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Though the Kato technique for obtaining bounds on the cotangent of the scattering phase shift, 7z, is
extremely general and powerful, an integration must be performed which can be quite troublesome, and
some preliminary, albeit crude, information about 7z, is required before the method can be applied. It is
shown here that in the evaluation of the upper bound on cot%y, the integration can often be eliminated
without any significant increase in the value of the upper bound. It is also shown that the Kato formalism
is often useful even when one does not possess the necessary a priori knowledge of 7 1.; under realistic specified
conditions, a bound can be obtained on 7 even when a bound cannot be obtained on cotfjz. Further, a
procedure analogous to iteration is introduced whereby this bound on %z can be improved. The bound on
7z is of interest in its own right. It may also help to provide the preliminary information necessary for the
determination of bounds on cot#jz.

It is shown that if the potential V (r) is nonpositive, 7+ and/or || must be larger than the Born phase
shift npzy, where %z, are the phase shifts associated with FV; if V() <0 and if || <, then cotfr
—cotr-<2 cotnpry. A slight generalization of the Schwinger integral variational principle gives similar
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results for phases related to V4U.

1. INTRODUCTION

ARTATIONAL techniques have proved invaluable
in scattering theory, in the evaluation of phase
shifts, for example. They nevertheless suffer from the
serious disadvantage, compared to the corresponding
variational calculations of binding energies, for in-
stance, that they do not provide a bound on the phase
shift. This disadvantage is most pronounced in prob-
lems of such difficulty that one cannot guess at a
reasonable form for the trial function, though it is
precisely for those problems that variational techniques
are potentially most valuable. (We might for example
be interested in a particular problem of scattering by
a compound system which could not readily be handled
by a machine.) For a poor trial function, the second-
order error involved in the variaticnal calculation is
not necessarily small. Further, there is the disheartening
feature that the inclusion of additional parameters into
the trial function may give worse rather than better
results.

For these reasons, the general and powerful (and
elegant) technique introduced by Kato! for obtaining
upper and lower bounds on cot(7,—8) is of considerable
significance. For nonrelativistic scattering by a central
field, Kato deduced the inequality

~—a9L—1€oL2Sk COt(ﬁL"‘B)_k COt(nL‘B)
-|—fuaL£L%oLd1’SBOL—1€0LZ; (1.1)
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where

o= f (L rtor)dr. (1.2)

The generality of the method consists in the fact that
there are no restrictions on the central potential; in
principle, it can also be applied to more complicated
problems such as the scattering by a compound system.
The power of the method lies in the latitude that one
has in the choice of the normalization, 6, the trial
function, #ez, and the weight factor, p.

There remain nevertheless two disturbing questions.
The first is the practical question concerning the diffi-
culty of performing the integration that appears in
Eq. (1.2). The second question, a more serious one in
principle, is whether one can in fact determine the
eigenvalues asz and Bsz, or bounds on them which
preserve the inequality. Now, it is known!? that there
is a wide variety of central potentials for which neither
of the two questions proves to be very serious. In these
cases, the integrals are not really too tedious, and it is
not very difficult to obtain bounds on agz, and Ber. On
the other hand, in scattering by a compound system,
for example, these questions assume much more serious
proportions. As is not too surprising, other questions
arise in an attempt to obtain bounds on the phase shift
for scattering by a compound system. These will be
treated at a later date. It is more profitable to examine
scattering by a fixed potential first, but from a point of
view such that the results will prove useful for appli-
cation to scattering by a compound system. Thus,
techniques are sought whereby it will not be necessary
to evaluate the integral in Eq. (1.2), since for scattering
by a compound system the integration of the analog
of Eq. (1.2) may well be prohibitively laborious.

2 L. Spruch and M. Kelly, Phys. Rev. 109, 2144 (1958), pre-
ceding paper.
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Further, we seek techniques by means of which one
can obtain agz, and/or Bz with a minimum of @ priori
information about %z, or, assuming that one cannot
obtain asz or Bsz, we seek any information which can
still be extracted from the Kato formalism. (In the
case of a fixed central potential, bounds on agz, and Bsz
can generally be determined by comparison of the given
potential with known solvable potentials!?; this is not
generally possible in the case of scattering by a com-
pound system, since there are no such realistic solvable
potentials.)

With regard to the first question, concerning the
elimination of the integration, we note that under
specified conditions™? Ber, is infinite. Under these
circumstances, for the purposes of obtaining an upper
bound on cot(7.—6), the integration need not be per-
formed. The evaluation of an upper bound is then not
essentially more complicated than the usual variational
calculation. The conditions include the requirement that
the potential be of a solvable form beyond some point
a. We consider for the moment the simplest such
example, that of a potential which vanishes identically
beyond the point a. This suggests,? for a “potential”
W (r) which is non-negative but which does not vanish
identically, that one define a cutoff potential We(r)
=W ()Z(a—r), where Z(a—r) is a step function. By
the appropriate choice of @, one can cause the B¢,
associated with We(r), to be infinite, in which case
7i.¢, the Lth phase shift associated with We(r), can be
bounded from above without performing the compli-
cated integration. Since W (r)>W<(r), it follows that
7> 71 so that the bound obtained on #° serves as a
bound on 71 as well. While this has been shown to be
a reasonable procedure? in general, there is sometimes
a considerable loss in accuracy, in that it may be
necessary to choose a rather small value of a. The
difference between W and W*° may then be considerable,
in which case even a close bound on #.° will be a poor
bound on 7. It will be shown in Sec. 3 that the intro-
duction of a constraint on the trial function, #7, makes
possible an increase in the value of @, thereby decreasing
the difference between W and W< and therefore be-
tween 7z and 7z° and making it possible to obtain a
better upper bound on 7. Since it turns out that the
constraint on #gz is almost always satisfied automati-
cally, there is no real loss of freedom in the choice of
UorL.

