton size,
etc.) is ignored. For singular potentials, such a corre-
spondence between physical and idealized systems has
not generally been found because the latter do not
possess unique solutions unless the normalization re-
quirement is supplemented (Sec. 3). The aims of this
paper are: (a) to find some boundary condition which

gives conventional results for nonsingular problems and
unique discrete spectra for singular potentials; (b) to
show that these singular levels are useful as approxi-
mations to many physical (cutoff) problems, even if
the detailed location of the cutoff is unknown.

With these objectives in mind, the consequences of
the following assumptions are investigated: (I) All

physically realistic potentials are represented by func-
tions of the coordinates which are analytic except at
isolated poles and branch points. (II) All normalizable
solutions of the quantum mechanical wave equations
are meaningful and acceptable. Assumptions (I) and

(II) do give standard results in all nonsingular problems
(Sec. 2) and unambiguous point spectra for singular
Hamiltonians. In the latter case, the ambiguity is
removed because the wave function f( x) [or f( r)]- —
is determined in essentially a unique manner from
lt'(x) [or p(r)] by analytic continuation around the
singularity (Sec. 4).

In general, the levels obtained by continuation have
complex energies. The virial theorem suggests that
these states correspond to the periodic or asymptotic
orbits of classical singular problems. In the last section,
it is shown that the complex eigenvalues contain
information about the density of states for an inde-
terminate cutoff and can be used to approximate levels
for repulsive core cutoR problems. This technique is

* Supported in part by the U. S. Atomic Energy Commission.
t Part of this work was performed while the author was a staff

member at the Laboratory for Insulation Research, Massa-
chusetts Institute of Technology. A preliminary account appeared
as Laboratory for Insulation Research Technical Report 109,
June, 1956 (unpublished).
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and P(—x) can be obtained from P(x) by analytic
continuation around x= 0. A branch cut must be crossed
for

~

x
~
)e so that the continuation is not unique; while

solutions which are neither even nor odd may be
selected, the ones consistent with U( —g) = U(x) have
~uo&( —x)

~

= ~u'r&(x) ~, etc. The relative parity is de-
termined by the requirement that the Wronskian,

g =N(u„(2) „(2)„(0 (3)

have the same constant value on both sides of the
origin. If I(') is odd, n(') must be even, and this leads
to the same discrete spectrum.

More subtle difhculties are present in multidimen-
sional problems. The two linearly independent 5-state
solutions for the hydrogen atom are fe "&(r)=u "&(r)/r,
its"&(r)=se"&(r)/r where uo& and se"& are given by
Eq. (2) for r((1. The supplementary boundary condi-
tions' have been proposed to eliminate Ps"& because
both series are quadratically integrable near the origin,
and both are genuine solutions of the radial equation.
However, Dirac has pointed out that

fats"&

is a Green's
function, not a solution, for the three-dimensional
Schrodinger equation'; hence it must be discarded. The
use of spherical coordinates obscures this fact since the
origin is treated as a boundary instead of an interior
point.

The series fels& can also be eliminated, as in the one-
dimensional case, by using (I) without explicit examina-
tion of P at r=0. The reflected solution, P(—r), is
obtained from P(r) by rotation in the complex (x,y, s)
planes (Cartesian coordinates are used to avoid the
additional singularity at the origin). Although the
process of analytic continuation for functions of several
complex variables is not completely understood (this
is discussed further in Sec. 4), it can be established that
~/el" (—r)

~

= ~Ps'"(r) ~, etc. The subsidiary condition
that the Wronskian, W =P&'& Vp i'& —pl'& V&&t

i'& must

e P. A. M. Dirac, Quomiem Mechanics (Clarendon Press, Oxford,
1947), p. 155. For a more general proof, see T. Kato, Trans. Am.
Math. Soc. 70, 195 (1951).

indeterminate result [for V(0) = co 7 is physically cor-
rect since classically a particle with infinite velocity
impinges on an infinite barrier at x=o, and the situa-
tion is not well defined.

