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Though the Kato technique for obtaining bounds on the cotangent of the scattering phase shift, gl„ is
extremely general and powerful, an integration must be performed which can be quite troublesome, and
some preliminary, albeit crude, information about gl, is required before the method can be applied. It is
shown here that in the evaluation of the upper bound on cotqL, , the integration can often be eliminated
without any significant increase in the value of the upper bound. It is also shown that the Kato formalism
is often useful even when one does not possess the necessary a priori knowledge of gl, under realistic specified
conditions, a bound can be obtained on gL, even when a bound cannot be obtained on cotgl, . Further, a
procedure analogous to iteration is introduced whereby this bound on gL, can be improved. The bound on
gL, is of interest in its own right. It may also help to provide the preliminary information necessary for the
determination of bounds on cotgl, .

It is shown that if the potential V (r) is nonpositive, r7c+ and/or ~ris ~
must be larger than the Born phase

shift rrBI~ where sir~ are the phase shifts associated with WV; if V(r) &0 and if ~rip+~ &s, then cotriLy—cotgJ. &2 coty~I, +. A slight generalization of the Schwinger integral variational principle gives similar
results for phases related to V& U.

l. INTRODUCTION where
ARIATIONAL techniques have proved invaluable

~

~

in scattering theory, in the evaluation of phase
shifts, for example. They nevertheless suffer from the
serious disadvantage, compared to the correspondin
variational calculations of binding energies, for in
stance, that they do not provide a bound on the phas
shift. This disadvantage is most pronounced in prob
lems of such difficulty that one cannot guess at
reasonable form for the trial function, though it i
precisely for those problems that variational technique
are potentially most valuable. (We might for exampl
be interested in a particular problem of scattering b
a compound system which could not readily. be handle
by a machine. ) For a poor trial function, the secon
order error involved in the variational calculation i
not necessarily small. Further, there is the disheartenin
feature that the inclusion of additional parameters int
the trial function may give worse rather than bette
results.

For these reasons, the general and powerful (an
elegant) technique introduced by Kato' for obtainin
upper and lower bounds on cot(rtr, —9) is of considerabl
significance. For nonrelativistic scattering by a centr
field, Kato deduced the inequality

ngl, egr, &k cot( t r8r) h cot(r/r, 0)

+ Ngr, Zrstgrdf &pgr, egr, , (1.1

(1.2)egL, =)" p (ZrQgr) dr.
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The generality of the method consists in the fact that
there are no restrictions on the central potential; in
principle, it can also be applied to more complicated
problems such as the scattering by a compound system.
The power of the method lies in the latitude that one
has in the choice of the normalization, 0, the trial
function, mal„and the weight factor, p.

There remain nevertheless two disturbing questions.
The first is the practical question concerning the diffi-

culty of performing the integration that appears in
Eq. (1.2). The second question, a more serious one in

principle, is whether one can in fact determine the
eigenvalues ngr. and pgr„or bounds on them which
preserve the inequality. Now, it is known' ' that there
is a wide variety of central potentials for which neither
of the two questions proves to be very serious. In these
cases, the integrals are not really too tedious, and it is
not very diKcult to obtain bounds on ngr, and Pgr, . On
the other hand, in scattering by a compound system,
for example, these questions assume much more serious
proportions. As is not too surprising, other questions
arise in an attempt to obtain bounds on the phase shift
for scattering by a compound system. These will be

) treated at a later date. It is more profitable to examine
scattering by a 6xed potential first, but from a point of
view such that the results will prove useful for appli-
cation to scattering by a compound system. Thus,
techniques are sought whereby it will not be necessary
to evaluate the integral in Eq. (1.2), since for scattering
by a compound system the integration of the analog
of Eq. (1.2) may well be prohibitively laborious.

'L. Spruch and M. Kelly, Phys. Rev. 109, 2144 {1958),pre-
ceding paper.
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Further, we seek techniques by means of which one
can obtain ngz and/or Pgz with a minimum of a Priori
information about qL„or, assuming that one carrot
obtain nez, or pgz, we seek any information which can
still be extracted from the Kato formalism. (In the
case of a fixed central potential, bounds on ngz and Pez,
can generally be determined by comparison of the given
potential with known solvable potentials' '; this is not
generally possible in the case of scattering by a com-
pound system, since there are no such realistic solvable
potentials. )

Kith regard to the first question, concerning the
elimination of the integration, we note that under
specified conditions' ' pgz is infinite. Vnder these
circumstances, for the purposes of obtaining an upper
bound on cot(qz —0), the integration need not be per-
formed. The evaluation of an upper bound is then not
essentially more complicated than the usual variational
calculation. The conditions include the requirement that
the potential be of a solvable form beyond some point
a. Ke consider for the moment the simplest such
example, that of a potential which vanishes identica, lly
beyond the point a. This suggests, ' for a "potential"
W(r) which is non-negative but which does not vanish
identically, that one define a cutoff potential W'(r)
=W(r)Z(a —r), where Z(a —r) is a step function. By
the appropriate choice of a, one can cause the Pgz',
associated with W'(r), to be infinite, in which case
qz', the I.th phase shift associated with W'(r), can be
bounded from above without performing the compli-
cated integration. Since W(r)&W'(r), it follows that
ql, & ql, ', so that the bound obtained on gr, ' serves as a
bound on gg as well. While this has been shown to be
a reasonable procedure' in general, there is sometimes
a considerable loss in accuracy, in that it may be
necessary to choose a rather small value of a. The
diQerence between S' and 8"may then be considerable,
in which case even a close bound on g~' will be a poor
bound on gz, . It will be shown in Sec. 3 that the intro-
duction of a constraint on the trial function, ural„makes
possible an increase in the value of a, thereby decreasing
the difference between S" and 8" and therefore be-
tween ql. and ql, ', and making it possible to obtain a
better upper bound on gI.. Since it turns out that the
constraint on ug~ is almost always satisfied automati-
cally, there is no real loss of freedom in the choice of
upi. .

