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Radiative Meson-Nucleon Scattering
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In this paper the static-source model of the pion-nucleon interaction is applied to t'he problem of the
bremsstrahlung emitted in pion-nucleon scattering. It is shown that the matrix element for radiative meson
scattering can be expressed in terms of other experimentally determined quantities, such as the matrix
element for elastic scattering, provided the general static-source model is valid. Therefore, comparison of
experimental results with those predicted by the present investigation will indicate the extent to which this
simple model is valid, and suggest the refinements which are needed.

I. INTRODUCTION
' OST of our present knowledge of the interaction

between x mesons and nucleons has been ob-
tained from a series of experiments on meson-proton
scattering and on the photoproduction of mesons. The
principal features of these processes agree well with the
predictions of the simple theory suggested by Chew. ' '
In this paper we point out that radiative meson scat-
tering —in which a gamma ray is given oG while the
pion is being scattered by a nucleon —can be used to
examine further the nature of the scattering process and
the range of validity of the static-source theory. It is
important for this purpose that, using the simple theory,
precise predictions be made as to the gamma radiation
to be expected, so that deviations from the predicted
intensity can be readily related to needed refinements
of the model. The new formalism of Low' '—in which
the physical scattering states appear in a basic way-
can be applied to this process in a natural manner,
leading to relations between the radiative scattering
cross section and other experimentally determined
quantities, and obviating the need for calculations which
would just reproduce the scattering amplitudes. The
accuracy of the results obtained by using such an
approach are expected to be greater than would be
obtained from a perturbation calculation, ' or a Tamm-
Danco6 calculation.

Before proceeding with the calculation of the matrix
element, it will be useful to orient ourselves by con-
sidering some of the qualitative features we expect.
First we notice that, especially when the process is to
be studied through the detection of the gamma rays,
it will perhaps be most convenient to examine the
bremsstrahlung of positive mesons scattered by protons.
Fortunately, this is the case in which the cross section
is largest and in which the resonant state dominates the
scattering most completely. We also observe that the

e6ect of Rutherford scattering is insignificant at ener-
gies near the P-wave resonance. As is well known, the
intensity of long-wavelength gamma radiation is given
exactly by a semiclassical calculation; the number of
quanta of frequency E is proportional to E ' and to the
scattering cross section in the limit E—&0. No new
information about scattering can be obtained from a
measurement of this part of the spectrum, but the
number of gamma rays with a shorter period, compara-
ble to the collision time, will give some additional
knowledge of the currents set up during the scattering.
An important simplification occurs when E—+ED, the
end point of the bremsstrahlung spectrum; the part of
the matrix element which is dominant in this limit
arises from the interaction current —an incident P-wave
meson is scattered by the nucleon, and electric dipole
radiation is generated by the very high-frequency cur-
rents which are induced inside the nucleon core during
the process of scattering. This effect is the same as
that which is dominant in the simultaneous photo-
production of an S-wave and a P-wave meson'; the
Feynman graphs are equivalent, as can be seen by
reversing the temporal direction of the S-wave meson.
The calculation of this term is easy and unambiguous
in the static P-wave theory, but recoil effects and
S-wave interactions will aGect it by an uncertain
amount. The most interest lies, therefore, in the high-
energy limit of the gamma spectrum, but its measure-
ment will require knowledge of the spectrum at lower
energies as well. '

The same notation that was used in reference 6 will
be used throughout the calculation which follows,
except as will be otherwise noted.

II. GENZRAI, IZED STATIC MODEL

Ke use, as was remarked above, a model in which the
nucleon is supposed to be a fixed source of finite extent.
At the end, it will be possible to incorporate certain

*Alfred P. Sloan Foundation Research Fellow.' G. F. Chew, Phys. Rev. 94, 1748, 1755 (1954);95, 1669 (1954}.' G. F. Chew and F. Low, Phys. Rev. 101, 1570, 1579 (1956).' G. C. Wick, Revs. Modern Phys. 2?, 339 (1955).
4 F. Low, Phys. Rev. 97, 1392 (1955).' A lowest order perturbation calculation, using the relativistic

theory with direct and gradient coupling, has been made by
V. G. Solov'vev, J. Exptl. Theoret. Phys. U.S.S.R. 29, 242 (1955)
Ltranslation: Soviet Phys. JETP 2, 159 (1956)g.

'R. E. Cutkosky and F. Zachariasen, Phys. Rev. 103, 1108
(1956).

7 The bremsstrahlung emitted by extremely relativistic mesons
scattered from nuclei has been discussed by L. D. Landau and
I. Ya. Pomeranchuk, J. Kxptl. Theoret. Phys. U.S.S.R. 24, 505
(1953) and Iu. A. Vdovin, Doklady Akad. Nauk S.S.S.R. 105,
947 (1955), using a semiphenomenological model which is quito'
different from that applied here.
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where the $0 denote states of the physical nucleon and
the $0 are simple spinor wave functions. It is assumed
that v(p) = 1 in the neighborhood of the resonance.