Since there does not seem to be any way of elimi-
nating the troublesome integral when one seeks a lower
bound on cot(7—8), it is only the upper bound which
can ever be obtained relatively simply. This upper
bound is of course of interest in its own right; there is
in addition the pleasant feature associated with the
presence of even only one bound that the inclusion of
more free parameters in the trial function guarantees
an improved result.

It will also be shown in Sec. 3 that it is still very
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profitable to introduce the constraint on #ez, where one
must evaluate the integral, or where one prefers to
evaluate the integral rather than lose any accuracy at
all by introducing We(r). If, as is usually the case, the
constraint is autematically satisfied, one obtains an
improved bound, as compared to that given in the
formulation of Kato, without doing any additional
calculation.

Turning now to the second question, concerning the
prior knowledge of 7z, we assume, in line with the
previous discussion, that so little is known about 7y,
that apz, and Bgr cannot be determined. Even though
one cannot then obtain a bound on cot(7z—¥6), it will
be shown in Sec. 4 that under realistic specified con-
ditions, the Kato method does give a bound on 7
itself. Further, a procedure analogous to iteration will
be introduced in Sec. 5 whereby this bound on 7 may
successively be improved. The bound on 7y, is of course
of interest in its own right; it may also help to provide
the preliminary information necessary for the appli-
cation of the Kato method to the determination of
bounds on cot(.,—86).

In Sec. 2, a property of the Schwinger integral
variational principle deduced by Kato will be used to
develop a very simple but useful inequality involving
the phases %14 associated with =W (7), and the Born
phase shift. A similar inequality is deduced involving
phases related to W (r)==U(r) by starting with a slight
generalization of the Schwinger principle.

2. EQUAL AND OPPOSITE POTENTIALS
A. Phase Shifts Associated with =W

Assume that the Lth phase shift %7, associated with
W (r)>0 satisfies iz <w. Under these circumstances,
as was shown by Kato, a bound on % cot#+ is provided
by the Schwinger integral variational principle, that is,

kcotﬁH_SvaLfdr——fdrfdr’vL+WGLWvL+, (2.1)

where the only restriction on the trial function vz, (7)
is that it must satisfy

k‘lfker(kr)I’T/(r)vL+(r)dr= 1, (2.2)

and where the free-particle Green’s function Gr(r,7’)
is given by

GL(f’,?’,)z —k‘lkr<jL(kr<)k1'>nL(kr>). (23)
Assume further that the Lth phase shift 7z associated
with —W (r) satisfies 5> —. Then, similarly,

kcotﬁL_Zf(—W)vL_gdr

—fdrfdr'vL_(-W)GL(—W)vL_, (2.4)
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where the only restriction on v _(7) is that it must
satisfy

P f s =W () o (dr=1.  (2.5)

From Egs. (2.2) and (2.5), it is clear that it is per-
missible to choose vz (r)=—wvz (). If this is done, it
follows from (2.1) and (2.4) that

cotijry—cotij— <2kt f W(r)v,2(r)dr, (2.6)

where vz, () satisfies (2.2). Equation (2.6), which gives
a bound for one of the two phases if the other is known,
has the pleasant feature that it does not contain
Gr(r,"); the question as to whether it is likely to
provide a useful bound remains to be discussed.

The choice of vz (r) will now be considered. We can
write

cotfry—cotfr < Flory ], (2.7)

where the functional F[ v, is given by
—2
Flvs,]=2k f Wmﬁdr[ f ker(kr)WvL+dr] (29

and where there are now no restrictions whatever on
v24+.(r). If, in the denominator, we use the fact that
W(r)>0 to write W(r)=W?*(r)W*(r), an application
of Schwarz’ inequality gives

[ f ker(kr)W'uH_dr]ZS f [krjo(kr) PWdr f Wy *dr.

It then follows that

Flo,]> Zk[ f [ker(kr)der]_l

=2 cotppry=—2 cotnpr—, (2.9)

where npry is the Lth phase shift for &7 in the Born
approximation. On the other-hand,

Flop =krjr(kr)]=2 cotnpry. (2.10)

It follows from Egs. (2.7), (2.9), and (2.10) that once
one has chosen v (r)=—vr.(r), the best possible
choice for vz, (r) is k77, (k7). In summary, we see that
if W(r)>0, if 5. <m, and if > —, then

(2.11)

One might expect the bound given by (2.11) to be
exceedingly poor, because of the choice v, (r)=
—uvr(r). Actually, due to the presence of the Green’s
function in the Schwinger variational principle, it is
somewhat misleading to think of vz, (r) and v._(r) as
the trial functions. Thus, the trial functions in the

cotjry—cotir—<2 cotnpri.
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Fic. 1. A comparison of cotfjr.—cotfz_ (the solid curves) with
its upper bound, 2 cotypry (the dashed curves), for the case of a
square well of strength Wy and range @. . and npry are the
exact phase shifts associated with &=W and the Born approxi-
mation phase shift, respectively. The values of L and of ka for
curves 4, B, and C are L=0, 0, and 1, and ke=57/4, 10, and 2,
respectively. The plus and minus signs on the graph represent
the points at which =47 and at which fjz_= —3=.

Kato formalism which give rise to the Schwinger
variational principle are

uoLi(r)=cotnLiker(kr)—I—fGL(:l:W)vLidr’. (2.12)

Then, with vy, () =krjr(kr)=—v7_(7), we have

oLy (r) =cotnrkrjr(kr)
+ f GLlrs YW () (k). (2.13)

The choices of 97+ and 57— are each completely arbitrary,
so that there can be considerable difference between
sor+ and #or—. More important is the fact that if
7izy and |7r_| are not too large, #ozy and %o should
be fairly reasonable trial functions. (It is to be noted
that if nry and |g._| are less than I, cotpry and
cotnz— will be of opposite sign, so that the “correction
terms” involving the integral appear in (2.13) for
#ory+ and uoz— in effect with opposite signs, as they
should.) Equation (2.11) should not therefore give too
crude a bound for %y and |7.-| not too large. As
examples, we have plotted in Fig. 1 the bounds on and
the exact values of cotfiry—cotfz_ for the case of a
square well for a few sets of values of the parameters.
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It can be seen that, qualitatively, the bound becomes
crude only when %y or 15z—| is of the order of .