Since there does not seem to be any way of elimi-
nating the troublesome integral when one seeks a lower

bound on cot(pz —0), it is only the upper bound which
can ever be obtained relatively simply. This upper
bound is of course of interest in its own right; there is
in addition the pleasant feature associated with the
presence of even only one bound that the inclusion of
more free parameters in the trial function guarantees
an improved result.

It will also be shown in Sec. 3 that it is still very

profitable to introduce the constraint on ugL, where one
must evaluate the integral, or where one prefers to
evaluate the integral rather than lose any accuracy at
all by introducing W'(r). If, as is usually the case, the
constraint is autematically satisfied, one obtains an
improved bound, as compared to that given in the
formulation of Kato, without doing any additional
calculation.

Turning now to the second question, concerning the
prior knowledge of gl„we assume, in line with the
previous discussion, that so little is known about g~
that ngz and Pgz cannot be determined. Even though
one eaerloi then obtain a bound on cot(gz —8), it will
be shown in Sec. 4 that under realistic specified con-
ditions, the K.ato method does give a bound on ql.
itself. Further, a procedure analogous to iteration will
be introduced in Sec. 5 whereby this bound on pl. may
successively be improved. The bound on gl, is of course
of interest in its own right; it may also help to provide
the preliminary information necessary for the appli-
cation of the Kato method to the determination of
bounds on cot(fez —8).

In Sec. 2, a property of the Schwinger integral
variational principle deduced by Kato will be used to
develop a very simple but useful inequality involving
the phases gz+ associated with &W(r), and the Born
phase shift. A similar inequality is deduced involving
phases related to W(r)&U(r) by starting with a slight
generalization of the Schwinger principle.

2. EQUAL AND OPPOSITE POTENTIALS

A. Phase Shifts Associated with ~ W

where the only restriction on the trial function vz,+(r)
is that it must satisfy

f
k ' kr jz(kr) W(r)vz~(r)dr=1, (2.2)

and where the free-particle Green's function Gz(r, r')
is given by

Gz(r, r') = —k 'k«jz(kr()kr)ez(kr)). (2.3)

Assume further that the I.th phase shift gL, associated
with —W(r) satisfies gz )—v.. Then, similarly,

k cotgz ))I ( W)vz 'dr—

'

dry~ dr'vz ( W)Gz( —W)vz, (2.4)—

Assume that the I.th phase shift g~ associated with
W(r)&0 satisfies g~(v. Vnder these circumstances,
as was shown by Kato, a bound on k cot&I+ is provided
by the Schwinger integral variational principle, that is,

k cotqz+( "Wvz~'dr —
l dr l dr'vz+WGzWvz+. , (2.1)
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where the only restriction on vz (r) is that it must
satisfy 10
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cotrfz+ —cotrfz (2k—') W(r)re+'(r)dr, (2 6)

From Eqs. (2.2) and (2.5), it is clear that it is per-
missible to choose wz (r) = rrz+(r)—. If this is done, it
follows from (2.1) and (2.4) that
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where nz+(r) satisfies (2.2). Equation (2.6), which gives
a bound for one of the two phases if the other is known,
has the pleasant feature that it does not contain
Gz(r, r'); the question as to whether it is likely to
provide a useful bound remains to be discussed.

The choice of nz+(r) will now be considered. We can
write

cot'g~ —cotrf r (F[v~],
where the functional F[nz+] is given by

(2.7)

- —2

F[ttz+]=2k ~Whiz+'dr t krj z, (kr)Wrrz+dr, (2.8)
~J

and where there are now no restrictions whatever on
ez~(r) If, in. the denominator, we use the fact that
W(r))0 to write W(r)=W*'(r)W'(r), an application
of Schwarz' inequality gives

-2
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Kato formalism which give rise to the Schwinger
variational principle are

FIG. 1. A comparison of cotrfz+ —cotrfz (the solid curves) with
its upper bound, 2 cotrinz+ (the dashed curves), for the case of a
square well of strength 5'0 and range a. gl,+ and A&I.+ are the
exact phase shifts associated with ~IV and the Born approxi-
mation phase shift, respectively. The values of I and of ku for
curves A, 8, and C are L=0, 0, and 1, and kg= 5~/4, 10~, and 2,
respectively. The plus and minus signs on the graph represent
the points at which gl,+=—,'m- and at which qL, = ——2m-.

It then follows that

——1

F[sz+])2k t [krj z, (kr)]sWdr

=2 coty~I, += —2 coty~I,

where qg~+ is the Lth phase shift for &8' in the Born
approximation. On the other hand,

F[n~ =krj (krz)] = 2 cotrtrrz+. (2.10).
It follows from Eqs. (2.7), (2.9), and (2.10) that once
one has chosen vr (r) = —ez+(r), the best possible
choice for wz,„(r) is kryo &(kr). In summary, we see that
if W(r)) 0, if rlz+(m, and if rfz )—m. , then

cotrfz+ cotrtr & 2 cotrfrr—z+ (2.11).
One might expect the bound given by (2.11) to be

exceedingly poor, because of the choice ez (r) =
—vz+(r). Actually, due to the presence of the Green's
function in the Schwinger variational principle, it is
somewhat misleading to think of e~(r) and ez (r) as
the trial functions. Thus, the trial functions in the

Npz~(r) =cotrfz~krj z(kr)+ Gr (&W)rrz~dr'. (2.12)

Then, with riz+(r) =krj z(kr) = ez (r), we have—

Npz~(r) =cotifzgkr jz(kr)

+~ Gz, (r,r')W(r')kr'j z, (kr')dr'. (2.13)

The choices of pl~ and q& are each completely arbitrary,
so that there can be considerable difference between
No~ and No~ . More important is the fact that if
rfz+ and