The proofs of the following identities, which will be
used repeatedly, are obtained in the same way as in the
linear theory' ':

~AO= (H+~.) 'V~*—A (2a)

recoil corrections in an obvious fashion; others, which
are fundamentally uncertain, are left out. Chew, Low,
and others, in their applications of the static model,
have in addition assumed that the interaction Hamil-
tonian depends on the meson field variable p(x)
linearly. ' ' In this section we discuss a slightly more
general version of the static theory, in which it is
assumed that the main terms in the interaction Hamil-
tonian depend only on the E-wave part of the field
variable, but possibly through an arbitrary function
H'(7'p, e,~).' We shall not discuss the nature of the

source function, which may have a very complicated
structure in a nonlinear theory; we only need to assume
that it is Qat for the momenta in the initial and final
states of primary interest, and can be characterized by
some over-all cuto6. Our reason for discussing such a
model is partly that there is at present little evidence
concerning the linearity of the interaction, and partly
that calculation with a nonlinear theory is not much
more difficult.

The Hamiltonian is written as Ho+H, where Ho is
the usual free field Hamiltonian. The interaction term
H' appears in the results only through commutators of
the form V~= [H', a~*], V„*=Pa„,H'], and further
commutators such as [V„*,a~], etc. The identity
V„=—V~* follows from the fact that B' does not
depend on the conjugate momentum vr(x). A renormal-
ized coupling constant f is defined by

(A, V,Ao) =~f(».)-:~(p) (4.,~.p -0o)

Furthermore, using (2b):

—ag(H —(o„mid) 'VAO= —(H+co, (o—„wip) 'a, v„fp
+(H+coz N&&—zp) Vz (H M&W—'Lp) V&fp. (4)

Use of the Jacobi identity,

[a„V„]+[a„*,V,*]=[[o„",o,],H']=a,

transforms (4) to

a, (H— cu~W—i&) 'V„gp
= (H+a)q ~,+i p) '(a,*v,* Vg*u„—*)iso

+ (H+(u, a&~+—i p) 'U~(H+cu, ) 'V, *iso

+ (H+Gog GDp&zp) Vq (H —My&zp) VA'p.

Taking the Hermitian conjugate of (2b) and applying
it to the above equation, one obtains

a, (H co„W—ip) 'V—„go=a~*(H+cu, ) 'U, *iPO

—(H+a)q —co,Hie) 'V,*[a„~
—(H—(u„wi p)

—'U„]go. (5)

Addition of (3) to (5) proves (2d).
The derivation of the Low scattering equation is now

very easy. The scattering matrix is given by either
(iraq , V&imp) —or (fo, v,*p„+), the two expressions being
equal when co,=co~. Applying, in order, identities (2c)
and (2a), one obtains

(4. VAo)= (A v.*(H—~. &p) 'VAo)—
—(p„v„(Hy,)- VA,)+ (A,[u„v„]p,). (6)

The one-meson approximation to Eq (6) is.:

(P, , v„iso) = Qo, )a„viggo)+ Qo, V,*go)co, '($0, V~f0)
—(A, VAo)~. '(A V.*A)
-Z

i V., v,*~;)(---,-')- V-,VA.)
+(40,V,4i )(~i+~,) '(Pi, v,*Co)]. (7)

a„(H E) '= (H+co —E)—'a
—(H+ar„E) 'V~*(H —E) ', —

/~+=a~*fp —(H—cv„Wic) 'V $0

(2b)

(2c)

which divers from the result of the linear model only
in the addition of the term

(6 [&.-,Vpp3'0)

=q'p (4~~.~.) '~(p)~(q) (40,Qv -p&o) (g)
A slight change in the derivation' is required for the
proof of the identity:

a,p~+=8napp (H+coq u)iwze) '—Vq*ip~+—

It is first noted that

(2d)

&A'~+=&.~*A —~.(H—~.~&p) 'VAo,

and that

~a~,*~o=~,AO ~.*(H+~,)-'V,*A (3)

H H' depended also on the conjugate momentum m (x), the
calculations which follow would be greatly complicated. For
brevity, we may refer to the absence of m (x) from the interaction
Hamiltonian as being the property of "rigidity" of the source.