When Eq. (2.11) is valid, %zy or |fz—|, or both,
must be larger than ngr.. Since ngry as defined by
(2.9) is less than = (in fact, it is less than /2), it
follows without any prior information about #z; or
|%._|, that if W(r)>0, then at least one of 7z, and
| z—| must be larger than npr,.

B. Phase Shifts Associated with W+=U

The above results can be generalized somewhat.
Let W(r) be a solvable “potential”’; in particular, let
the phase shift 7z, the “absolute normalization”
solution f.(7), and the (irregular) solution §r(r) which
has the asymptotic form

(2.14)

be known. Let the Lth phase shifts associated with
WU be f.EA%Ly, respectively. (The A%p. are of
course not the phase shifts associated with =U.) No
assumptions are made regarding the relative magnitudes
or ranges of W and U. We seek a simple inequality of
the form of Eq. (2.11) which involves the A7jz.

Kato determined bounds not only for phase shifts
but for “additional phase shifts” of the type A#r..
If U(r)>0 [no such assumption must be made for
W(r)], and if Afir.<m, the choice p=U and 6=0
gives Bor+=1, and the bound becomes

Gr(r)——cos(kr—%Lw+7r1)

k cotA%r <k cotAnr,— f Uor L1 Uor 1 A¥

+ f U (Lrttory)’dr, (2.15)
where
@ L(L+1)
Lrp=—+B————+WLU,
ar? 72

and where the trial function %o+ must vanish at the

origin and must have the asymptotic form

wuory—cos(kr—3Lr+7r)

+-cotAnzy sin(br—3Lr+7L). (2.16)

Choose

tor4 (r) =cotAnz i f1.(r)
+ f GV U (Yo ()dr,  (2.17)

where the Green’s function Gy, is given by

Sr(ry)=—kL(rIgu(rs), (2.18)

and where the only restriction on vz, is the normaliza-
tion condition

- f FL (U (Pors (Ndr—=1. (2.19)
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Equation (2.15) then becomes

COtAﬁMsk(vaL+2d7'—f'UL+U8LU7JL+d7’)

x( f UfLmdr)_Z. (2.20)

The right side of (2.20) is a slight generalization of the
Schwinger integral variational expression for the phase
shift. Tt does not seem to have appeared in print,
though the corresponding generalization of the
Schwinger integral variational principle for the scatter-
ing amplitude has been given.?

Equation (2.20) will not in fact often be useful as
it stands, due to the presence of the Green’s function.
It can be of use, however, when employed in conjunction
with the corresponding bound on cotA%z_ which arises
if Ajz—> —m. An analysis identical to that of subsection
A gives

-1
CotAﬁH——cotAﬁL_SZk(fUf'[?dr) .(2.21)

This bound can be expected to be useful if, roughly
speaking, A7, and | A7_| are each rather less than 3.

Equations (2.11) and (2.21) have the virtue that
the bounds are simple to calculate, for they do not
involve the Green’s function, and yet the bounds
differ from the true value by a second-order term since
they arise from variational forms.

3. INTRODUCTION OF 8¢z,
A. Advantage of Introducing »3s.

By definition, —B¢z is that negative eigenvalue
kmz which is smallest in absolute magnitude, so that

(—mr) < (Bor) ™ (3.1)

(The value of m' depends upon the problem under
consideration.) The second-order error term in the
Kato variational principle is given by*

for all m.

fwaLaBLwoLdT:k 2 m(—tmr)  omr? (3.2)

where w is the difference between the trial function
and the exact function, where

Zm bpmi?= k"lfp"l (£LugL)2dr= k"legf, (33)
and where

b= k‘lfq&mbeﬁmndr (34)

=—Umrk! f WoLpPmLdY. (3.5)

3 See, for example, H. E. Moses, Phys. Rev. 96, 519 (1954).
* A factor of % is missing from some of Kato’s formulas, but not
from any of his final results.
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The ¢ are the eigenfunctions of the associated
eigenvalue problem. It follows that

fZUoLeGL’IUoLdTS (ﬂoL)—lfp_l (Lruer)’dr. (3.6)

It will be shown later that is often possible to choose
the trial function #sz in such a way that 4,..=0.
(This is certainly not always possible for one cannot
generally solve for ¢.-z.) In those cases for which
bm =0, Eq. (3.2) becomes

fWoLcBL‘ZUoL(h’:k Z,(_#mL)"ImeF, (37)

where the prime on the sum denotes the exclusion of
the value m=m', while Eq. (3.3) becomes

2 bmzf":k“lfp‘l(gﬁz,uu)?dr. (3.8

~ We now define
(3.9)

so that —Bes is the negative eigenvalue which is
second smallest in absolute magnitude; hence

(=pmr) < (Bor)
and it follows, if b,,, =0, that

ZﬁeL: —Mm’—1, L,

mEm!, (3.10)

f1£)9L£L1L’9Ld7’_<_ (2.39L)~1fp_1(£LM0L)2dra (3.11)

There are three quite different possible advantages
associated with (3.11) as opposed to (3.6). (a) There is
the simple fact that s8¢z is larger than Bz so that the
upper bound on the error term and on cot(f,—6) is
reduced. (b) In the replacement of W (r) by a cutoff
“potential,” We¢(r), which enables one to drop the
difficult second-order error integral, it will be possible
to choose a larger value of the cutoff point a. (c) There
are circumstances for which s8¢z is infinite while
Ber 1s finite.