~
riz

~

are not too large, Npz~ and rtpz should
be fairly reasonable trial functions. (It is to be noted
that if rfz+ and I, rfz I are less than —',m. , cotrfz+ and
coty~ will be of opposite sign, so that the "correction
terms" involving the integral appear in (2.13) for
u«+. and 001. in effect with opposite signs, as they
should. ) Equation (2.11) should not therefore give too
crude a bound for rlz+ and ~rfr I not too large. As
examples, we have plotted in Fig. 1 the bounds on and
the exact values of cotgl+ —cotgL for the case of a
square well for a few sets of values of the parameters.
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X
I

Ufz&~« I (2.20)
( t

The right side of (2.20) is a slight generalization of the
Schwinger integral variational expression for the phase
shift. It does not seem to have appeared in print,
though the corresponding generalization of the
Schwinger integral variational principle for the scatter-
ing amplitude has been given. '

Equation (2.20) will not in fact often be useful as
it stands, due to the presence of the Green's function.
It can be of use, however, when employed in conjunction
with the corresponding bound on cotd qr, which arises
if Apl )—m. An analysis identical to that of subsection
A gives

B. Phase Shifts Associated with 8'~U

The above results can be generalized somewhat.
I.et W(«) be a solvable "potential"; in particular, let
the phase shift gl. , the "absolute normalization"
solution fz(«), and the (irregular) solution gz(«) which
has the asymptotic form

gz(«)~ cos(k«—',L7r+—rfz—) (2.14)

be known. Let the Jth phase shifts associated with
W+U be rfz+Drfz~, respectively. (The hrfz~ are of
course nof the phase shifts associated with &U.) No
assumptions are made regarding the relative magnitudes
or ranges of 8' and V. We seek a simple inequality of
the form of Eq. (2.11) which involves the Ariz~.

Kato determined bounds not only for phase shifts
but for "additional phase shifts" of the type Apl, +.
If U(«))0 [no such assumption must be made for
W(«)j, and if d«7z+(rr, the choice p=U and 0=0
gives Ppz+=1, and the bound becomes

cothriz+ —cotArfz &2k~ ' Ufz'dr
~

. (2.21)

This bound can be expected to be useful if, roughly
speaking, Ariz+ and

~
Ariz

~

are each rather less than srr.
Equations (2.11) and (2.21) have the virtue that

the bounds are simple to calculate, for they do not
involve the Green's function, and yet the bounds
di6er from the true value by a second-order term since
they arise from variational forms.

It can be seen that, qualitatively, the bound becomes Equation (2.15) then becomes
crude only when riz+ or I rfz

~
is of the order of szgr.

richen Eq. (2.11) is valid, rfz~ or lriz —l~ or both, cot~rrz+&k~
I"U„2« t tz+UgzUvz+«

must be larger than rf&z~. Since rf»~ as defined by && J )
(2.9) is less than gr (in fact, it is less than gr/2), it
follows without any prior information about g~ or

, that if W(«)&0, then at least one of rf~ and
must be larger than q~L,+.

k cotta%/z+(k cotdr/z+ ggpz+Z~Qpzyd«

+ U '(&z+Ipz+)'d«, (2.15)

where
d2

+k'—L(L+1)
+W&U,

r2

and where the trial function no~ must vanish at the
origin and must have the asymptotic form

3. INTRODUCTION OF sIigz

A. Advantage of Introducing sggz

(—rr z) '&(Pgz) ', for s,ll ggg. (3.1)

(The value of «rz' depends upon the problem under
consideration. ) The second-order error term in the
Kato variational principle is given by'

By definition, —Pgz is that negative eigenvalue
p, I, which is smallest in absolute magnitude, so that

u pz+~cos (k« ,'Lgr+ rfz)—-
+cotArfz+ sin(k« ——,'Lgr+rfz). (2.16)

wgztzwgz«= k P ( iz z) b—(3.2)

Choose

tgpz+(r) =cotArf~fi («)

+ re�(«,«') U(«') vz+(«') d«', (2.17)

where m. is the difference between the trial function
and the exact function, where

s —k—1 I p
—1(g Ng )2«—k—

legL2 (3 3)

and where
where the Green's function gz is given by

Bz(««') = —k 'fz(«)gz(«)), (2.18)
4~z&zgggzd« (3.4)

and where the only restriction on vl,+ is the normaliza-
tion condition

= —p, zk ' tttgzpP zd«. (3 5)

k ' fz(«) U(«)vz+(«)«=1.
' See, for example, H. E. Moses, Phys. Rev. 96, 519 (1954).

(2 19) ' A factor of k is missing from some of Kato's formulas, but not
from any of his final results.
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The g L are the eigenfunctions of the associated the relation
eigenvalue problem. It follows that

k 'Jl PNkrj z, (kr) j'W(r)dr= 1. (3.13)

J
wBL+LwBLdrg (pBL) p (@LuBL) dr.

It will be shown later that is often possible to ch
the trial function I« in such a way that b J.=O.
(This is certainly not always possible for one cannot
generally solve for p z,.) In those cases for which
b L=O, Eq. (3.2) becomes

b~ L=boL=k 1VJt (uoL izoL)W—krj L(kr)dr. (3.14)

It is then a consequence of the relation

(3.6)
(In this case, p L=poz= tzoL—=1, and Bt3oL= —tz—i, L

is greater than one. )
oose It follows from Eq. (3.5) that

wBLZLwBLdr=k p ( tz z) b z, , (3.7)
~upLWkrj L(kr)dr=k, (3.15)

Q'b L'=k ' ~p '(zzuBL)'dr (3.8)

where the prime on the sum denotes the exclusion of
the value m =888', while Eq. (3.3) becomes which is just the usual exact expression for -k sinpl, ,

written with 0=0 normalization rather than absolute
normalization, that b g = bpl. =0 if IpL, satisfies

We now define
2138L tz m' 1,Ly— (3.9)

t upLWkrj L(kr)dr=k, (3.16)

so that —
ppBL is the negative eigenvalue which is

second smallest in absolute magnitude; hence

(—tz„L)—'& (ipBL) ', 888/888', (3.10)

and it follows, if b L, ——0, that

J
wBLZLwBLdr( (2pBL) ', p '(ZLuBL) dr. (3.11)

There are three quite diferent possible advantages
associated with (3.11) as opposed to (3.6). (a) There is
the simple fact that ppBL is larger than pBL so that the
upper bound on the error term and on cot(itL —0) is
reduced. (b) In the replacement of W(r) by a cutoff
"potential, " W'(r), which enables one to drop the
difficult second-order error integral, it will be possible
to choose a larger value of the cutoff point a. (c) There
are circumstances for which PBL is infinite while

PBL is finite.
Examples of these three cases will be treated in

subsections C, D, and E, respectively. First, however,
we will demonstrate with an example that there are
in fact cases for which one can arrange to have b 1.=0.