For simplicity it may be assumed that Q;;, p does not
depend on p or q. Then, '!because of the form of the
interaction Hamiltonian (the rigidity of the source'),

Q~i, ap +~jtiap+fi&ijAk&apyTy'

It is evident that the crossing theorem still holds.
It is not easy to see how inclusion of the additional

parameters a and b affects the solution of Eq. (7) since
an exact solution of that equation when a=6=0 is
unknown. It appears, however, that the e6'ective-range
treatment of 833 is not changed if a and b are not too
large (that is, a, 0&f'), but at higher energies there
may be important modi6cations, . particularly in the
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other phase shifts. ' In the calculation of inelastic
scattering, further inhomogeneous terms appear, mak-
ing the justification of the one-meson approximation
somewhat more obscure; nevertheless, this approxi-
mation will be used in many of the following calcula-
tions.

The current operator in the static model consists of
three terms: j=j +j„+j„„.The meson current is

(10)

The position of the source is fixed, but it is of course
free to rotate, so the nucleon current j„in this theory
is given by the magnetic moment of a nucleon which is
stripped of its outer clothing of pions. This magnetic
moment is not necessarily that of a bare Dirac particle
because the nucleon may possess an inner clothing
consisting of pairs, strange particles, etc." Finally,
there is the interaction current; in order to conserve
charge, instantaneous currents must Qow inside the
source during the emission or absorption of charged
pions. Although the nature of this current is quite
unknown, the electric dipole contribution for wave-
lengths much larger than the source radius is given
uniquely if one replaces Vg by V'p+ieArt (for mesons
of charge &e) in the interaction Hamiltonian. If one
writes

V„.=(2',)—fp U.,

then, in this approximation,

Fro. 1. Feynman graphs for the scattering matrix (Qq, V„fo),
and for the interaction current term M~„&'&.

Evidently M,„"'=0unless either the initial or final

meson is in an S-state. We introduce the notation

j (x) =iees sy (0)Us3(x). (12)

Since @s(0) creates or annihilates S-wave mesons, it
commutes with all terms in Us. The Kroll-Ruderman
theorem, '" as well as the multiple meson generaliza-
tion, ' follow directly from (12).

where
M,„=—(2E) &(f, ,Jf +), (13)

d'xe '**a j(x).

We shall first evaluate the most interesting term,
which is given by the interaction current (12):

M. Cini and S. Fubini, LNuovo cimento 3, 764 (1956);
Phys. Rev. 102, 1687 (1956)j, have derived sum ruies for the cross
sections, using the linear theory, and found that they do not
agree well with experimental results. These sum rules do not
exist in the generalized theory.' It can be shown that introduction of nonlinearities does not
change the generai nature of the results of H. Miyazawa (Phys.
Rev. 101, 1597 (1956)).

"N. M. Kro]l and M. A. Ruderman, Phys. Rev. 93, 233 (1954).

III. BREMSSTRAHLUNG MATRIX ELEMENT .

The matrix element for emission of a quantum of
momentum K, polarization s, while the meson is
scattered from a momentum p to a momentum q, is

Then, since for an S-state /~+= a„*Ps,

~qa, ys N(SEM~q) [6say4p'j2 ij, yp(p)

esprei&Tri. ~v(V)7 (16)

In order to picture this process a little more clearly,
it may be convenient to refer to the Feynman graphs
in Fig. 1. A nonsymmetrical symbol is used for the
matrix element (Pq, V„fs) in order to emphasize that
it has a trivial dependence on one parameter. This
symbol is to be considered as an abbreviation for the
totality of all graphs which contribute to scattering. '

It is more diKcult to evaluate the remaining contri-
butions to the matrix element. The problem here is to
separate these contributions into three parts: first,

we must hand a term which contains the result of the

classical calculation, and which we shall call the
"quasi-classical" term; secondly, we must try to com-

bine certain terms which contain the mesonic contri-

bution to the magnetic moment of the physical nucleon

with the current of the unclothed nucleon in such a

way that the matrix element can be expressed in terms

of directly measurable electromagnetic properties of

the nucleon; we can then interpret most of the remain-
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ing corrections as being rescattering corrections, that
is, terms which correspond to processess such as that
in which the meson is scattered, emits a photon, and
then is scattered once more. The approach which seems
to lead most directly to the desired result follows. By
repeatedly applying the identities satis6ed by the
eigenstates of the theory —Eqs. (2a-d), (6), and (7)—
we shall eventually deduce a nontrivial identity, in the

form of an integral equation, satisfied by the matrix
element.

