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view of these remarks, the relation of Eq. (20), derived
by Ui, can be justified. For the "first-order" approxi-
mation in the surface potential, the expression reduces
to

The second, or surface, matrix element is therefore to
be evaluated in the distorted-wave Born approximation,
as is disclosed by examination of Eqs. (16) and (18).
An identical result has been obtained by Tobocman
whose derivation, not in the algebraic formalism, is
rather more transparent.

IV. CONCLUSIONS

While the foregoing is predominantly formal, and
quite removed from a general theory of nuclear reac-
tions, deuteron-induced or otherwise, many of its
aspects can be regarded as having relevance to physical
evidence as disclosed by experiment. Specific to strip-
ping, one is inevitably faced with the problem of

eliminating the core contribution to the transition
matrix element of Eq. (21), or at least making it very
small. ' In this connection it is requisite that theories
which explicitly contain the fine-structure expansion
of Wigner or Kapur-Peierls for interior nuclear wave
functions be utilized with care. One must, if the dis-
torted waves arise from complex potentials, ' not only
be restricted to incident energy uncertainties covering
many resonance levels, but also to the computation of
explicit averages of the scattering amplitudes over this
energy interval. Indeed this raises the well-known
question of level-width correlations, which up to now
is not answered in any satisfactory way.

Despite the inherent difficulties associated with the
formulation, we are carrying out computations of cross
sections for D(d, p)H' and (n,e) reactions, and as well,
polarizations for the former; these being based upon
Kq. (21) in one or more of its specific forms.

' A. M. Lane, Revs. Modern Phys. 29, 191 (1957).
s W. Tohocman and M. Kalos, Phys. Rev. 97, 132 (1955).
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This paper investigates the method of obtaining bounds on scattering phases developed by T. Kato.
Circumstances under which it is possible to obtain rather good bounds on the phase shifts by simple pro-
cedures are investigated. Useful formulas and techniques are presented and illustrative examples given.

l. INTRODUCTION

I 'HE use of variational methods for calculating
phase shifts in scattering problems has proved

very fruitful. A variety of variational formulations has
been developed and it has been shown that with an
intelligent choice of the trial wave function these formu-
lations give good approximations to the phase shifts.

Unfortunately, with most of these methods it is not
generally possible to determine whether the approxi-
mation to the phase shift is above or below the correct
value. This is a very serious defect, since, in the first
place, the variational expressions are in some cases
extremely sensitive to the choice of trial function and,
in the second place, the inclusion of more free parame-
ters in the trial function does not guarantee improved
results.
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Fortunately, Kato' found a variational formulation
which gives both upper and lower bounds to the phase
shifts under rather general conditions. He applied the
method to a particular problem in which the method
gave very close bounds to the phase shift with a simple
trial wave function and a modest amount of com-
putation.

The Kato formulation is not without its limitations.
Trial wave functions that give good results in other
variational methods may give very poor bounds in the
Kato method or may even cause the integrals to diverge.
However, the obvious superiority of the Kato method
over other methods in cases where it does work well

certainly justifies further investigation.
Some of the difficulties involved in the application

of the Kato method will be investigated here, and some
circumstances in which the method gives good bounds

by means of simple trial functions and modest calcu-
lational efforts will be presented. Before we speak more

'T. Kato, Progr. Theoret. Phys. (Kyoto) 6, 295 (1950);6, 394
(1951);Phys. Rev. 80, 475 (1950).
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provided the integral J'p '(Zzugz)'dr, which vanishes
for the exact wave function, can be made sufFiciently
small.

The conditions on the choice of p(r) are that it be
non-negative for all r, and that it behave in such a way
that the phase shift in Eq. (6) is well defined for all
values of p, .

We are now in a position to state the matters that
will be covered in the following sections. In Sec. 3 the
case p=S'&0 will be considered and formulas for
bounds on n!!z and P!!z will be given. In Sec. 4 the
circumstances under which P&z can be put equal to
infinity will be invest~gated. This is a particularly
important special case since the calculation of one of
the bounds on p& is greatly simplified. In Sec. 5 the
choice of br ' for p will be investigated and the ad-
vantages that attend this choice will be pointed out.
Illustrative examples will be given in Secs. 4 and 5.

explicitly of these matters, however, it will be con-
venient to give a brief introduction to the formulation.