B. Possibility of Introducing, )BL

There exists one particularly important case for
which it is trivial to solve for g L, namely, that of a
non-negative W(r) whose 1th phase shift is less than Br.

For the choice p=R' and 0=0, a solution of the asso-
ciated eigenvalue problem which satisfies the necessary
boundary and normalization conditions is

Q .z=ltpL ——1Ar jL(kr), (3.12)

where the dimensionless constant 1V is determined from

as well as the usual boundary conditions. Equation
(3.16) is to be satisfied by adjustment of the parameters
contained in upz, . (Alternatively, it is possible to choose
a trial function upi. which satisfies the necessary
boundary conditions, and then to subtract from ~pg

that component which is not orthogonal with weight
factor p= W to Qpz, i.e., to set

upL = spL —(1Vkrj z, (kr) j
X —1V+1Vk ' "iloLWkrj z, (kr)dr .

This trial function satisfies (3.16) and the boundary
conditions automatically, i.e., without adjustment of
any parameters, but it may ge unwieldy. )

It is important to recognize that the constraint
imposed upon uoz, by (3.16) is not an unnatural one; on
the contrary, as seen from (3.15), the exact function
upL, satisfies precisely this condition. Furthermore,
for a very natural choice of the form of upL, and for
some very natural methods of determining the constants
which characterize upz, Eq. (3.16) will automatically
be satisfied. In particular if we write

upL(r)=cotrtzkrj z, (kr)+YL(r), (3.17)

where I'& satisfies the necessary boundary conditions
and depends upon various constants C; but rot on
cotgl. , and if, following Kato, we choose the C;, and
cot&& by minimization of

poL
J p (oCLupL) dr (3.18)

minimization of apl, ' with respect to cotpl, can readily
be shown to lead to (3.16), for p=W. Similarly, for
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a trial function of the form given by (3.17), minimiza-
tion of the entire expression for the bound on k cotgl,
can also readily be shown to lead to (3.16). The latter
case includes the special case for which s8pz is infinite.

C. g» aS OppOSed tO goz

In subsection C, we will restrict our attention to
non-negative W(r) whose Lth phase shift is less than
m-. Further, we choose p=1/I/ and trial functions of the
form given by Eq. (3.17).As was shown in subsection 8,
for 8=0 normalization one can then simply replace
Ppz by s8pz. We note that &Ppz, is clearly larger than
Poz for all 8 including 8=0.

For 0=0 normalization, it is obviously preferable to
use oPpz rather than Ppz, since one has the same trial
function in each case and OPoz

' is smaller than Ppz ',
so that the upper bound on cotgl, is reduced. The
question which naturally arises, however, is whether
one should use 8=0 and OPpz, or whether one should
use say 0=-,'m. In the latter case one would, in general,
have to use P,;,z, since for 8=-', s one cannot in general
solve for p z and one cannot therefore introduce

2P, , z. It is not immediately clear which is preferable,
for while oPpz is larger than P, , z, the trial functions
have different normalizations, and further, in one case
one bounds cotgl. while in the other case one bounds
cot(qz —oor). It turns out to be preferable to use 8=0
and OJ3pz rather than 8=-', or and p; z To see t.his let
the upper and lower bounds on k cotgl, as determined

by Kato, Eq. (1.1), for 8=-', vr normalization, be denoted

by B„and B&, respectively, and let BU denote the
upper bound as determined with the use of OPpz Then.

BII=k cot7JL sozZLNozdr+ 2poz ooI', (3.19)

or

Bzz B„(kcotrlz ——B„)—'(B ) '—
ooL (P-'w, L 2PQL '). (3.20)

The use of 8=-,~ normalization is permissible only for
gz(-', m, in which case k cotgz (and therefore B„) is

greater than zero, so that BU is in fact a better bound
than B„.While the difference between them is only of
second order, this difference may well be significant
for those difficult problems for which one cannot
readily obtain a good trial function.

In order to get a feel for the reduction in the upper
bound on cotql, that can be effected through the
introduction of OJ3oz, as opposed to P~, z„we will

consider a specific problem. It will erst be necessary,
however, to derive an explicit expression for &ppz, .

For 0(p=W&b/r' and for gz(8(m. , conditions
which have been assumed to be satisfied in this sub-
section, it was shown previously" that

Poz)1+b—z(2 —28~—I) (3—28~—'+2L). (3.21)

Under these circumstances, the evaluation of a bound

on oppI consists of the determination of that value of

p for which the Lth phase shift associated with [(1+p)b
—L(L+1)]r ' is —s.. This corresponds to the case
gL, &|I with 0 approaching zero, so that, from Eq.
(3.21), if 0&p =W(b/r' and if IIz (m,

OPoz&1+b '(6+4L) (3.22)

upo(r) =coskr+cotgo sinkr
—[1+Cz(r/ao) $ exp( —2r/ao), (3.24)

which is of the form of Eq. (3.17).If the trial function is
simplified by setting C&=0, it is found for k=0 with
0= —,'x normalization that y =—k cotgp=0. 1250 and that

k cotgp&0. 1096=B„,

while 8=0 normalization and the use of oppp=11. 22

(as compared to P;, p
——4.407) give

k cotgp&0. 1070=BU.

It is known from Kato's work that for k=0

0.10560&k cotgp& 0.10598.