We write j'(x)=j (x)+j„(x),and

~o' = —(2K) '*(4'p J'&p+)

Expanding the initial and final states according to
(2c), we obtain

3fpp'= —(2K)—:([a,*—(H p),+—io) 'V, ]go, J'[a„*—( —o)„—io) 'Vp5fp)

=( ) '*((4o,[ ., '54')+(0. L
' .*54o)+(4o, J' .[ *—(H— — ) 'v 54o)

+Q., L, V,*(H— -, :-) '7—,*J-V.) (~.;-,J".*~.)
+(~., V,*(H--,-')- J (H--.-')- V,~.» (»)

9,'e now use the identity

J'a,a„*+a, ,a„*J' a,J'a„*=a—„*J'a,+J'o„p+[a„[ap*,J'75

to transform Eq. (18) to

(2K) '(—(A La. J'3')+ (4. [J',a.*3o)+ (A,[a.,[ap*,J'576)+ (A,J'op A o)+ (aA o,J'aA o)

+(A, J'(H+~o ~p io) 'J-(ti—,P)A)+(A, I(q,P)(H+~p ~p io) 'J'A—)
+(A VQ*(H o)o io) '—J'(H—&p io) '—VA'—o)1 (19)

ln Eq. (19) we have used the relation

ao(H Mp zo) Vip
= (H+P)q —Q)p zo) [Vq (H Pop zo) Vp-

+V.(H+,)-'V,*-I „V.77~.

= (H+&i, ~, io) 'L(q, P))Io,
—-

and the related expression in which

(2Os)

L(&P)=V.*(H ~p io) 'Vp-
+Vp(H+~p) 'Vq* [V.*,ap*7 (2ob)—

The nucleon current j„(x) is independent of the
meson field variables so we can evaluate the commu-
tators in the 6rst three terms on the right-hand side
of Eq. (19) by using only the known expression for
the meson current:

= ()Ivo,go)& Ap, q+z
COq+K 6)& —Z6

therefore,

—(2K)—'*(yo,[aq. J'74'pe')

(A, Vq+K, .*ape');

(23)

=2ieo,.ef') p, q+Kp e(8Kpd, p) p)
. l(fp&Pp)

2iecpavq
' R(2ooqyz)

(8K ~.+ )'( '— + '+ )

X(A, Vq+K. Ape+). (24)

( 0) [a—q—K, v +aq+K, v3'pa )
= (POPPO)~aAp, q+K

—(&q+K—O)p —
&&) ($0) Vq+K, v 4'pa+)

—(~.+~ + q)K'(A V-.-z, 4 p-+)

We treat in the same way the matrix element
J„,= ieop„, p—i 1 e(4o)io)i K)

—i Qo, [J',ape*)fo); thus we obtain for the first three
X[ai z, „*a i, ,*+az i, „ai, „+2ai z, „*ai,.7. (21) terms of Eq. (19):

Therefore, we obtain

[a...J'7 = —2ieop. ,q e(4o),p)q+z)
—l

X[a q z, .*+aq+z, .5)

[J )ap, e 5 = 2qeopvep' e(4M')z p)

X[az p, „+a, K, „*7,

[a,.)[ape*)J'55=2ieopaep e(4o)po)p) *bq, p z.

Now, using identities (2a) and (2d), we find that.

(22)

—(2K) '{9o Laq- [ape* J'55A)

+ (A, [aq-,J'7~pe+)+ (4 q=, [J',ape*5~o)

=2ieop. ebp, q+K(8Kp)po), ) &p ego, po)

2ieopavq' &(2o)q+K)*
(A, Vq+K, Ape+)

(4Koip) **(o)„'—&o q++Ki o)

2ieop„ep. e(2p) ~z) l

. (4'q= Vp-K, A'o) (25)
(4Kop p) *(pop' cd p K'+ zo)—-
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We have now succeeded in separating out the most
important contribution of the meson current, the
quasi-classical term; the last two terms in. Eq. (25) can
be related immediately to the scattering matrix, and
evidently have the proper behavior as E—+0. When
&p„=pp»+K, we may rewrite these terms, after referring
to Eqs. (11) and (15), as:

M,.pe~'&=ie(SKu)„(u»)&

X(op.,(Ko),—I q) 'q e(q, +K;)p,T;, ,e(p)
+pop~(K~, K.P)—Peq;—(p,—K,)T;. ..(q) ). (26)

The structure of this term is described by the graphs in
Fig. 2. The 6rst term in Eq. (25) is a "disconnected
graph" term, and does not give any contribution to a
matrix element between states which conserve energy.
However, as we shall see, we shall have use for the
matrix element between arbitrary states. Another
disconnected graph term is Qp, J'Pp)b, p; we note that
the interaction current does not contribute to such a
matrix element, since the nucleon does not recoil, so
(Pp J fp) equals (Pp, Jfp), which is given by the mag-
netic moment of the physical nucleon.