2. KATO METHOD

In Kato's paper' the formalism is developed for the
case of zero angular momentum. However, as Kato
pointed out, the extension to arbitrary angular mo-
mentum is formally trivial, and since this paper will be
chiefly concerned with cases where L)0, we will

present the formalism for the case of arbitrary L.
The operator ZL, is defined by

O' L(L+1)
Zz —— +k2 —+W(r).

dr r2

The "potential" W(r) stands for —2m' 'V(r), where
V (r) is the potent! al. The problem is to obtain bounds
on the phase shift gz due to W(r). In all that follows
the exact quantities will be distinguished from trial
quantities by being barred.

The wave functions are normalized by the condit
that their asymptotic form be as follows:

3. BOUNDS ON egz AND gl!z WHEN g(r) =
~
W(r)

~

ion If the "potential" W(r) is of constant sign, then a
permissible and rather natural choice for p is p=

~
W(r) ~.

For this case there are a few simple formulas for lower
bounds on fez and P&z. To simplify the discussion only
the case where W(r) is non-negative so that p=W(r)
will be presented.

The eigenvalue equation (5) now takes the form

ugz(kr) !cos(kr —-', L7rj|t)
+cot (riz —0) sin(kr —-', L!r+0).

The normalization constant, 0, lies between 0 and m

but is otherwise arbitrary.
The quantity P(rlz, ) is defined by

L(I.+1)
4..+(1+.-)W4..=0 (7)

r2
Qnz+k 4'nL

dr2
"

Apart from the unique case p= —1, 8=0 there will, in

general, be no analytic, closed-form solutions for any
values of p and 0. The possibility of finding lower bounds
on ni!z and Pi!z, arises from the two circumstances that,
first, there are "potentials" for which Eq. (7) is solvable,
a,nd second, that there is a theorem which states tha, t
the phase shift increases monotonically with increasing
"potential. '"

Now, for almost any non-negative W(r) met with in

practice, the inequality

W(r) &b/r' (g)

Then it can be shown that the following inequality
holds.

nez '"p—'(Zz—ugz)'«& P-(r7z)

&pgL p '(Zzugz)'«. (4)

Here p is some non-negative weight factor and eel, and

Pl!z are certain eigenvalues of the differential equation holds for some value of b. The Lth phase shift of the
equation

Zzg„z+zi pg„y.=0, 0&r& ~. (5)

P(riz) =k cot(!tz—8)—k cot(r)z 0)+ uez—Zzu!!zdr (3).

The eigenfunctions!!!! z and their corresponding eigen-
values p are determined by the boundary conditions
that the P z, vanish at the origin and have the asymp-
totic phase shift, bz, (!M) given by the equation

bz(p) =0+!z~, ri=o, +1, (6)

Then nez is the smallest positive eigenvalue and (—Pi!z)
the smallest (in absolute value) negative eigenvalue.
The values of nez, and Per, need not be determined
exactly. Even quite crude lower bounds on nez, and P&z

will suKce to give close bounds on the phase shifts,

Qmz+k Anz
dr

L(L+1) b

4.z+ (1+&')—q .=0
r2r2

is known for any values of p,
' and b such that

L(L+1)—(1+p') b) 0. (10)

The Lth phase shift is given by —(!—L) (!r/2) where v

is determined by the equation

!(!+1)=L(I.+1)—(1+p')b. (11)
~ This monotonicity theorem is mentioned by Kato and is

easily proved by the calculus of variations.
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(s-I) m+8

by this procedure for the case L=O. Moreover, because
of this pecular character of the "potential" br ' having
no admissible solutions for negative i, if (rlr. ——,Lir) )0,
the present method is not applicable. Furthermore, if
0) (rIr. ', Lir—))——m, then the best lower bound on nsi,
for any 8 such that 8((~ ', Lr—r+—rIr,) is given by that
value of p' in Eq. (9) for which the phase shift,

', (v ——L)m—, is equal to ,'Lir. Th-is corresponds to v=0,
and from Eq. (11) it is found that

rrgr, )—1+b 'L(L+1). (13)
I +b L(L+ I)

FiG. 1. Determination of lower bound on aol, under the as-
sumptions that 0&W &br 2, that b &L(L+1), that (s—1)~
+8&gg, and that ~~LE &sm. +8. The dashed curve represents the
(solvable) phase shift associated with Eq. (9). Equation (9) has
no meaning beyond y'= —1+b 'L(L+1), which is a lower bound
on nsr. /II gr, '(s~+8 but ', L7r)s~+—8,the dashed curve crosses
the st-+8 line. The point of crossing then serves as a lower bound
on afIl„and we have Eq. (14). If b)L(L+1), the dashed curve
does not even cross the vertical axis and o.gl, cannot be determined
by this method. These last two situations are not shown in the
figure. 7

Now, because of the monotonicity theorem, the value
of (1+p') in Eq. (9) which produces a specified phase
shift is smaller in absolute value than the value of
(1+@)in Eq. (7) which produces the same phase shift.
For zero phase shift, p and p' are both equal to —1.
For the same negative phase shift, p(p, '( —1. For the
same positive phase shift, p, &p'& —1.