Taking the most unfavorable case, that is, assuming
that k cotgp =0.01560, we find that the difference
between BU and k cotgp is only ore-third of the difference
between B and k cotgp even though the calculations of
BU and B„are essentially identical in that the trial
functions di6er only in normalization.

The values of B„ for the trial function given by
(3.24), with C& and cotIIO adjustable, have been
tabulated by Kato for a number of values of k. Since
he also tabulates y=k cotgp, and happ, the values of
BII can be determined immediately from Eq. (3.20).
[Normally, of course, one would determine BII from
Eq. (3.19).j As was noted above, the difference between
B~ and B„ is of second order, and since we are now
using a rather good trial function, the improvement in
B~ over B„ is not so great. Even so, for the least

TABLE l. Comparison of upper bounds on k cotqp. 8„is deter-
mined from Eq. (1.1), while the determination of Bp depends
upon the introduction of 2Ppp. 8) is a lower bound.

kao Bf,

0
0.068
0.136
0.272
0.384
0.608
1.000

0.10560
0,10917
0.11982
0.16186
0.21629
0.37414
0.78278

0.10598
0.10952
0.12008
0.16192
0.21632
0.37468
0.78643

0.10592
0.10947
0.12004
0.16191
0.21632
0.37455
0.78564

Consider now the evaluation of an upper bound on
cotgp and hence of a lower bound on gp for

W(r) = (2/ap') [(ap/r)+1] exp( —2r/ap), (3.23)

the "static hydrogen potential" analyzed by Kato.
He showed that 8'&0.5871r ', and chose as his trial
function
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TABLE II. Error introduced by cutting off the potential. A comparison of the difference between the true phase shift, gp, and the
phase shift for the cutoff potential, r)p', for L, =O scattering by the potential given by Eq. (3.23), for the choices 8=7r/2 and 0=0,
respectively. The latter choice is possible only with the introduction of &Ppp. The symbol u( —b) represents aX10 ~.

kao

rf p
—rfp', e=~/2

gp —gp', 8=0

0.068

4(—40)

0.136

4(—&0)
4(—20)

0.272 0.384

2(—4)
2(—7)

0.608

4(—3)
4(—5)

1.000

3(—2)
2(—3)

favorable assumption as to the true value of k cotgp,
the improvement is about 15 j~ and is somewhat larger,
as one might expect, for the value kap=1 for which
8„—B~ is largest, that is, in the region for which the
trial function is least adequate (see Table I).

k tan(rfp 'gp ) = WQptpp &,
a

(3.25)

where tcp and up' are the exact "absolute normalization"
solutions for 8' and 8", respectively. If a is suKciently
large, then rfp=rfp, 'Lcp =Pip=sin(kr+rfp), and r can
be replaced by a in the integrand except in the expo-
nential. (The exponential is rapidly varying and rfp

is not too close to a multiple of —,'~ for the values under

5 See references 1 and 2. To generalize to L/0, replace
ka= rfp" by rfr, "=cot '—[Nr. (—ka)/jr, (ka)g, the I.th phase shift

for an in6nitely repulsive square well of range a.

D. Increase of the Cutoff Point, a

If rfp(8(pr and if W(r) vanishes for kr) ka=rr 8, —
then Ppp ——~, and the calculation of an upper bound
on cot(rip —8) is essentially no more complicated than
a standard variational calculation. 5 If gp&8&m and if
W(r) does not vanish but is non-negative for kr)ka
=~—0, a lower bound on pp is provided' by the deter-
mination of a lower bound on gp, the L=O phase shift
associated with W'(r), where W'(r) is simply W(r)
but cut off at the point »=a. Since here too Ppp= po,

the calculation of a lower bound on gp' reduces to a
variational calculation. Finally, if rfp&7r and if W(r) is
non-negative for all r, we introduce sPpp. With the choice
a= k 'm. , which is considerably larger than a= k '(m —8)
for 8 not too small, we have sl8pp= ~, once again, the
evaluation of a lower bound on gp' and hence on gp

reduces to a variational calculation.
For W(r) non-negative, it follows from the mono-

tonicity theorem that an increase in the value of a
reduces the error introduced by cutting off W(r) at
r=a, that is, reduces rf& rfr,

' Qu—alita. tively, it is clear
that the reduction will be significant for an increase
of a from k

—'(n —8) to k 'rr if W(r) for k '(pr —8) (»
&k 'x is not yet small and if x is rather larger than
~—0. In order to obtain a more quantitative idea of
the reduction that might be expected, we will study a
particular problem. The "potential" given by Eq.
(3.23) will again be considered, for 1.=0. The exact
expression for p p

—qp' is given by

consideration. ) Equation (3.25) becomes

rip rip =sin'(ka+rip)[(ka) '+(kap) '] exp( —2a/ap).

Since rip &7r/2 for all k for this "potential, '" it is permis-
sible to set 8=m/2=ka or, with the introduction of

sPpp) to set 8=0 and ka='r. Using the known values' of

gp, one finds the results shown in Table II. It is clear
that while either method is quite adequate for the
values of kap under consideration, accurate results can
be obtained for somewhat larger values of kap only with
0=0 normalization.

The advantage of cutting off t/t/" with 0=0 rather than
8= ~x normalization, namely, the increase in a and the
consequent reduction in pl. —pl, ', is not offset by any
increase in the complexity of the wave function or of
the calculation. To see how the calculation proceeds
for 0=0 normalization, consider for simplicity L=0.
If qp is less than ~, we cut the potential off at a=~k '.
For r& a, we must have an exact solution of the form

Npp(r) = cotrip sinkr+coskr,

while for r (u we might for example choose

npp(r) = cotrfp sinkr —sinsrkr+Q C„sinrskr.

Cotqp is arbitrary, but the C must satisfy

P.(—1)"C.=O,

in order to satisfy continuity in slope and value. This
trial function is relatively simple and, generally, should
be expected to give reasonably accurate bounds without
too much work.