We now make closure expansions in the remaining
terms of Eq. (19), keeping only zero- and one-meson
terms:

(4 o,a,*J'a,fo)
=(6, V~(H+~~) 'J'(H+~») 'V»*A)

= (A, VAo)~. '(A, J'4o)~» '(A, V»*A)

+2 (A VA" )( + ) '(O' J'4'o) '(6 V *4'o)

+Z, (~.,V.~.)- (~.,JV.")(-.+-,) '8', V,*~.)-
+ (27)

Again, (fp,J'fp) is related to the magnetic moment of
the nucleon, and (g„,J'Pp) is evidently the magnetic
dipole and electric quadrupole part of the photopro-
duction amplitude. It should be remarked that among
the terms represented by the dots at the end of Eq.
(27) are some terms which are needed to demonstrate

+-K y

Fxo. 2. Feynman graphs for the quasi-classical term M~„(".

that the entire matrix element satisfies a sort of
"crossing symmetry, "but these terms are actually very
small. Returning to Eqs. (20a,b), we write

J.(q,p) = —X,(p)
+V.(H+~.) '(~.—~.)(H+~») 'V»'

(Pp, V,*(H ~» i p) 'J'—(H —u)„io) 'V„—|Pp)—

(A, V»*4. )(4. JV.+)(4.+ VAo)

(M p
—Ql »

—$p) (Cd 8
—M y

—1p)

We now collect our results in the form

M»„M»„&"&+M»„&——&+M»„&'&+M»~&'&

(30)

The two disconnected graph terms are obtained from
Eqs. (19) and (25),

m ~-)=- 2Z —:
QP r QP&

32
M,„'"'=2i«o.e&p, ,+Ky e(&K~,~») '*(Pp,Pp),

while M»„&'& is givenby Eq. (16) and M~'& »by Eq. (25).
Also, we define

M»~"'= (2K) '(A JA)(~» ~~ &o) '(A, V»*4~+)—
+(2K) '*(4»,VAo)(~n —~»—ip) '(A, JA); (33)

this LEq. (33)j is what a semiclassical calculation
would suggest for the contribution of the magnetic

~~ The "zero-meson" terms left out of Eq. (30), which contribute
only when negative mesons are scattered, can be expressed in
terms of the photomeson matrix element and the nucleon magnetic
moment. They are less important than the magnetic moment
term M~„(3& of Kq. (33).

X,(p) = —V»*(H (u~ —i») —'V p

—V» (H+cu„) 'V»*+/a„V»];
(2g)

I.(q p) =-X.(q)
+V„(H+,) '(,— )(H+ „) 'V,*,

X„(q)= —V,*(H co» —ic) —'U„
—V„(H+co») 'V»*+)V»*,a»,*].

Using the above equations, we have

(6 J'(H+» » i )—'L(—q p)4'o)

(A,JV—
o) I (~, ~, ip)—-'(A—,V,*4. )

+V., V,(H+-.)- (H+-,)- V,V.»
+r..(Co,JV. )(.+ .—.— ) '

X(& L (q,p)&o), (29a)
and

(4o, J-(,p)(H+ . . )'—JVo)—

L(4. ,VA—o) (~. ~» ip) '— —
+(A, V~(H+~~) '(H+~») 'V»*A)j(A, J4o)
+Z.(A,I (q,p)4"+)(~.+~ ~. ip) '—

X (P,+,J'Po). (29b)

We remember that we are primarily interested in the
scattering of positive mesons from protons, and there-
fore write for the last term of (19)":
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moment of the nucleon. The remaining terms of (29a,b) are combined with those of (27) into

M.~"&=—(2&) 'f —(A,IVo)~~ '(A vA o)~. '(A v.*A) (6—vA o)~. '(A v.*A)~. '(4o I'A)
+(A, vAo)~. '(A, JV~)~. '(A v.*A)+Z.E(A vAo)~. 'QoIV')(~. +~.) '(4.+ v.*A)

+(No, vA. )( -.+ .) '(4.-,JV—.) (4o, v,*So)+(4.,I'4. )( -.+, .—~)—'(4-. ,L(—~,p)A)
+(Co,L(,p)4"+)( .+ . .—)—'(4.+,IVo) (4o—,IVo)( .+ .) '(4o, vA" )( + .) '(4. ,v.'4o)

—Qo, vA. )(~.+~,) '(~,+~.) '(4. ,v, 'A)(A, IVo)7} (34)

The last term of Eq. (31) is given by (30):

g „v,*p„)M„,'-(p,+,v,y,)
M,„'"=Q

rs r &q t& s & —Z&

(35)

As a consequence of this term, (31) is a linear integral
equation for M,„.Dn Eq. (35), r and s must refer to
P-states, for which M„'=M„.7 Thi—s integral equation
clearly has a form which is related to the Low scattering
Eq. (7), but while it is similar to that equation in

involving only matrix elements between physical states,
it diGers from it in being linear and in that the solution
must be obtained also for states which do not conserve
energy. It is essential to notice that the integral equa-
tion involves —except of course for the solution itself—
only quantities which can be determined from other
experiments, and therefore the bremsstrahlung will

serve as an especially good test of the applicability of
the general static model to scattering. Note that none
of the relations which are implied by Eq. (31) depend
on the linearity of the P-wave interaction.