If the barrier at x&0 is removed, the origin becomes
an interior point and (II) is sufficient to determine the
levels. All even states must have lt (x) =I ls& (x) because
ul» (even) is a Green's function and not a solution of
Eq. (1).Therefore, a unique discrete spectrum is found
since u"&(—x) = —re'"(x), I"&(—x) =n" &(x) [this im-

plies V(x) = V(—x)7.
In anticipation of the singular potential discussion,

it is significant to note that the same spectrum can be
found without examining P at @=0, if assumption (I)
is used. The potential may be represented as

V(x) = —Us lim (x'+ e') '*,
e~o

satisfy v W=O everywhere, leads to an integral re-
lation,

lim dydslU, (e,y, s)
e-+0

—
~~ t dydslU (—e, y,s) =0, (4)

where the surface of integration is arbitrary. Equation
(4) implies that

ljm [lt(s&/p(r&7, = lim [11,(s&/p(r&7
e—+0 e—+0

for the same energy, any two linearly independent
solutions of a Schrodinger equation must have opposite
parities, and /el'& can be eliminated.

For any nonsingular problem, two series with distinct,
integral exponents can be found. If the singularity is
not at a boundary, the eigenfunction must be tt =pl»
or /=/is&, since only these choices have analytic
properties consistent with (I) [/=A Q lr&+Sf "&) does
not7, and also satisfy v W=O. This leads to the con-
ventional spectrum in every case. However, if the
boundary is singular, (I) and (II) do not determine
the spectrum and the Green's function argument also
fails. Since the ambiguity should be present, (I) and
(II) seem to represent correct boundary conditions,
while those of reference 1 are incorrect.

3. SINGULAR POTENTIAL PROBLEM

Singular Hamiltonians (k )&2 in nonrelativistic equa-
tions) are characterized by wave functions with non-
integral exponents. For example, the choice k = 2,
f(x) = [1+2vx/Us7 (x)0) in Eq. (1) leads to the
general solution

P(x) =A[ui+&(x)+B, (r&)ui &(x)7, (5)

I(+&(x)=e '&'xl+' rJ r(-,'&s —
&/r&; 1&2s; 2r&x), (6)

where s = (s —Ue) l and &Et(a; c; s) is a confluent hyper-
geornetric function. If Us)-„, s is imaginary (s=io)
and therefore, for any Uo, I(+) and u( ' are quadratically
integrable near the origin. The condition lt (~)=0 is
satisfied if

p(1+2 ) p(l ——/. )
Ii.(n) = —(2n) "

I'(1—2s) I'(-,'+s —
p/&1)

and in the interval 0&x& ~, there is a normalizable con-
tinuum. Moreover, both functions ttet+&(r) =hei+&(r)/r
are solutions, not Green's functions, for the three-
dimensional Schrodinger equation.

For Uo&4 and k=2, ad hoc boundary conditions
have been used to obtain discrete bound states or
unique scattering phase shifts. ' However, when Uo+ ~

4 G. H. Shortley, Phys. Rev. 38, 120 (1931);N. F. Mott and
H. S. W. Massey, Theory of Atoesic Collisions (Clarendon Press,
Oxford, 1949), p. 40.
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(k= 2) or k) 2 (all Uo), the functions ul+i diRer only in

phase and the extra conditions do not clarify the
situation. Some authors have concluded that singular
problems have no meaning in quantum mechanics
although they are meaningful in classical physics. '
Case has suggested that one should consider only an
orthogonal set of solutions. ' This additional restriction
on the spectrum (the singular Hamiltonian is not self-

adjoint) is equivalent to the requirement that prob-
ability current density be conserved for an arbitrary
superposition of eigenfunctions. As shown by Case,
solutions with eigenvalues g„and g will be orthogonal
if and only if

unbounded spectra are not a general feature of the
Schrodinger equation.