Examples of these three cases will be treated in
subsections C, D, and E, respectively. First, however,
we will demonstrate with an example that there are
in fact cases for which one can arrange to have b, ,=0.

B. Possibility of Introducing 231

There exists one particularly important case for
which it is trivial to solve for ¢, 1, namely, that of a
non-negative W (r) whose Lth phase shift is less than .
For the choice p=W and =0, a solution of the asso-
ciated eigenvalue problem which satisfies the necessary
boundary and normalization conditions is

Sm=cpor=NkrjL(kr), (3.12)

where the dimensionless constant /V is determined from
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the relation

P f [Nk jo() PW(dr=1.  (3.13)

(In this case, Bmz=Bor=—uor=1, and sBor=—p_1,1
is greater than one.)
Tt follows from Eq. (3.5) that

bwr=bor= k_le (MOL—dOL)Wker(kr)dr. (314)
It is then a consequence of the relation

f GorWhrjL(kr)dr=F, (3.15)

which is just the usual exact expression for -k sin7z,
written with §=0 normalization rather than absolute
normalization, that b,, ,=bor,=0 if oy, satisfies

fuoLWker(kr)dr=k, (3.16)

as well as the usual boundary conditions. Equation
(3.16) is to be satisfied by adjustment of the parameters
contained in #o7. (Alternatively, it is possible to choose
a trial function woz which satisfies the necessary
boundary conditions, and then to subtract from woy,
that component which is not orthogonal with weight
factor p=W to ¢oz, i.€., to set

u0L=v0L—[Nker(kr):|

X[~N+Nk‘1fv0LWker(kr)dr].

This trial function satisfies (3.16) and the boundary
conditions automatically, i.e., without adjustment of
any parameters, but it may he unwieldy.)

It is important to recognize that the constraint
imposed upon #,r, by (3.16) is not an unnatural one; on
the contrary, as seen from (3.15), the exact function
o, satisfies precisely this condition. Furthermore,
for a very natural choice of the form of #or and for
some very natural methods of determining the constants
which characterize w#or, Eq. (3.16) will automatically
be satisfied. In particular if we write

wor,(r) =cotnrkriL(kr)+ Y (7), (3.17)
where V', satisfies the necessary boundary conditions
and depends upon various constants C; but nof on
cotnr, and if, following Kato, we choose the C;. and
cotny, by minimization of

€orl= fp_l (£L%0L)2d1’, (3.18)

minimization of ez? with respect to cotny can readily
be shown to lead to (3.16), for p=W. Similarly, for
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a trial function of the form given by (3.17), minimiza-
tion of the entire expression for the bound on % cotnz
can also readily be shown to lead to (3.16). The latter
case includes the special case for which 98¢y, is infinite,

C. 380z as Opposed to Bz

In subsection C, we will restrict our attention to
non-negative W (r) whose Lth phase shift is less than
7. Further, we choose p=W and trial functions of the
form given by Eq. (3.17). As was shown in subsection B,
for =0 normalization one can then simply replace
Bor by 280z. We note that o8¢z is clearly larger than
Boz for all  including 6=0.

For =0 normalization, it is obviously preferable to
use 9Bz rather than Bor, since one has the same trial
function in each case and 280! is smaller than Boz 7,
so that the upper bound on cotfy is reduced. The
question which naturally arises, however, is whether
one should use =0 and 8¢z, or whether one should
use say 6=7%m. In the latter case one would, in general,
have to use Byn, 1, since for 6=3%m one cannot in general
solve for ¢,z and one cannot therefore introduce
9B81r, 1. It is not immediately clear which is preferable,
for while 580z, is larger than By, the trial functions
have different normalizations, and further, in one case
one bounds cot7iz while in the other case one bounds
cot(fr—%w). It turns out to be preferable to use =0
and »8z, rather than @=%r and By, z. To see this let
the upper and lower bounds on & cot#j as determined
by Kato, Eq. (1.1), for 6=%# normalization, be denoted
by B, and B, respectively, and let By denote the
upper bound as determined with the use of s8¢z. Then

By=Fk cotyr— fuoLJJLuchr-}-zﬁoL“lét)Lz, (3.19)
or

By=B,— (k cotn— B.)*(B.) ™

— €022 (Bym, L1 —2Bor ).

The use of =247 normalization is permissible only for
fr<im, in which case k cotfir (and therefore B,) is
greater than zero, so that By is in fact a better bound
than B,. While the difference between them is only of
second order, this difference may well be significant
for those difficult problems for which one cannot
readily obtain a good trial function.

In order to get a feel for the reduction in the upper
bound on cotf; that can be effected through the
introduction of s8oz, as opposed to Bir L, we will
consider a specific problem. It will first be necessary,
however, to derive an explicit expression for 580z.

For 0<p=W<b/7* and for 7,<0<m, conditions
which have been assumed to be satisfied in this sub-
section, it was shown previously!? that

Bor>1-4b1(2— 2001 (3—20r—14-2L).  (3.21)

Under these circumstances, the evaluation of a bound

(3.20)
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on 580z consists of the determination of that value of
u for which the Lth phase shift associated with [ (1+4u)b
—L(L+1)]r% is —x. This corresponds to the case
7.<6 with 6 approaching zero, so that, from Eq.
(3.21), if 0<p=W<b/r? and if 7.<m,

2Bor>1+b71(6+4L). (3.22)

Consider now the evaluation of an upper bound on
cot#jo and hence of a lower bound on %, for

W (r)=(2/a®)[ (ao/r)+1] exp(—27/ag), (3.23)

the “static hydrogen potential” analyzed by Kato.
He showed that W<0.587172, and chose as his trial
function

w00 (7) = coskr—-cotno sinky
—[14Ci(r/a0)] exp(—2r/as), (3.24)

which is of the form of Eq. (3.17). If the trial function is
simplified by setting C1=0, it is found for k=0 with
0=%m normalization that y=£% cotno=0.1250 and that

k cot9<0.1096=B,,

while §=0 normalization and the use of 3800=11.22
(as compared to B3, 0=4.407) give

k COtﬁoSO.lO']O'—‘By.
It is known from Kato’s work that for £=0
0.10560< % cot70<0.10598.