From purely classical arguments we can understand
that the magnetic moment term M,„&') is, for the ener-

gies with which we are concerned, much smaller than
the quasi-classical term 3f,„&'). The diferent terms in

M, „&'&, Eq. (34), are even smaller than M,„"'; the
first three contain the Born approximation to the phase
shift 833 instead of the actual experimental value of this
phase shift (the energy denominators are also bigger
in M,„"&).The remaining terms in Eq. (34) are also

very small, despite the appearance of matrix elements
which are enhanced by the resonant state. The physical
basis for this is that the resonance is a narrow one, so
integrals over it are not large unless, of course, there are
energy denominators which may vanish in the region
of resonance, as in the Low scattering equation, or in

M,~&'& as given by expression (35). For preliminary
comparisons with experiments near the resonance

energy, it will be convenient to neglect the smaller phase
shifts in comparison with b33, and if this is done it will

also be appropriate to neglect M,„&4). We cannot say
that the effect of the kernel of the integral equation
(31) will not be to amplify certain terms of M,„'4&;

this possibility we shall discuss again later.

IV. RESCATTERING EFFECT

It is clear that the function of the kernel of the
integral Eq. (31) is to determine what we have previ-
ously called the rescattering corrections to the matrix

element. The kernel is of an unfamiliar and rather
singular sort, and the inhomogeneous terms are very
singular as well, so we shall perhaps be unable to solve
this equation very accurately, but we must at least
try to obtain a rough understanding of how the solution
will depend on the energies, and a general idea of the
importance of the rescattering sects. In order to do
this, it is convenient to split the matrix element 3f,„
into three parts:

M q„' Mg„'~&+——M g„~~&+M,„,
M '~&=M & &+M„&'&

(36)

We may think of M, „&~) as being the entire contribution
of the nucleon moment, and M,„&~) as being the
corresponding contribution of the meson current; 3f,„
represents the minor residual e6ects associated with

(4)

Let us consider first Eq. (38) for M,„~ ' and attempt
to write the solution in the following manner:

(4. ,vapo)
M,„' '= —(2E) *' Q f'), ()Po,)Po)

Go) Gag Z6

(A v&' )p)")
~ f)&&' (A)I)A) f)&') (AA'0)

CO)l 67~ 16

+M,„~"&. (39)

The erst term on the right in Eq. (39) contains not
only the inhomogeneous term of Eq. (38), but also part
of the rescattering correction. VVe shall call this part
of the rescattering correction S,„&~):

(4'e v&A) (A JA) (A v&*4~+)
5,„'~&=—(2X) &g . (40)

(M&
—

CV))
—16) (N &

—
Cd))

—ZE)

We might interpret S,„&~) as a Tamm-DancoB approxi-
mation to the rescattering correction. Our purpose in
separating out this part of the rescattering correction
explicitly is that the integral equation for the remaining

+2, (37)
07q M ~ ZC 07& Q)~—Z6

M '~& =M '"'+M

(A, v.*k. )M-'"&(4.+,vA0)
(38)

Mg Mq 26 Gag G)p Z6
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term 3f,„&N~ takes a form which appears to be simpler,
and which one might hope to understand more easily.
It is remarkable that the term which we find most
convenient to separate out is exactly what one would
write down for the contribution of the nucleon magnetic
moment to the bremsstrahlung matrix element if one
were to make the very naive assumption that the
meson-nucleon system could be represented by a simple

wave function C~(l) given by

C „(l)= (y„u,y„+)
=o (4 A) ( — —z)—'(Po, V*4+) (4&)

The correction M, ~&~& satisfies the integral equation
which we obtain by inserting the expression (39) into
Eq. (38):

(4o, ViA) (Po,~A) (A, V i*4m+)
M,„&"&=—(2E) &

co~—co&
—ze co~—co&—z6

(Po, Vo*gi ) (fo,JPo) (fi+, V„go)

Go~ Z6 07~ GP&
—Z6

(4o,V.*4" )(0. , V 4o)(A,~co)(4+,VAo) (A, VA )(4o ~A)(A, V*4"+)(4.+,VAo)

rl (Q)r —ohio
—zo) ((Oi —d'or zo) (co~ oi& zo) ls (Mi coo zo) (ooi oor zo) (Qi~ —co& zo)

(A, V.*4. ) (4",Vht o) (A,~A) (6,Vi*4"+)(4'.+,VA o)

((0, —Mo —zo) (coi (d —r zo)—(ooi —M, —zo) (G)r —0)&—zo)