As a concrete case, consider

W(r) = Wp exp( —r/rp)

for krp=n/pf'p =1. The exact value of cotqp, which
follows from the known analytic solution, is 2.37.
Comparison with the solvable Hulthen potential shows'
that qp is less than —,'x, and we can therefore use the
above trial function. If we simply set C„=O for all e,
variation of cotgp leads to cotgp&cotFfp &2.79, while
setting C&

——~C& and C„=O for e&2 leads by variation
of cotqp and of C~ to cotqp&cotgp'&2. 56. Further
improvement on the bound could of course be effected
by the inclusion of more nonvanishing coefficients C„.

E. sgpr, Infinite While gpr, Finite

The cases treated thus far have specifically assumed
that W(r) is non-negative and that it can be shown
that the phase shift of the angular momentum under
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consideration is less than m. The following two examples
will show that these are not inherent limitations of the
method. These examples will at the same time show
that, as was asserted previously, there are in fact
cases for which gPgr, is infinite while Pgr, is finite.

Thus, assume again that W(r) is positive for r&a
and vanishes for r&a, but let it only be known that
8(gjr, (gr+8 and that —gr+8(gr, ". For the choice
p=W, Pgr, is finite and one cannot solve for P
so that one cannot introduce gpgr„and the dificult
second-order error integral would have to be evaluated.
We can however choose p=S' —8", where W'&0 is a
square well (with range less than a) and where W& W'.
The associated differential equation introduced by
Kato is readily solvable for p, = —1, being simply the
equation for a square well potential. For those cases
for which it is possible to choose a lV' which satisfies
8"&8' and for which the phase shift associated with
W' and therefore with the then known function Pgr, is

0, the choice of a trial function which satisfies

bm'L bOI k @gL+LNgLdr=0'

enables us to introduce 2pgr„which is now infinite,
thereby avoiding the difficult integration.

As an example of a case for which W(r) need not
be non-negative, let the only condition on W(r) be
that it vanish for r & 0,. I et it be known that 0—x
&gl, (0) and that

0—2x&gg &0—m.

Choose p=W+W', where W'&0 is a square well of
range &a such that W+W'&0. For those cases for
which it is possible to choose lV' such that the I.th
phase shift associated with (—W') is 8—gr,

is known, and if Nttl. is chosen such that

b„r,=b i, r, =k '
Q i, l.&r,lgl.dr=0,

we have gPgq, = ~ . [If W(r) &0, it will ahvays be possible
to choose such a W'.)

Formally, one can impose two subsidiary conditions
on the trial function, namely, b 1.=0 and b &, 1,=0,
and introduce gPgz, . While this would be very useful,
the subsidiary conditions can be satisfied only if one
can determine both p r, and P i r„and this does
not seem to be possible.

It will occasionally be useful to introduce 2o.«, the
advantage being of the kind discussed in subsection C
above. Unlike the case of 2pgr, , however, this will never
produce the major improvement of eliminating the
dificult second-order error integral for one can never
liave 2o.'01.= 'x) .

4. PHASE-SHIFT INEQUALITIES

It is an unfortunate feature of the Kato formalism
that a certain amount of (crude) information about

qI, is required before one can proceed to the determina-
tion of close and useful bounds on cot(qi, —8). (The
information is essential to the evaluation of n«and
Pgz, . Roughly speaking, qr, must be known to within an
interval of gr. ) This can be quite disturbing, for the
Kato method is potentially most useful for precisely
those very difficult problems for which one is not likely
to have the requisite information, crude as that
information need be. It is therefore satisfying to note
that at least limited use can be made of the Kato
formalism even when there is no such prior information;
in particular, one will often be able to obtain a bound
on gl, even when one cannot obtain a bound on
cot('gl, —8).

Assume, for example, that W(r) is non-negative, so
that gl, &0. Kato showed then that if gL,. &m. , one obtains

coty r (coty I, (S)) (4 1)

where cotg)i, ($) is the Schwinger variational expression
defined by the right side of Eq. (2.1) and by Eq. (2.2).
This definition of cotglr, ($) determines g)1.($) only to
within modulo gr. We will choose g)r, ($) to lie between
0 and m-, it is then uniquely determined. If we know
that g)i, is less than gr, Eq. (4.1) is valid and it then
follows from our definition of qr, (S) that g)1,&gr, ($).
But the point which we want to make is that this last
relationship follows whether or not we know that gL,

is less than m. To see this, we note that obviously,
either gr. )gr or ql, &gr. In the latter case, Eq. (4.1) is
valid, and it follows that g)r.)gtr, ($). In the former case,
it is certainly true that &r,)zr, ($). It therefore follows
for W(r) &0, without any prior knowledge of pr, , that

n~ &ni($) (4.2)

On the other hand, one can igot say that Eq. (4.1) is

valid unless one knows that gl, (x.
Equation (4.2) is in itself useless with regard to

- immediate application to a cross-section calculation,
for it places no limit on singz, . However, it can be of
interest in and of itself. Further, it raises the lower
bound on gll. from 0 to g)r, ($), so that if one has some

upper bound on gl, one may in fact have narrowed the
range of possible values of gI, to a width less than 7r,.

finally, if the width is still not less than m, it will be
shown in Sec. 5 that a modified reapplication of the
above technique will often enable one to raise the
lower bound still more.

Equation (4.1) is a very special result of the Kato
formalism, corresponding to 0=0 normalization and
essentially to a particular form of trial function.
More generally, it follows for W(g)&0, if qr, (8(gr,
in which case the choice p=W leads to Pgr, )1, that

k cot(gr, —8) &k cot(g) I,—8) — Ng real gggrdr

+ W '(zI.gggr, )'d—r (4.3).