Taking the most unfavorable case, that is, assuming
that k% cotfy=0.01560, we find that the difference
between By and k cot#jo is only one-third of the difference
between B, and & cot#jo even though the calculations of
By and B, are essentially identical in that the trial
functions differ only in normalization.

The values of B, for the trial function given by
(3.24), with C; and cotne adjustable, have been
tabulated by Kato for a number of values of k. Since
he also tabulates y=£% cotno, and ep?, the values of
By can be determined immediately from Eq. (3.20).
[Normally, of course, one would determine By from
Eq. (3.19).] As was noted above, the difference between
By and B, is of second order, and since we are now
using a rather good trial function, the improvement in
By over B, is not so great. Even so, for the least

TaBLE I. Comparison of upper bounds on % cot#jo. B, is deter-
mined from Eq. (1.1), while the determination of By depends
upon the introduction of s8q. B: is a lower bound.

kao B Bu By
0 0.10560 0.10598 0.10592
0.068 0.10917 0.10952 0.10947
0.136 0.11982 0.12008 0.12004
0.272 0.16186 0.16192 0.16191
0.384 0.21629 0.21632 0.21632
0.608 0.37414 0.37468 0.37455
1.000 0.78278 0.78643 0.78564
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TasLE II. Error introduced by cutting off the potential. A comparison of the difference between the true phase shift, 7o, and the
phase shift for the cutoff potential, %o, for L=0 scattering by the potential given by Eq. (3.23), for the choices §==/2 and =0,
respectively. The latter choice is possible only with the introduction of s8¢0. The symbol a(—b) represents aX 1072,

kao 0 0.068 0.136 0.272 0.384 0.608 1.000
To—1o°, 0=1/2 0 1(—19) 4(—10) 1(—6) 2(—4) 4(-3) 3(=2)
No—10% 6=0 0 4(—40) 4(—20) 3(—10) 2(—=17) 4(-5) 2(—-3)

favorable assumption as to the true value of % cot#y,
the improvement is about 159, and is somewhat larger,
as one might expect, for the value kao=1 for which
B,— B, is largest, that is, in the region for which the
trial function is least adequate (see Table I).

D. Increase of the Cutoff Point, a

If o<6<w and if W (r) vanishes for kr>ka=mw—0,
then Bgo= o, and the calculation of an upper bound
on cot(fo—0) is essentially no more complicated than
a standard variational calculation.’ If #,<6<m and if
W (r) does not vanish but is non-negative for kr>ka
=7—0, a lower bound on 7, is provided? by the deter-
mination of a lower bound on 7¢°, the L=0 phase shift
associated with We¢(r), where We(r) is simply W (r)
but cut off at the point r=a. Since here too Bs= =,
the calculation of a lower bound on #¢°¢ reduces to a
variational calculation. Finally, if o< and if W (7) is
non-negative for all 7, we introduce 58¢0. With the choice
a=Fk™'r, which is considerably larger than a=k71(r—0)
for 6 not too small, we have sBg0= = ; once again, the
evaluation of a lower bound on #,° and hence on %
reduces to a variational calculation.

For W(r) non-negative, it follows from the mono-
tonicity theorem that an increase in the value of @
reduces the error introduced by cutting off W(r) at
r=a, that is, reduces #,—#.° Qualitatively, it is clear
that the reduction will be significant for an increase
of @ from k1(r—0) to klz if W(r) for Fl(m—0)<r
<k7'w is not yet small and if = is rather larger than
7—0. In order to obtain a more quantitative idea of
the reduction that might be expected, we will study a
particular problem. The ‘“potential” given by Eq.
(3.23) will again be considered, for L=0. The exact
expression for 7o—#0° is given by

k tan(G0— 70°) = f Wagocdr, (3.25)

where %, and %,° are the exact ‘“absolute normalization”
solutions for W and W, respectively. If a is sufficiently
large, then 7o=7¢°, W°~Uo=~sin(kr+7o), and r can
be replaced by @ in the integrand except in the expo-
nential. (The “exponential is rapidly varying and 7o
is not too close to a multiple of 47 for the values under

5See references 1 and 2. To generalize to L0, replace
—ka=7," by fjr°=cot[nr(ka)/jr(ka)], the Lth phase shift
for an infinitely repulsive square well of range a.

consideration.) Equation (3.25) becomes -
fo— o~ sin?(ka+ 7o) [ (ka) '+ (kao)™] exp(—2a/ao).

Since 7o<w/2 for all & for this “potential,” it is permis-
sible to set ==/2=ka or, with the introduction of
2800, to set 6=0 and ka=m. Using the known values' of
7o, one finds the results shown in Table II. It is clear
that while either method is quite adequate for the
values of kay under consideration, accurate results can
be obtained for somewhat larger values of ka, only with
6=0 normalization.

The advantage of cutting off W with =0 rather than
6=%m normalization, namely, the increase in ¢ and the
consequent reduction in #z—7%°, is not offset by any
increase in the complexity of the wave function or of
the calculation. To see how the calculation proceeds
for #=0 normalization, consider for simplicity L=0.
If 7o is less than m, we cut the potential off at a==k"".
For r>a, we must have an exact solution of the form

0o (7) = cotno sinkr--coskr,
while for » <a we might for example choose
oo (r) = cotng sinkr —sintkr+3 . .C., sinnkr.
Cotny is arbitrary, but the C, must satisfy
2 (—1)"Cr=0,

in order to satisfy continuity in slope and value. This
trial function is relatively simple and, generally, should
be expected to give reasonably accurate bounds without
too much work.