Consider k=2, f(x) =x' csc'x for 0&x&m/2 and

f(0) = f(rr/2) = oo. The two linearly independent solu-
tions of Eq. (1) are hypergeometric functions,

si'+l(x) = (sinx)l+'X

sp ('+—'s+-',irl,—'&—'s -'—irl—; 1&s; sin'x), (11)

and P(rr/2) =0 if

r(1+s) I'(———s——sg) I'(———g+ —sg)
B,(ri) =— (12)

I'(1—s) I'(—'+-', s ——,'i') I'(—'+-', s+-', sri)

B,*(ri„)—B,(rl ) =0, Up&4, k=2, (8) Using the expansion

B,,*(rl„)B;,(rl )=1, Uo)-'„k=2 or k) 2. (9)

Since ~B,, l =1 [(I&+&)*=u' & for these problems],
we may write B;,(ri) =exp[2sp, (rl)) and Eq. (9) be-
comes y, (ri ) =y, (rl„)+Ps., iV=0, &1, &2, . Thus,
if one chooses any rip ol' Xs (presumably corresponding
to a definite cutoff at some xs), an orthonormal set of
eigenfunctions is determined. '

The function B,(ri) of Eq. (7) is periodic with an
infinite number of poles and zeros at (s&s—v/ri) = n, —
m=0, 1, 2, . Moreover, for almost every po there is
a finite lowest solution with B,(rls) =B,(ri, ). Thus, if

Uo (~ the spectrum is generally bounded from below,
and there are an infinite number of negative energy
states. However, when Us) ~, p, (ri) is given by

y. (ri) =-,'s.—o ln2rl+argi'(1+2so)
+argi'(-',—io —v/rl), (10)

and it can be seen that there is no lower bound to the
spectrum for any rls because the term (o. 1n2ri) is
monotonically increasing.

Case asserted that eigenvalue formulas for singular
potentials always contain an arbitrary constant. Fur-
thermore, although spectra associated with the Dirac
equation have finite lower bounds, Case concluded that
the use of a singular potential in the Schrodinger
equation is academic since the spectrum is always un-

bounded from below, if Uo&~ or k&2. Vogt and
Wannier' criticized the first of these conclusions; they
pointed out that in many cases only one value of po is
likely to be relevant. This idea is discussed further in
Sec. 5, however, it will be demonstrated here that

~ E. C. Kemble, Principles of QNantum Mechanics (McGraw-
Hill Book Company, Inc. , New York, 1937), p. 198; P. M. Morse
and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill
Book Company, Inc. , New York, 1953), p. 1666.

6 K. M. Case, Phys. Rev. 80, 797 (1950).
7 For all of these cases, the "continuous" spectra are examples

of limit circle problems. /See E. A. Coddington and N. Levinson,
Theory of Ordinary DQferential Equations {McGraw-Hill Book
Company, New York, Inc. , 1955), Chap. 9.) In an unpublished
manuscript Professor E. Gerjuoy has examined anomalous quan-
tum mechanical problems and shown that the specification of a
real g0 corresponds to choosing one point on the limit circle. He has
also noted that this makes the problem self-adjoint.

E. Vogt and G. H. Wannier Phys. Rev. 95, 1190 (1954).

p2

r(x+sy) =1(x) g
(x—1+n)'y, ( y

Xexp i —py+ ——tan '~I &x—1+ rs&

where y is Euler's constant, Eq. (9) becomes

00 2 2 -—1

xg 1+ x1+
(s+s+2rs)' ($—s+2e)'

(14)

The infinite product is a monotonic function of
ri(Us &is), and for any choice of Bs there is at most one
root, B,(ri) =Be. In general, ri= eo is not a solution.
When Ue) 4, the spectrum for Eq. (12) diRers markedly
from that of Eq. (10). The function p, (ri) for Eq. (12)
is shown in Fig. 1'; as ri~~, y, (ri)—+[~/2 —argi'(1+io) ]
and the spectrum is generally bounded from below.

It is desirable to And a criterion to predict which
potentials have generally bounded spectra and which
ones have q= ~ as a solution for any qo. A distinction
can perhaps be made on the basis of the classical virial
theorem. All periodic or asymptotic orbits for classical
problems have

z„,=(v)+-;(xd v/dx). (15)

H. Salzer et al. , National Bureau of Standards, Applied
Mathematics Series 34 (U. S. Government Printing OfIice,
Washington, D. C., 1954}.