(A, Vo*k. )M-'"'(4"+,VAo)
(42)

(Mr ooo zo) (big oog zo)

The inhomogeneous term in Eq. (42) looks forbidding, but can be reduced to a more manageable form. We must
consider sums such as

Ho&=+ (Po Uo f„)(P„Vino) (K, Ko zo) (&i M zo)

=Z, (W.,V, e;)(W;,VO.)L( .—,—')-'( —,—')-' —( .— +')-'( —,—')-'7

Similar sums appear in the Low scattering equation; reference to Eq. (7) shows that we may write

(43)

~ i= (oui o~o zo) j (4'o, VA'o)+(4'o, V *4'i ) Z L(~ +o' ) ' (~ +oil) 7(AbVA )(O' V "A&))

+ ' 'j (A, V *4'o) (O'o V 4'o) (A V 4'o) (A V *4'o)) (44)

It is clear that the summation in Eq. (44) is smaller than the first term, so as a first approximation it might be
neglected. Note that Eq. (44) does not contain the unknown quadratic term of the Low equation (7) or (8). In the
same way we prove that

&in= P, (4 o,«*4,+) (4"+,V,go) (~i ~, zo) '(~,—~„——zo)-'

=(«—&~—zo) 'L(A+ VA'o) —(A, Vi*4'~+)7—E.(4' , oVA+)(6 +ViV )o( oo+ io)i'(~*+oi„) '

+~. '~i '((A Vi*6)(A,VAo) (A, VAo)(4o,—Vino)). (45)

If we were to insert the expressions (44) and (45) into the inhomogeneous term in Eq. (42), neglecting all but the
first term in (44) and (45), we would find that the inhomogeneous term, and hence also M, ~&~&, vanished identi-
cally. More exactly, we obtain:

( (Po, V&go) (Po, U,*go) (fo,Voto) (fo, V—iso) }
M &"'=—(2E) & Q

Mg M~ Zt

(A V4" )(4" Voto) (4o~A)(A, Vi'4p') (0o ViA)(to~A) 64VA.')(4.'Vi*6)
+Z

CO) GOz 6)& CO~ oui —ohio
—zo & (coi+oir) (M&+oir)

+; . 'f, (P„VA,)(y„v,*-y,) (y„v,*y,)(y„v,y—,)) +P,P;;~g„v,y,)(y„v,*y,)

—Q o, Vo*A) (go, Vgo) }+Q.(ooi+oi.) '(oio+oi,) '(4o, Vv). ) ($. ,V,*go)7(go,&go)

X[~i 'oo, '{(Po,V„Oo)(fo,Vino) (4o, Vi'Po)(fo, VAo)—)

+Z ( + ) '( + .) '8'o UA'.+)(O'+ V 4')7 '+2 . . (46)
(d'or coo zo) (oig coo zo)
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The advantage of Kq. (46), compared with Kq. (38),
lies mainly in the fact that the inhomogeneous term is
a smoother function of cv„and co„not necessarily in the
supposed smallness of 3f,~&~&.

Only if both the initial and final mesons form the
(ss, ss) resonant state with the nucleon is 3II,„&~& likely
to be significant. Supposing this to be the case, let us
examine the first two terms in curly brackets in Eq.
(46): we write these terms as

+ (2K)—l Ei(To(q, l)F(co„co,to&) (Po, V&*f„+)

+ (0 Vsl'o)I' (» )To(l P))

where To(q, l) is the second-order perturbation approxi-
mation to the (-'„-,') part of the scattering matrix, and
Ii(co„oo~,oi&) we may suppose to be a slowly varying
function of or, and ~„,at least when co~ is large. Making
use of the fact that Lsee Eq. (7)j,

P„(P„V,*P„+)(P„+,V„go) (~, ~,—i)e-—'.
= To(q P) (4», VA—'o),

we see that an approximate solution of Eq. (46) is
given by

M,~'"'=+(2K) ' P~(f», Vino)

X F(~„co„~i)(go, «*Sr+) (47)

We shall use the above approximation merely in an
illustrative way, not to obtain numerical values. Since

(Q, , VllPO) (4f'q') '3', sin8»(q—)To(q, l) exp(i8»), the
effect of the kernel in Eq. (46) is to amplify the inhomo-

geneous term by a factor of about 3. Therefore, it may
not be possible to neglect M,„'~' in comparison with
the rest of the rescattering correction; nevertheless, we
learn that the dependence on the energies co, and cv„of
the entire rescattering correction to 3f,~'~~ can prob-
ably be well represented by the factors ()l, , Vi)lo) and