As a concrete case, consider

W (r)=Wyexp(—r/70)

for kro=Wewo*=1. The exact value of cot#y, which
follows from the known analytic solution, is 2.37.
Comparison with the solvable Hulthén potential shows!
that %o is less than iw, and we can therefore use the
above trial function. If we simply set C,=0 for all »,
variation of cotpo leads to cot#o<cot#°<2.79, while
setting Co=3C; and C,=0 for n>2 leads by variation
of cotny and of C; to cotfp<cot#,°<2.56. Further
improvement on the bound could of course be effected
by the inclusion of more nonvanishing coefficients C.

E. 53¢ Infinite While 3, Finite

The cases treated thus far have specifically assumed
that W (r) is non-negative and that it can be shown
that the phase shift of the angular momentum under
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consideration is less than . The following two examples
will show that these are not inherent limitations of the
method. These examples will at the same time show
that, as was asserted previously, there are in fact
cases for which 98¢y, is infinite while By, is finite.

Thus, assume again that W(r) is positive for r<a
and vanishes for r>a, but let it only be known that
0<f,<w+6 and that —7x+60<7r*. For the choice
p=W, Bor is finite and one cannot solve for ¢, z=¢or
so that one cannot introduce s8¢z, and the difficult
second-order error integral would have to be evaluated.
We can however choose p=W —W?, where W*>0 is a
square well (with range less than a) and where W2>W?.
The associated differential equation introduced by
Kato is readily solvable for u=—1, being simply the
equation for a square well potential. For those cases
for which it is possible to choose a W* which satisfies
Ws<W and for which the phase shift associated with
W+ and therefore with the then known function ¢or is
6, the choice of a trial function which satisfies

bm'L=b0L=k_1f¢oL£LuoLdr=0

enables us to introduce s8¢z, which is now infinite,
thereby avoiding the difficult integration.

As an example of a case for which W (r) need not
be non-negative, let the only condition on W (r) be
that it vanish for r>a. Let it be known that 6—=
<#1<#0, and that

0—2r<7f*<0—m.
Choose p=W-+W¢, where W*>0 is a square well of
range <a such that W+W=>0. For those cases for
which it is possible to choose W* such that the Lth
phase shift associated with (—W?®) is 6—m, ¢_11
is known, and if #ez, is chosen such that

bwr=b_y, .=k f &1, L8 rprdr=0,

we have o8e1,= . [If W (r) >0, it will always be possible
to choose such a Ws.]

Formally, one can impose two subsidiary conditions
on the trial function, namely, b,,2=0 and b1, =0,
and introduce 3Bpr. While this would be very useful,
the subsidiary conditions can be satisfied only if one
can determine both ¢z and ¢.,—1,1, and this does
not seem to be possible.

It will occasionally be useful to introduce sapz, the
advantage being of the kind discussed in subsection C
above. Unlike the case of 5851, however, this will never
produce the major improvement of eliminating the
difficult second-order error integral for one can never
have sapr= 0.

4. PHASE-SHIFT INEQUALITIES

It is an unfortunate feature of the Kato formalism
that a certain amount of (crude) information about
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#1 is required before one can proceed to the determina-
tion of close and useful bounds on cot(7,—#6). (The
information is essential to the evaluation of @z and
Bsz. Roughly speaking, %z must be known to within an
interval of 7.) This can be quite disturbing, for the
Kato method is potentially most useful for precisely
those very difficult problems for which one is not likely
to have the requisite information, crude as that
information need be. It is therefore satisfying to note
that at least limited use can be made of the Kato
formalism even when there is no such prior information;
in particular, one will often be able to obtain a bound
on 7#; even when one cannot obtain a bound on
cot(fiL—0).

Assume, for example, that W () is non-negative, so
that 7,>>0. Kato showed then that if 7 <, one obtains

cotiz< cotnr(S), 4.1)

where cotnr,(S) is the Schwinger variational expression
defined by the right side of Eq. (2.1) and by Eq. (2.2).
This definition of cotyr(S) determines 5.(S) only to
within modulo 7=. We will choose 5.(S) to lie between
0 and =; it is then uniquely determined. If we know
that #z is less than m, Eq. (4.1) is valid and it then
follows from our definition of 7.(S) that #iL>nL(S).
But the point which we want to make is that this last
relationship follows whether or not we know that 7z
is less than 7. To see this, we note that obviously,
either 5iz>m or 7ir<w. In the latter case, Eq. (4.1) is
valid, and it follows that 5.>79.(S). In the former case,
it is certainly true that 7z>75(S). It therefore follows
for W (r)>0, without any prior knowledge of 7z, that

AL2ns(S). (4.2)

On the other hand, one can #of say that Eq. (4.1) is
valid unless one knows that 77, <.

Equation (4.2) is in itself useless with regard to
immediate application to a cross-section calculation,
for it places no limit on sinf.. However, it can be of
interest in and of itself. Further, it raises the lower
bound on 7z, from 0 to n.(S), so that if one has some
upper bound on 7, one may in fact have narrowed the
range of possible values of 7. to a width less than =;
finally, if the width is still not less than =, it will be
shown in Sec. 5 that a modified reapplication of the
above technique will often enable one to raise the
lower bound still more.