If f(x) =1+nx(n) 0), —eo &E...&0, but when f(x)
=x'csc'x, E„,= Vs(csc-'x[xctnx —1j) so that —svs
&E~„&~. In classical physics, singular periodic orbits
have negative energies for the long range potential and
have E~„&——', Uo for the short-range force. In quantum
mechanics, this result is rejected by the form of

p. (ri); when f(x) =1+nx, the density of possible states
(with an indeterminate cutoR) is large for —oc &2&0,
but if f(x) =x' csc'x, the density of periodic negative
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energy states is vanishingly small. The classical argu-
ment based on Eq. (15) gives no information about
nonperiodic, localized states with E~—~. A similar

gap is present in the quantum mechanical discussion
since the asymptotic formulas used to determine B,, (r))
are meaningless in this limit, and an intricate study of
the solutions as g~~ would be needed to discuss
these states.

When Eq. (15) is applied to potentials with k)2,
f(x) = 1, E„,= (—',k —1)V&&(x "), suggesting that singular
orbits have E„,)0 (all classical examples do fall in
this range"). For these problems, the functions 7, (r&)

are not well known since the solutions are represented
by semiconvergent power series with three term re-
cursion relations. However, on the basis of the above
correspondence, it is reasonable to expect that y, (r&) is
independent of q as q~~, so that for k) 2 the spectrum
is also generally bounded from below.

4. ANALYTIC CONTINUATION

The eigenvalue formulas of the last section represent
non-unique, discrete levels because only one boundary
condition, P(~ ) = 0, has been imposed. If the other end
point is not singular, more information should be
obtainable from the requirement, P(—ao) =0.

The discussion of Sec. 2 indicates that the use of
assumption (I) to define f( x) leads t—o meaningful

4.0

3.5—

spectra. Since f(x)/x'= csc'x is an analytic function of
sinx for 0&x&~/2, lt( —x) is determined by setting
s=

~

sinx~expi8 in Eq. (11) and rotating from 8=0 to
0=x. The continuation is straightforward because
neither I(+& nor I' contain logarithms and both
series converge for ~s~ &1. (A branch cut must be
crossed; this cut may be taken at 8=m-/2 for both
u&+&, u& &.) The most general result is I&+&(—x)
=Ce&+&(x), I& &(—x) =De& &(x) and the Wronskian is
constant over the interval ——,'m. (x&-,'~ if CD= —1.

This analysis is sufficient to show that lt (Ass) =0
only if B=O (P=u&+&) or B= oo (it =a& &). The corre-
sponding roots of Eq. (12) for Up &4 are,

)& & &'=(—,
' —s+2rs)', P=N& &

X &+"= (4+s+2n)s, P=N&+&
ted=0, 1, 2, (16)

It is natural to choose branches so that C=i exp(eris),
D= i exp( —s.is)."Then as Up~0, s~ts, and the eigen-
functions and eigenvalues go over into those for a free
particle. When Uo increases from zero to 4, the eigen-
values for P=u& & increase in magnitude; the problem
is thus not of Sturm-Liouville class, although the P„&+&

do form an orthonormal set."
When Uo) 4, the continuation yields

C=&i exp(&so), D=ai exp(wmo).

No matter which branch is chosen, if it is consistent
with the restriction CD= —1, it will again lead to the
eigenvalue formulas B;,(X) =0, B,,(X) = ~. These equa-
tions have owly complex roots:

3.0—

2.5—

2.0—

l.5—

0.5—

0
2

r-
I
I
t
I
I
I
I
I

I i I

"I -2
I

"4

O' =0.4, Vo * l.64 8

The energies are of the form E„=R"&~iI' and the
complete spectrum for this problem is plotted in Fig. 2.
For SnsV&&/&s') 1, the W are given by solid lines and
the dotted curves represent 5'„&—,F„. The complex
energies clearly describe nonstationary states with life-
times r =&s/F„and (C*C)W1, etc., so that r&&t

&+& r' is
asymmetric. The asymmetry is not inconsistent with
[R„Hj =0 since there is a source or sink at the
origin. The reflected wave functions, E,f&+&, are also
eigenfunctions, and if the initial position of the particle
is unknown, an even or odd mixture can be considered.