By considering first the P eigenvalue, it can easily be
seen that if rjr.)~, then P«(1; since p =0 corresponds
to a phase shift greater than ~, and p, = —1 corresponds
to zero phase shift in (7), a phase shift 8 must be
obtained for some value of p, between 0 and —1. An
upper bound on P« is useless, though, for the inequality
given by (4) is not preserved if it is used.

If, however, gl. (m and, if it is possible to show that
there is a 0 such that g~.(8(x, then the phase shift in
Eq. (7) for —1(p(0, is between 0 and gz, and thus
never equal to 8(mod. ir). To attain a phase shift
8(mod. 7r) for negative p, p must be less than —1. The
phase shift for the first negative eigenvalue will be
(8—7r). The value of p' which produces a phase shift
(8—~) in Eq. (9) is obtained by solving for v from
(8—m)= ;'(v L)7r, subst—it-utin—g into Eq. (11) and
solving for p'. The value of —p,

' so obtained serves as
a lower bound on Psz. In this way it is found that

Per.)1+b '(2 —28ir ') (2L+3—2&='). (12)

This is a generalization of a result obtained by Kato
for L=O.' For large L and/or small b, it can be a con-
siderable improvement upon the result P«&1 which
follows from gz, &0(x.

Turning now to the bound on o.f)1., it is seen that the
eigenvalue equation with the "potential" br ' has no
well-defined phase shift for any positive eigenvalues
unless b (L(L+1).Thus one cannot obtain any bound

However, if (qi, —sLvr) is less than —7r and s is the
largest integer for which gr,)[(s—1)m+8], then nsr,

is the eigenvalue of Eq. (7) for which the phase shift
is (s~+8). The value of p' that produces such a phase
shift in (9) serves as a lower bound on nsi. Using Eq.
(11) to obtain p', one readily finds that

rrsr, )—1+b '(2s+2A=') (2L+1—2s —28'=') (14)

(see Fig. 1).
Bounds on nsr, and Pgl, for cases in which W is non-

positive and p= —S' are readily obtained in the same
fashion.

4. CONDITIONS UNDER WHICH IIgr,
GOES TO INFINITY

Since it is often a very tedious matter to evaluate
the integral J'(Zresr)'p 'dr in the error term, it greatly
simplifies matters in obtaining one bound on gl, if one
can cause the term to vanish by showing that P» goes
to infinity. From inequality (4) one then has

k cot(gr, 8) ~k cot—(rlr, 8) ~l rr»—Zrsrsrdr (4').
It was pointed out by Kato that if W(r) vanishes

for r& a and if qs(8(~ and ka( (ir —8), then it can be
shown, by considering the phase shift due to a "po-
tential" that is perfectly repulsive for r (a, that
Pss —+ co.

More generally the result P«~ ~ can be obtained
under the following conditions. If the "potential" W(r)
is solvable for r& a so that one can form a trial function
ue~ for which ZI.Ngl,

—=0, r&a, and if the phase shift
zr."(W), due to a "potential" that is infinitely negative
for r(a and equal to W(r) for r) a, differs from zr, by
less than s, then it is possible to pick 8 so that /sr ~ Oo .

This result comes about as follows. Since ZI,NgI=—0
for r&a, p(r) can be chosen arbitrarily small for r) a
without affecting the value of the integral,

J (Zrn»)'p 'dr In the ass.ociated eigenvalue Eq. (5),
the contribution of p for r& a to the phase shift can be
made arbitrarily small for any value of p, by choosing

p for r&a su%ciently small. Hence, for any negative
value of p, no matter how large in magnitude, it is
possible to choose p so that the phase shift is less
negative than rIr,"(W). If 8 is chosen so that there is
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no value 8(mod. m) between gl, and qr,"(W), then Poz
can be put equal to infinity. (Alternatively, the prob-
lem can be reformulated in terms of the region 0 &r &u.
Note that the trial function must be continous and
have a continuous first derivative at r=a ).

Now of course the "potentials" with which one
ordinarily deals neither vanish identically nor are
solvable beyond some point. However, it frequently
happens that the "potential" beyond some r=u can
be closely approximated by some solvable "potential. "
If a solvable "potential" U(r) is such that U(r) &W(r)
for r)a, then a lower bound on the phase shift that
results from substituting U(r) for W(r) for r& a is also
a lower bound on ql, . If the change in phase shift caused
by the substitution is small then a good lower bound
on the new phase shift is also a good lower bound on

gl, . Furthermore, and this is the significant feature, the
substitution may enable one to set Pol, equal to infinity.