Equation (4.1) is a very special result of the Kato
formalism, corresponding to §=0 normalization and
essentially to a particular form of trial function.
More generally, it follows for W(r)2>0, if 7.<0<m,
in which case the choice p=W leads to Bsr>1, that

k cot(fi,—0) <k cot(n,—0) —fueL£Lu9Ldr

+fW—l(£LMoL)2d1’. (43)



BOUNDS ON SCATTERING PHASE SHIFTS. II

Again, it may be possible to deduce a useful bound on
fir without the knowledge that 7ir<6<m, for either
7r>0 or 7.<60. In the latter case, Eq. (4.3) is valid,
and since —7w<7j,—6<0, we are led to a result of the
form %;—6> —B, where 0<B<m. (This is a useful
result only if B is less than 6, for we knew at the outset
that % was positive.) If 7 is greater than 6, then
certainly %.>6—B. We then have the general result
for W (r)>0, without any prior knowledge of 7., that

7.>0—B, 0<B<m, (4.9)

where B is determined by setting —k cotB equal to
the right side of Eq. (4.3). Again, while the conse-
quence of Eq. (4.3), namely, Eq. (4.4), is in any event
valid, Eq. (4.3) itself does 7ot follow unless one knows
that 7, <.

The above technique is clearly not restricted to the
two special cases thus far considered. It is almost
always possible to obtain a lower bound on the phase
shift; one can, for example, compare the potential
under consideration with a repulsive inverse square
law potential. Provided that one can evaluate B¢z if
it is known that the phase shift lies within an interval 6
of the lower bound, where 6 is less than m, one can use
this value of B4z in an attempt to raise the lower bound
without the knowledge that the phase shift lies within
the interval. If the lower bound can be raised in this
manner, one can then proceed anew from the improved
lower bound. Of course, at each step it must be possible
to evaluate B¢z under the assumption, which need not
be true, that the phase shift lies within an interval 6 of
the new lower bound.

5. ITERATIVE PROCEDURE

To examine the iterative procedure in more detail,
and to develop it further, we consider again the case
W (r)>0. 1t is then of course true that 7,>%.@ =0.
We can, however, do much better. In particular, it
was shown in Sec. 4 that one can deduce from the Kato
method a bound of the form #77>7%.®, where 0<n,®
<w. [For =0, 7.® was the Schwinger phase shift
7.(S).] It will be the purpose of the present section
to raise still higher the lower bound on #%z. In order to
do so, it will be necessary to digress for a moment;
we will find bounds on 61 (u) for all u>—1.

For p=W, 6.(u) is simply the Lth phase shift
associated with (14u)W. It is then of course true that

Sr(w) 280 () =0, u=—1; (5.1)

the more significant point is that this bound can be
raised for arbitrary u> —1 exactly as was done in Sec.
4 for u=0. [It will be recalled that %,=6.(0).] In
particular, if we think of (14-u)W rather than W as the
“potential,” and if we choose p= (1+u)W, we have for
=0
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[ k cotdr,(u) <k cotdr,(u)— quL(£L+uW)M0Ldr

+[ [(1+u)W]"‘[(£L+uW)MoL]2df}- (5.2)

We now define §.®(u) by setting % cotér® equal to
the right side of (5.2) and choosing that solution for
8.0 (u) which lies between 0 and 7. We then have

3r(w)281® (). (5.3)

The trial function #or in (5.2) satisfies the usual
boundary conditions but is a function of u as well as
of 7, while 8,7 (u) is the trial Lth phase shift associated
with (14-u)W and is determined by the choice of #oz.
The curly brackets around (5.2) signify that while
(5.2), which involves cot#jz, may or may not be valid,
the bound on 7z, itself deduced from (5.2) and stated in
(5.3) is nevertheless valid. [The condition for the
validity of (5.2) for any specified value of p is obviously
that 8.(u) be less than 7, and we do not know if this
is the case.] The curly bracket notation will be adhered
to from now on; a bound surrounded by curly brackets
will be referred to as a ‘““conditional bound.”

We now have a lower bound, 6.0 (u)>0, on 65(u)
for all u>—1. If 7,=6.(0) is greater than %, it will
often be possible to determine a negative value of u,
to be called pir, 1, for which

(5.4)

81D (ugr, 1) =3m.

(The value 37 is a convenient but not necessary choice,
as will be seen shortly.) We consider a case for which
such a u can be found. With ¢’ =%m normalization, it
follows, since 7z, is now known to be greater than 3,
that

(5.5)

But this is exactly the type of relationship which is
required in order to utilize the results of Sec. 4 and
therby improve the lower bound on 7z (see Fig. 2).
[The sole purpose in deducing bounds on 61 (x) was to
obtain (5.5).] In particular, we have from Sec. 4
and Eq. (5.5)

Bir, 1> —Hir, 1, if AL<3m.

—ktanf, < —Fk tany,— fu%,,, 1L 1%y, 137

() f W Lrusr, )dr},  (5.6)

and

I PACH (5.7)
7@ is determined by setting —k tanyp.® equal to the
right side of (5.6) and choosing that solution for 5.®
which lies between 37 and £w. Equation (5.6) is
guaranteed to be valid only if 7z is less than 3, but
Eq. (5.7) is valid whether or not this is the case.
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F16. 2. A schematic representation of the iterative procedure for
raising the lower bound on %;. The sequence of curves §5,© (u),
81D (u), etc., represent successively better lower bounds on 87, (k).
The bound on 7, is determined from the relationship 7=81(0).