When these techniques are applied to the long range
problem LEq. (6)$, f(x) is defined as [1+2&Us '
Xlim, t&(x'+e')'*j so that V(x) is even. Postulates (I)
and (II) lead to B,(rl) =0, B,(r)) = ao, and the discrete

FIG. 1. The phase function y (X)L=cos ' Re(—u&+&/m& &)~; ]
for the potential V(x) = —Vs cscsx, U(0) = U(s./2) = ~. The
dimensionless parameters are defined by: Vs=A'(0'+ —,')/2m,
E=&&i'Xs/2»&.

"See, for instance, K. Y. Whittaker, Analytica/ Dynamics
(Dover Publications, New York, 1944), Chap. IV.

"Although |rt
(+) and P( ) have phase changes upon reQection,

~P~' is symmetric. Since the refiection operator, 2&!„commutes
with the Hamiltonian, R P( ) and R P( & are also eigenfunctions
of II; however, R on R P represents a complex rotation inverse
to that of R on P. An even or odd mixture of the degenerate solu-
tions, p and R It, can also be constructed."It is useful to choose C, D= &1when comparison is made with
a cut-off problem. See Sec. 5 below and F.L. Scarf, Bull. Am. Phys.
Soc., Ser. II, 3, 60 (1958).
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l6

PmEn 8—

n =0, odd

n =O, even

Yo
I I I I 1 I I I I l I I I I

0 0.5 I.O

SmVo /%
2

l,5

FIG. 2. First four levels for the potential V (x) = —V0 csc x,
(x~ (7r/2, U(&s./2l = ~. For Uo(As/Bm, the levels are station-
ary. For UII&A2/Sm, the levels are quasi-stationary. The dotted
lines are W„~~F„, where F„is the width of the nth state.

NI+)(x) =x"&'gt+) (x) exp &i, (19)
(k —2)xi" '

where the g&+) are complex conjugate functions repre-
sented by semiconvergent series of the form

(+)xn( —',s—I)

eM

The solutions N~+& and I' ~ have distinct continuations
as arg(x) is rotated from 0 to 1r", therefore, an arbitrary
linear combination I)t =A[I&+)+BsII &] with f(ao) =0,
will not generally satisfy P(—~)=0. However, if the
Stokes phenomenon does not mix solutions, g'+)( —x)
=Cg'+)(x), gt '(—x)=Dgt '(x) and/( —~)=0 implies
B=O or B= ee, so that X I+) = (a„&ib„).In any case,
a unique discrete spectrum will be found if (I) and (II)
are used along with the requirement that the Wronskian
be constant.

Complications arise in multidimensional problems.
For physical interactions, V(r) is usually defined as a
regular function of the curvilinear coordinates except
at isolated singular points. However, the non-Cartesian

eigenvalues are

I&„&+)= v[Is+-', +s]—', Is=0, 1, 2, . (18)

In any problem for which it is sensible to consider
adiabatic variations of Ue, the r&

& & (B= eo) must be
discarded since none of the sI„' ) are solutions of Eq. (1)
when Up is zero.

For k)2, f(x)=1 and Irs=Ue, two linearly inde-
pendent solutions of Eq. (1) are

ll'+) (—x, y, s) =&f'+) (x,y,s),
= wc&&' &+) (x,y,s),

ft '(—x, y,s)=+&& &(x,y, s),
=~Dli t )(x,y,s),

y
(20)

»d f'+ (—x, —y, s) =&Col + (x,y,s), etc. for all (x,y).
An even or odd mixture of p plus its reflection about
the line x= —y can be used to reproduce the 8 de-
pendence. However, since f'+) and ll' & must have
negative relative parity [Eq. (4)], onlyft+) orat ) may
be used to describe a state of given /. In practice,
ll I&+) is retained since li s' & tends to a Green's function
as Up—&0.