BOUNDS ON SCATTERING PHASE SHIFTS. EI 2157

Again, it may be possible to deduce a useful bound on
gl. mitholt the knowledge that gL, (8(m, for either
i&z&8 or p«8. In the latter case, Eq. (4.3) is valid,
and since —x&gl.—8&0, we are led to a result of the
form»zz 8&—8,—where 0(B&gr. (This is a useful
result only if 8 is less than 8, for we knew at the outset
that g&z, was positive. ) If »&z is greater than 8, then
certainly pI, &8—B. We then have the general result
for W(») &0, without any prior knowledge of »lz, that

k cotbz(p) (k cot8gr. (p) — Noz, (&z+pW)Ngzzf»

+ "C(1+.)Wj- C(~.+.W)--~ d

We now define 8zo&(p) by setting k cot8zo& equal to
the right side of (5.2) and choosing that solution for
8z&'& (p) which lies between 0 and n.. We then have

gz, &8—8) 0&8&g, (4.4) 8z(p) &8z"&(p) (5.3)

where 8 is determined by setting —k cotB equal to
the right side of Eq. (4.3). Again, while the conse-
quence of Eq. (4.3), namely, Eq. (4.4), is in any event
valid, Eq. (4.3) itself does no&! follow unless one knows
that ql, &8.

The above technique is clearly not restricted to the
two special cases thus far considered. It is almost
always possible to obtain a lower bound on the phase
shift; one can, for example, compare the potential
under consideration with a repulsive inverse square
law potential. Provided that one can evaluate pgz if
it is known that the phase shift lies within an interval 8
of the lower bound, where 8 is less than m, one can use
this value of Pgz in an attempt to raise the lower bound
mithouIJ' the knowledge that the phase shift lies within
the interval. If the lower bound can be raised in this
manner, one can then proceed anew from the improved
lower bound. Of course, at each step it must be possible
to evaluate Pgz under the assumption, which need gMt

be tree, that the phase shift lies within an interval 8 of
the new lower bound.

S. ITERATIVE PROCEDURE

To examine the iterative procedure in more detail,
and to develop it further, we consider again the case
W(») &0. It is then of course true that g&z&g&z&'& —=0.
We can, however, do much better. In particular, it
was shown in Sec. 4 that one can deduce from the Kato
method a bound of the form gl, &pl, ('), where 0&pl, "~

&gr. CFor 8=0, g&zu& was the Schwinger phase shift

g&z, (S).] It will be the purpose of the present section
to raise still higher the lower bound on gl.. In order to
do so, it will be necessary to digress for a moment;
we will find bounds on Sz(p) for all p& —1.

For p=W, 5z(p) is simply the Lth phase shift
associated with (1+p)W. It is then of course true that

bz&'& (p,;„z)= 2gr. (5 4)

(The value z~gr is a convenient but not necessary choice,
as will be seen shortly. ) We consider a case for which
such a p can be found. With 8'=-,'x normalization, it
follows, since qI, is now known to be greater than ~m,

that
pa~, z& —p,*,z, if (5.5)

But this is exactly the type of relationship which is
required in order to utilize the results of Sec. 4 and
therby improve the lower bound on»lz (see Fig. 2).
CThe sole purpose in deducing bounds on 8z(p) was to
obtain (5.5).] In particular, we have from Sec. 4
and Eq. (5.5)

—k tangl. (—k tangl, — I, , I.ZI.N, , I,dr

+ (—p).,
z)-' ~ W-'(Zzgg;. , z)'d», (5.6)

The trial function gggz in (5.2) satisfies the usual
boundary conditions but is a function of p as well as
of », while 5gz(p) is the trial Lth phase shift associated
with (1+p)W and is determined by the choice of gggz.

The curly brackets around (5.2) signify that while

(5.2), which involves cot&&z„may or may not be valid,
the bound on qz, itself deduced from (5.2) and stated in
(5.3) is nevertheless valid. CThe condition for the
validity of (5.2) for any specified value of p is obviously
that 8z(p) be less than g&., and we do not know if this
is the case.J The curly bracket notation will be adhered
to from now on; a bound surrounded by curly brackets
will be referred to as a "conditional bound. "

We now have a lower bound, 8z,"&(p)&0, on 4(p)
for all p& —1. If &&z, =8z(0) is greater than z2gr, it will

often be possible to determine a negative value of p,
to be called p;, I,, for which

t'&z(p) &8z'"(p) =0 p& —1 (5.1)

the more signi6cant point is that this bound can be
raised for arbitrary p, & —1 exactly as was done in Sec.
4 for p=0. CIt will be recalled that gtz=8z(0). ) In
particular, if we think of (1+p)W rather than W as the
"potential, " and if we choose p= (1+p)W, we have for
8=0

(5.7)

pl. (') is determined by setting —k tanpl. &') equal to the
right side of (5.6) and choosing that solution for g&z&'&

which lies between —',gr and —,ggr. Equation (5.6) is
guaranteed to be valid only if pL, is less than 2m, but
Eq. (5.7) is valid whether or not this is the case.
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where 1.456 was obtained by maximizing g(C,D),
defined by Eqs. (5.9) and (5.10). Equation (5.11) has
meaning only if P;,, p is greater than 0, that is, only if
S'oro'& 1.456.

We now fix our attention upon the particular
numerical value Wprp' 2——5/4. The exact solution for
krp +0—is then' rIp~m. +2.470 krp, so that taniIp/(krp)
—+2.470. Equation (5.11) gives Px p&0.76704. LThe
exact value of P;, p, which in this case is that value of
P for which the phase shift associated with (1—P)Wp
is —',s, is 0.7686.] Note, incidentally, that we now know
that iIp=8p(0) &8p(p~, p) &-.', m. We take a trial function
of the form used for example by Huang, ' but with
krp~0, and normalized to 0=-',vr, that is,

(—krp) 'u;, p
——X+Ci—(Ci+CpX+CpX'+C4)

Xexp( —X)+C4 exp( —2X), (5.12)

Fzo. 2. A schematic representation of the iterative procedure for
raising the lower bound on g&, . The sequence of curves bl, (")(p),
81,(') (p), etc. , represent successively better lower bounds on BL,(p).
The bound on gL, is determined from the relationship qr, =81.(0).