As a concrete example, consider L=0 scattering by
W (r)=W, exp(—7/ro).
With §=0, and with the choice
oo (1,7) = coskr—cotdio(u) sinkr—y(u,7),

where y(u,00=0 and where y(u,7)—0 as r—w, Eq.
(5.2) reduces to

{cont<— [ or—ry)ar

+ fLatawriorayal,

Choosing
¥ (u,7)=[1+C(r/r0)+D(r/r0)*] exp(—7/70),
where C and D can be functions of u, we find, for
k?’o—)(),
{kro cotdo(n) < f(C,D)(1—¢(C,D)
XLA+m)Wed ™)},

where

f(C,D)=—%(2—2C+C*—2D+D+CD),
and where
g(C,D)=—(1—2C+2C*+4D?)/f(C,D). (5.10)

It follows from Eqs. (5.3) and (5.4) that uyr,o is that
value of u for which the right side of Eq. (5.8) vanishes.
(It is the fact that the right side then vanishes which
is the convenience, mentioned earlier, associated with
the choice #=%n.) From Egs. (5.5) and (5.8), we
then find

,3%.,,, ()_>_ —Mir, 0= 1— 1.456(W01’02)_1,

(5.8)

(5.9

(5.11)
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where 1.456 was obtained by maximizing g(C,D),
defined by Egs. (5.9) and (5.10). Equation (5.11) has
meaning only if B0 is greater than 0, that is, only if
W07’02> 1.456.

We now fix our attention upon the particular
numerical value Wo@=25/4. The exact solution for
kr¢e—0 is then® fo—7+42.470 kro, so that tanfe/(kro)
—2.470. Equation (5.11) gives Bir, 0>>0.76704. [The
exact value of By, 0, which in this case is that value of
B for which the phase shift associated with (1—8)W,
is 3, is 0.7686.] Note, incidentally, that we now know
that 5o=250(0)>80(uir, o) > 3m. We take a trial function
of the form used for example by Huang,” but with
kr¢—0, and normalized to 6=%m, that is,

(=Fkro) My, 0= X4-C1— (C1H+CoX+C3X2+Cy)

Xexp(—X)+Cyexp(—2X), (5.12)

where X'=r/ro, and where C; is to be thought of as
(1/kro) times the tangent of the trial phase shift.
This trial function was used in Eq. (5.6), first neglecting
and then including the —1/uir o term, that is, in an
ordinary variational calculation, and in a calculation
which gives a conditional lower bound on tano/ (ko).
The bound is conditional because we proved that 7o
was greater than 4w, but simply assumed that %, was
less than 7. The bound deduced on 7o is of course
nevertheless guaranteed to be correct.

The coefficients in the calculation of the bound were
determined by minimizing the entire expression for the
bound rather than by minimizing €. There is no point
to the latter procedure here, for it is not any simpler
than the former and must give a poorer bound on
tano/ (kro). Further, that procedure negates one of
the very pleasant features associated with the approp-
riate use of the Kato formalism; in particular, if one
minimizes the entire expression for the bound, the
inclusion of more parameters in the trial function can
only improve the bound, while if one minimizes ¢,
the inclusion of more parameters may make the
bound worse. (The situation in the latter case is then
of the same nature as that of the usual variational
calculation.) Of course, one might still minimize € if
one were primarily interested in an accurate wave
function rather than in an accurate bound.

The results, shown in Table 1T, are about as might
be expected. Since the true value of % is greater than
m, a number of coefficients are required even for the
variational calculation to give accurate results; the
bound, arising from a rigorous expression, is rather
conservative. (On the other hand, for somewhat
smaller values of W%, quite accurate results are
obtained for the bound as well as for the variational

6 P. M. Morse and H. Feshbach, Methods of Theoretical Plhysics
(McGraw-Hill Book Company, Inc., New York, 1953), p. 1688.
Note, however, that they are not concerned with multiples of =,
while we are.

7S. Huang, Phys. Rev. 76, 1878 (1949).
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TasLE III. Variational calculation of tanf, and calculation of bound on #,. Scattering by W (r) =W, exp(—7/ro) for L=0, kro — 0,
Wore?=25/4. The trial function is given in Eq. (5.11). The calculation does not use a#y solvable comparison potentials. The coefficients
C1 through Cy for cases (b) through (e) were calculated from the Kato variational principle with §=/2; this is precisely the Kohn
variational principle. The coefficients for cases (f) through (i) were chosen by minimizing the bound. The true values are tanfo/ (k7o) —

2.470 and (fo—)/ (kro) — 2.470.

@ ) 3) (4)

(5) ) (7) (®8)

Variational Lower

calculation of bound on
Case C1 Cz2 Cs Cs tan 70/ (ko) (770 —)/ (kro) ety o/ (k2o?)
(a) ... +12.500 —3.7964 +12.500
(b) —2.9603 e —1.377 cee ce
(© +0.72659 +9.4581 o +1.147
(d) +2.3834 +10.041 +2.6548 Ce +1.761
(e) +2.2944 +35.178 —4.8426 —26.281 +2.45 A ce
f) —3.1886 e ce . cee —3.4140 +1.6252 -
(g) +16.122 +10.324 ... —0.835 +276.68
(h) +10.772 -+8.2011 +0.76605 ... —0.651 +125.96
@) +1.0480 +28.541 —2.9300 —20.715 +2.08 +1.26

result with three or even two parameters in the trial
function.)

The only rigorous statement that follows from the
calculations is that #o is greater than w--2.08%7,.
In practice, however, the four-parameter calculations
show, through the fair degree of consistency of the
four values of Cy, C1, the variational value of tan#o/ (k7o)
and the bound on tano/ (kro), and through the smallness
of €, that in fact one could be fairly certain that the
true value of tano/(kro) or (fo—m)/(kro) is close to
2.45, the variational estimate. This would be the case
even if we could not obtain some supper bound on #o.

From the point of view of this section, however, the
most interesting result of these calculations is that it
has been possible to raise the lower bound significantly,
in particular above , without recourse to a knowledge
of the phase shifts associated with any other potential.
In effect, we have used as our comparison potential

the potential under consideration, but with varying
strength.

In principle, one can introduce §.® (x) and higher
curves, but in practice this would probably not be a
reasonable procedure.

The discussion of Secs.4and 5 can also be immediately
applied to the case in which one has an upper bound
on 7z and agr is determinable under the assumption
that %z lies within an interval 6 of this upper bound,
where 6 is less than .
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