The details of this discussion are not rigorously
justified but the main results seem well founded.
Only series with distinct exponents can be taken as
solutions of the eigenvalue problem consistent with
(I), (II) [a combination such as r: cos(o lnr+7) or
r'" cos(Irri '"+y) is ruled out]. Equation (4) insures
that the two solutions do not combine so that 8=0 or
g= oo

These ideas can also be applied to the relativistic
wave equations. For example, the two linearly inde-
pendent sets of solutions for a Dirac electron in a
Coulomb field behave as r I+'~ [s '= (j+—')'—rrZ] near
the origin. If s,)-„the more singular set is eliminated

"For a summary of the ideas behind this approach to such
problems and its present limitations, see the discussion by F. John
in Proceedings of the Symposium on Spectral Theory and Differential
ProMems (Oklahoma Agricultural and Mechanical Press, Still-
water, 1951),p. 113.

coordinate systems themselves introduce additional
singularities. It is therefore desirable to discuss singular
problems in Cartesian coordinates, even if the equations
are not separable for these variables. With this point
of view, the solution of a partial differential equation is
regarded as a function of several complex variables
(x,y, s) which is analytic except at the singular points of
the potential. The solution is defined as P(ro) (ro is an
ordinary point) plus its analytic continuations to all r.
Much work has been done in this field, however, it does
not seem to have been carried far enough to discuss
rigorously the very singular cases of interest here. "
A nonrigorous justification of analytic continuation in
multidimensional problems must suffice.

Consider, for example, V(p,0,s) = —Ueh'(1+2vp/Ue)/2'' and let P(p, 8,s) =E(p) O~(t&)Z(s)/p'*. All states
with Is= lb, k, =0, RI(~) =0, have RI(p) =A[uI'+)(p)
+BHI(I&)III ) (p)] where III+)(p) and B,(r&) are defined
by Eqs. (6) and (7), and SI = l Ue. For SI—+ s, B illllst
be zero if ll is to be normalized, but if sI& —, and p is
defined as

~

(x'+y')'*~, there is no restriction on B.
However, if p= lim, s(x'+y'+ e )', then P is an analytic
fun-tion of x, y, s except for isolated singularities and
branch cuts, and f(&x, &y, s) is obtained from f(x,y, s)
by rotation of arg(x) and/or arg(y). If ft+) and f& )

correspond to 8=0, ~, respectively, then
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S. CONCLUSION

Using assumptions (I) and (II), we have found
unique discrete spectra for essentially all quantum
mechanical problems. The results are mathematically
reasonable and they agree with conventional predic-
tions in nonsingular cases. Furthermore, (I) is not
independent of von Neumann's assertion if the term
"solution" is understood to mean "solution in the
complex plane. "However, the spectra have no a prsori
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& 0.5—
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O. I—
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I

0 O.I

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I

I I I I I I I I I I
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Fzc. 3. The first four S states of an electron in a Coulomb 6eld,
as given by the Dirac equation. For o.Z&1, only Re(E„) is shown.
It can be seen that this quantity varies smoothly with Z if e is
large; the corresponding widths LEq. (23)7 are found to be small.

because it cannot be normalized, and the energies are

E„g/mc'= [1+n'Z'/(n j —', +—~—,)'] i,
rs=1, 2, 3, "; j=-'„-'„". . (21)

However, the Problem is singular for nZ) (j+-',)'—s
and s~ is imaginary when nZ&1. The technique out-
lined above leads to Kq. (21) for all Z, with s, replaced
by so; if nZ) (j+-,')'. Thus, for j =-', , Z)137, E,
= (W„;a-,'ir„;), and