To illustrate this procedure, consider now the case
of a Yukawa-type "potential" with values for the
parameters involved taken from a paper by Mowrer':

W(r) = Wo(ro/r) exp( —r/ro),

8 prp =5.85, kfp=0. 72.

A lower bound on gl. will be found.
Since W(r)) 0 one can choose U(r) =—0. In order to

take the cutoR point, a, as far out as possible while still
preserving the feature Por, —+ ~ one must choose 8 as
small as possible, subject to the condition 0)pl. . It is
therefore necessary to have a fairly close upper bound
on g2 before the method can be reasonably applied. It
will be shown in Sec. 4 that g2 is less than 8'. A value
for a/ro of 70/9 leads to a value for zo" (W) of (8.S'—
180') so that 8 may be taken as g', using such a cutoff
point. The part of the potential discarded is obviously
insignificant. From the simple trial function4

Noo=A (r/a)'+B(r/a)4+C(r/a)', r &a

Noo ——[sin(q, —8)] '[—(sing, )kr44, (kr) (1S)

+ (cospo) kr jo (kr)], r& a,

substituted into inequality (4'), one obtains the result
p2)6.2'. The value for g2 calculated by Mowrer by
numerical integration is 6.3'. It will be shown in the
Appendix that the additional phase shift due to the
discarded "potential" tail is much less than 0.1' so
that the difference between Mowrer's value and the
value calculated here is not due to cutting oR the "po-
tential, " and the result could be improved by a more
complicated trial function.

If the "potential" tail is not positive, then a lower
bound on the phase shift due to the truncated "po-
tential" is not necessarily a lower bound on &L,. How-
ever, the sum of a lower bound on the phase shift due

' L. Mowrer, Phys. Rev. 99, 1065 (1955).
For definition of jl, (kr) and nr. (kr), see P. M. Morse and

H. Feshbach, Methods of Theoretical Physics (McGraw-Hill Book
Company, Inc. , New York, 1953), Vol. 1, p. 622.

to the truncated "potential" and a lower bound on the
additional phase shift due to the "potential" tail is a
lower bound on the phase shift qz due to W(r). This is
the simplest procedure for utilizing the result Pop —& oa

when the tail of W{r) is not positive.
However, one can, if one chooses, follow the original

procedure of substituting a U(r) for W(r) for r&a,
where U(r)&W(r), by taking U= b/r'—. The analytic
solutions for this potential are known for arbitrary L.
The solutions for a particular value of b must be ob-
tained from the series expa. nsion for j a{kr) and r4g(kr)
as functions of the index G.

As an example of this, consider the repulsive ex-
ponential "potential"

W (r) = —Wo exp {—r/ro),

where 8'prp'=1, krp=0. 25. The case I.=O is treated
because this has an analytic solution' with which the
approximate result can be compared.

For r)4r/k one makes the substitution br ' f—or
8' where b is given by

b= (4r/k)'Wo exp( —m./kro).

Then Poo goes to infinity if 8 is chosen so that (1) (8—4r)

is greater than the phase shift that results from the
new "potential" and {2) (8—24r) is less than the phase
shift due to the "potential" that is infinitely negative
for r&a/k and is b/r' for r) 7r/—k Avalue of.8 equal
to (4r —0.01) is satisfactory.

For r) m/k the trial function must be of the form

44oo
——[sin(rl —8)]-'[krjg(kr) cos(g+2Gr)

krr4a(kr) sin(g+ o
—Can.)], r) , (16)—

where G(G+1) =b For r&7r./k the trial function

Noo =A (kr/7c)+B (kr/vr) 4+C {kr/~) 4+D {kr/7r) 4 (17)

was used. Substituting this trial function into inequality
(4'), one finds that go) —0.276S. The exact calculation
gives the result qp ———0.2759.

S. CHOICE' OF br ' FOR p

Since the potential br ' is solvable for all I. and for
all values of b such that b&1.(I.+1), it seems a rather
obvious choice to select br ' as the weight function, p.
However, there is the difficulty here, that with this
choice for p, the associated eigenvalue equation will
not have eigenfunctions with well-defined phase shifts
for large positive values of p. Since the inequality (4)
was based on the assumption that the @ I, formed a
complete set, the proof breaks down.