k cot8p(p) & — (y"—k'y')dr
!
f

I

Choosing

f
+) $(1+IJ,)W] '(y "+k'y)'dr . -

y(p, r) =L1+C(r/r p)+D(r/rp)'$ exp( —r/rp),

where C and D can be functions of p, , we And, for
Pro—+,
(krp cot8p(p) (f(C,D) (1—

g (C,D)
X[(1+p)Wprp') ')}, (5.8)

where

f(C,D) = —i4 (2—2C+C' —2D+D'+CD), (5.9)

and where

g(C,D) = —(1 2C+2C'+4D')/f(C —D). (5.10)

It follows from Eqs. (5.3) and (5.4) that p;, p is that
value of p for which the right side of Eq. (5.8) vanishes.
(It is the fact that the right side then vanishes which
is the convenience, mentioned earlier, associated with
the choice 0= pin. ) From Eqs. (5.5) and (5.8), we
then fj.nd

P-;, p& —p;~, p= 1—1.456(Wprp') —', (5.11)

As a concrete example, consider I.=O scattering by

W(r) =Wp exp( —r/rp).

With 8=0, and with the choice

Npp(li, r) = coskr+cot5ip(p) sinkr —y(p, r),

where y(p, 0) =0 and where y(p, r) &0 as—r—&pp, Eq.
(5.2) reduces to

where X=r/rp, and where Ci is to be thought of as
(1/krp) times the tangent of the trial phase shift.
This trial function was used in Eq. (5.6), first neglecting
and then including the —1/p;, p term, that is, in an
ordinary variational calculation, and in a calculation
which gives a conditional lower bound on taniIp/(krp).
The bound is conditional because we proved that go
was greater than ~x, but simply assumed that go was
less than -,'m. The bound deduced on qo is of course
nevertheless guaranteed to be correct.

The coeKcients in the calculation of the bound were
determined by minimizing the entire expression for the
bound rather than by minimizing e'. There is no point
to the latter procedure here, for it is not any simpler
than the former and must give a poorer bound on
tanqp/(krp). Further, that procedure negates one of
the very pleasant features associated with the approp-
riate use of the Kato formalism; in particular, if one
minimizes the entire expression for the bound, the
inclusion of more parameters in the trial function can
only improve the bound, while if one minimizes e,
the inclusion of more parameters may make the
bound worse. (The situation in the latter case is then
of the same nature as that of the usual variational
calculation. ) Of course, one might still minimize p if
one were primarily interested in an accurate wave
function rather than in an accurate bound.

The results, shown in Table III, are about as might
be expected. Since the true value of gp is greater than
x, a number of coeKcients are required even for the
variational calculation to give accurate results; the
bound, arising from a rigorous expression, is rather
conservative. (On the other hand, for somewhat

smaller values of tVoro', quite accurate results are
obtained for the bound as well. as for the variational

' P. M. Morse and H. Feshbach, Methods of Theoretica/ I'hysics
(McGraw-Hill Book Company, Inc. , New York, 19S3), p. 1688.
Note, however, that they are not concerned with multiples of m,
while we are.' S. Huang, Phys, Rev. 76, 1878 (1949).
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TABLE III. Variational calculation of tanrfp and calculation of bound on rip. Scattering by W(r) =Wp exp( —r/rp) for L=0, krp ~ 0,
Wprps= 25/4. The trial function is given in Eq. (5.11).The calculation does not use amy solvable comparison potentials. The coefficients
CI through C4 for cases (b) through (e) were calculated from the Kato variational principle with 8=m./2; this is precisely the Kohn
variational principle. The coefficients for cases (f) through (i) were chosen by minimizing the bound. The true values are tanrfp/(krp) ~
2.470 and (rfp —s-)/(krp) —& 2.470.

Case

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)

(2)

CI

—2.9603
+0.72659
+2,3834
+2.2944—3.1886

+16.122
+10.772
+1.0480

(3)

C2

+9.4581
+10.041
+35.178

+10.324
+8.2011

+28.541

(4)

+2.6548—4.8426

+0.76605—2.9300

(5)

C4

—26.281

—20,715

(6)
Variational

calculation of
tan qo/(kr0)

+12.500—1.377
+1.147
+1.761
+2.45

(7)
Lower

bound on
(j0 —2r)/(kr0)

—3,7964

—3.4140—0.835—0.651
+2.08

em)7r, p/(kgr 0~)

+12.500

+1.6252
+276.68
+125.96

+1.26

result with three or even two parameters in the trial
function. )

The only rigorous statement that follows from the
calculations is that ifp is greater than pr+2. 0gkrp.
In practice, however, the four-parameter calculations
show, through the fair degree of consistency of the
four values of Ci, Ci, the variational value of tanifp/(krp)

and the bound on tanffp/(kr p), and through the smallness

of e', that in fact one could be fairly certain that the
true value of tanFfp/(krp) or (rip —pr)/(krp) is close to
2.45, the variational estimate. This would be the case
even if we could not obtain some supper bound on gp.

From the point of view of this section, however, the
most interesting result of these calculations is that it
has been possible to raise the lower bound significantly,
in particular above m, without recourse to a knowledge
of the phase shifts associated with any other potential.
In effect, we have used as our comparison potential

the potential under consideration, but with varying
strength.

In principle, one can introduce Br."&(fi) and higher
curves, but in practice this would probably not be a
reasonable procedure.

The discussion of Secs. 4 and 5 can also be immediately
applied to the case in which one has an upper bound
on ql, and o.t)1, is determinable under the assumption
that gl, lies within an interval 8 of this upper bound,
where 0 is less than ~.

ACKNOWLEDGMENTS

The author takes pleasure in thanking Professor
N. F. Mott and Dr. D. H. Wilkinson for the various
courtesies extended to him during his stay at Cambridge
University. He also wishes to thank Mr. Martin Kelly
and Mr. Leonard Rosenberg for helpful discussions,
and Mr. Martin Rossi and Dr. Grace Marmor Spruch
for performing some of the numerical calculations.