(ts —1)[A.(a)+1]I+a [A„(a)—1]l
W„;/mc'= (22)

v2A „(a.) (n' —2e+2) '*

a[A (o)+1]l—(rs —1)[A„(a)—1]l
I'„~/2mc' = (23)

v2A „(a)(e'—2m+2) l

where A '(a.)=1+4''(rs —1)'(n' —2rs+2) ' In Fig. 3,
the four lowest roots of Kqs. (21) and (22) are plotted.
The higher levels are smoothly varying functions of Z
in the region Z~137; if rs))o. , W„;/mc'~ (ts 1)—
X (n' 2rs+—2) ' and I'„;/2mc' o.(e' —2l+2)—'* so that
8'„))I'„.In common with spectra for other long-range
singular problems, only the lowest levels have appreci-
able widths (for nZ= 1.4, I'„;/2mc'=0 635, 0.22.0, 0.065,
0.025 as e goes from 1 to 4) since for high ts, the electron
has a large orbit and the motion is insensitive to the
singularity at the origin.

significance for singular problems; they have meaning
only to the extent that they correspond to results for
physical, bounded-potential problems.

Consider a cutoff at x= xp so that the inside wave func-
tion has a logarithmic derivative D, (xp) = (P /P, )x=xp.
Since the Wronskian must be constant, D;(xp) =Dp(xp).
For k= 2 and Up(4, it can be verihed that eigenvalues
corresponding to 8,=0, 8,= ~ will be obtained if
xpD, =-,'+s (xp«1). A constant repulsive core cutoff
[V(x)= O' Vr/2m,

I
x

I
&xp) has even and odd states with

xo[ Vr+X']*' tanh[Vt+X']~xp
xoD, (xo) = (24)

xp[Ur+X']' ctnh[Vt+X']Ixp

and if s sr or s 0, one can readily choose V&
——Ur(Up)/

xps so that B,(even) —+~, B,(odd) —+0 as xp—+0. (For s
not near 0 or ~, V~ must be x dependent to obtain
these results exactly. ) Thus, the energies found in
Sec. 4 for k= 2, Up(~ correspond exactly to those for
a specific set of repulsive core cutoffs in the limit xp~0,
and can be used to approximate levels for any finite
repulsive core.

When Up) ~, the exact solutions are not so useful.
The equation xpD, (xp)= —',&sa., which implies E„=W
&—,iI'„, can be satis6ed if VI is complex, or if 8'„—&—~
as xp~0 so that lim*p o[xpsri'(xp)] remains finite.
When Vt is real, the outside wave function is Pp
= x' cos[a lnx+y, (X)],x«1, and the (real) eigenvalues
are solutions of

y, (X ) =a ln(1/xp)+P tan —'[(-,' —xpD, )/o]+m. , (25)

where I' is the priricipal value. Since xpD; is independent
of ) for xp(&1, the finite eigenvalues are determined by
the variation of y, . The most probable values of X

occur at the maxima of By/B, and the probable
deviations from these values are measured by the
widths of the maxima. From Fig. 1, it can be seen that
the inflection points decrease slowly as 0. increases, and
that the widths of the By/BX peaks are zero at a =0
and increase with a. For a. ln(1/xp) &~, the lowest
level corresponds to the lowest inRection point of
Fig. 1.

When Figs. 1 and 2 are compared, it can be verified
that if By/BR= 0, E W„, and that the I'„m—easure the
deviations. This feature is not accidental. In any prob-
lem for which B;.Pt) =0, ~ has roots X o+&= (a„&ib„),
Re(B) will have maxima on the real axis near A=a„;
the width of each maximum corresponds to b . There-
fore, for any problem, p (X) (=P cos[ReB,P,)]+m.)
has the step-like X dependence, and roughly the same o-

dependence as that exhibited in Fig. 1.
Thus, energies E 8'„&~V„will be found for any

repulsive core if 2a.«1; if qs. &a ln (1/xp) ( (g+ 1)or,
then m=q+rs, and there are (2q) negative energy
states. In Fig. 4, levels are shown for such a cutoff with
q=0. The energies are between Wo+-', I'p and Wp ——,'I'p,
and the degeneracy predicted by Kq. (17) is actually
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