This difficulty can be avoided as follows. Consider
br ' as the limit case of the "potential" br '(r+o) ' as

' See reference 4, Vol. II, p. 1670.' The authors are indebted to Professor Kato for a very useful
suggestion on this matter.
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g goes to zero. With p=br '(r+g) ', the associated
eigenvalue equation has eigenfunctions with well-
defined phase shifts for all values of p. In addition, for
those values of p, for which the limit case br ' has solu-
tions with well-defined phase shifts, the values of p
resulting in a given phase shift with p=br '(r+g) —'
can be made to differ by arbitrarily small amounts from
the corresponding values of p with p= br ' by taking e

sufficiently small.
The advantages of this choice of p over p=S" are,

first, that it can be used in cases where W is not of
constant sign and hence not suitable as a choice for p,
second, that it usually leads to better bounds for the
same trial function and third, that it makes possible
the use of a wider class of trial functions.

The fact that the choice p=br ' usually leads to
better bounds for the same trial function than p=t'V
can be seen as follows. Since bounds on ngz and Pgz are
ordinarily obtained by comparing W with br ' the
bounds on ngz and Pgz are much the same for the two
cases. ' On the other hand, the integral J (Zzugz)'p 'dr
will be smaller for p= br ' than for p= W since b will be
chosen so that br ')W(r) Henc.e for the same trial
function, p=br ' will usually produce better bounds.

The fact that the choice p=br ' makes possible the
use of a wider class of trial functions arises as follows.
Since most W(r) fall off exponentially with large r, the
integral J'(gzugz)'p 'dr will not converge for p=W
unless ZLugl. vanishes at least exponentially. Because
of this, the asymptotic form of the trial function must,
to this same order of exactness, be equal to

[sin (gz —8)] '[—(singtz) krggz (kr) + (cosy z) kr jz, (kr) ].
With p=br ', on the other hand, the integral will

converge if Zl, ugL, vanishes as r ', as it does for many
simple trial functions. In the following example a simple
trial function will be used with p=br ' that cannot be
used with p=W.

Returning now to the Yukawa-type "potential"
used in the previous section, ' we shall obtain an upper
bound on g2 with the choice br ' for p. 'The trial function
used is

ugz Lsln('g2 —0)] '$(cosp)kr jg(kr)
—(singl) kr jg(kr)]. (18)

The integrands that result are all quadratically inte-
grable over the range 0 to ~. They can also all be done
analytically. It is possible to add exponentials to im-
prove the trial function without losing these features.

~ More exactly, it can be shown that using a comparison
"potential" br 2 results in the same lower bound on agl, for the
two cases, but, for Pgz, , the bound on the pgl, associated with
p=W' is greater by 1 than the bound on the Pgl, associated with
p=br 2.

A lower bound on o.g2 for values of 0)g2 is obtained
by using br ' as comparison potential. By arguments
similar to those used in Sec. 3, it is shown that

The value of 8 is varied by steps to obtain the best
bound. In this way the following result was obtained:

Mowrer's value for FI2 is 6.3'.

APPENDIX

Our purpose here is to show how the additional phase
shift, Ap&, due to a "potential" tail, may be bounded
if the phase shift ql, ' due to the inner part of the
"potential" is known to a good degree of accuracy.
This additional phase shift is assumed to be small
compared to the total phase shift so that rough bounds
are sufficient.

The procedure for finding bounds on Apl. is, with a
few necessary changes, quite the same as the procedure
for finding phase shifts already outlined. However for
this case, in the associated eigenvalue problem one
takes p=0 for r less than the cutoff point, a. With such
a choice of p one must take for the trial function in the
region r (u the exact wave function. This wave function
is of course unknown but one formally takes the exact
wave function for the truncated potential as the new
trial function over the whole range of r. Then, since
ZINgl, is zero for r(a and Wugl, for r) a, the bounds
on Apl. are given by the inequalities

ngz '~ (—ugzW)2p 'dr(k cot(Agz —8)+k cote
a

00 (GO

+) ugz'Wdr(Pgz ' (ugzW)'p 'dr, (A1)
a CL

where the ngz and pgz. are eigenvalues of the new as-
sociated eigenvalue problem. Thus for s)a the exact
wave function for the truncated potential is

ugz= [sin(gz' —0)] '[—(singz') krggz(kr)

+ (cosgz') krj z(kr)] (A2).
The function is not exactly determined since pI.' is not
exactly known but if pl, ' is closely bounded this defect
is not serious.

This method has been used to get an upper bound on
the phase shift due to the "potential" tail of the Yukawa
type "potential" in Sec. 4. The asymptotic form,
ugz=sin(kr —2Lgr+qz')/sin(rlz' —0), and p=W were
used in evaluating the integrals. In this way it was
shown that hq2 is less than 0.004'.