(4o, «*)ly+)
It is clear that the exact form of the part of the

matrix element M,„' which we split OG explicitly in
Eq. (39) is arbitrary, and is to be chosen to suit our
convenience. For instance, if we modify S,„t~& (as given
in Eq. (40)) by introducing an arbitrary function f(l ),
nothing is affected so long as we put this factor f(P) in
the proper places in Eq. (42) as well. Now the passage
from Eq. (42) to Eq. (45), which depends on the
identities (44) and (45), is not greatly affected by such
a factor f(P), provided the factor does not differ from
unity for energies which lie in the resonance region, so
that if, for example, the effect of f(P) is to reduce the
contribution of energies toi)A. in the sum in Kq. (40),
the principal result will be the insertion of the same
cutoG function in the sums over l in the inhomogeneous
term of Eq. (46), assuming that h. is sufFiciently larger
than the resonance energy and the energies co„and co,.
We see from Eq. (40) that S,„&~' depends quadratically
upon the cutoG, but we realize that we are not required

to choose this cutoff to be that which was imposed at
the beginning in order to give the theory a physical
meaning. The cutoff can, instead, be chosen in such a
way as to facilitate solution of Eq. (46), for example,
by making the inhomogeneous term as small as possible.
In other words, the structure of the scattering equations,
in the 1-meson approximation, provides an automatic
cutoG which appears to be more powerful than that
which is associated with the size of the source, and
which tends to reduce the magnitude of the rescattering
eGect."

We can discuss the integral equation (37) for M»~&'ri

in the same way that we have discussed Eq. (38) for
3f,~'~&, using the same "wave function" &'„(l) t,o
separate out the part of M,„&~' that is a singular
function of &o„and a&, (although not all of the quasi-
classical term M,„'2) can be obtained from the wave
function). All of our conclusions about the qualitative
behavior of the rescattering correction to the radiation
from the nucleon magnetic moment hold equally well

for the entire rescattering correction. The quantity
3E,» which is the solution of our basic integral equation
with 3E,~&4' as the inhomogeneous term, does not
require any special consideration. This quantity, which
is important only in so far as the (s,$) part of cV,~ "& is
amplified by the kernel of the integral equation, and is
even then a relatively small term, will have the same
general dependence on the energies as the rest of the
rescattering correction.

The rescattering correction to the matrix element can
be split into magnetic dipole and electric quadrupole
terms; the magnetic dipole term appears to be several
times larger than the electric quadrupole term, just as
is the case in the photoproduction of P-wave mesons;
not only is the magnetic dipole part of the rescattering
correction obtained from M,~'~' larger than the
electric quadrupole part of the same term, but it
interferes constructively with the rescattering part of
the nucleon current term 3I,„'N', as can be understood
from the alignment of the angular momenta of the
positive meson and the proton in the (—,',—,') resonant
state. We may express the magnetic dipole rescattering
correction in the form

M», op'i =icos„.Y(127r) '(8Koo„M»)

Xq,p, T,....(q)L..~~. .K.jT.,„~(P), —(48)

where Y= Y(co„to„) is, according to the foregoing
discussion, a complex function which is more nearly
constant than are the other energy-dependent factors
in Eq. (48). This function, Y, can, at least in principle,
be calculated as accurately as one might desire, by
solving the integral Eq. (31) in a manner such as has
been outlined above. In this way one could express Y
in terms of quantities obtained from other experiments.

"For large co&, Ii(ca»,coy, cot) +(1/a&P) Q'p, JtPp); thus, the cutoff-
dependent parts of Eqs, (40} and (47} actually tend to cancel.
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We express the electric quadrupole rescattering cor-
rection in the form

Mq. ,e"~=iee3„,Z(12~) '(SK(o»(v, ) l

Xq,p;T,...„(q)/e.Kg+egK. ]Tgg „e(p), (49)

where Z=Z(&u„co»). Again, the theory is capable of
predicting Z. It is convenient to write the two unknown
functions in the form

M2=12me(S-Kcu, o)q) &{(K(o, K—q) 'q e(q, +K;)
X(p; —', cr-;o p)h„e"» —p e(K(v, K—.p)

—'

X (q;—-',o.qo~) (P, K—,)hqe'"),

M3=12~ep»(SKM~, ) l(2MK) '

X{io (KXe)(q p ——3o qo p)h„e"»
—(q p ——',a qo p)h, e"~i o(KXe)},

(52)

I'= ye", Z= se'&. (50)

An examination of the integral equation indicates that
the magnitude, y, is perhaps 3 (in our units), while
the phase q is probably positive but not large. It is
harder to say anything about Z, except that it is smaller
than I' in magnitude, and seems to depend more
strongly on the energy.

It does not seem reasonable at present to attempt to
calculate the rescattering effect precisely. It is perhaps
possible to evaluate this quantity experimentally, using
its angular and energy dependence to help separate it
from parts of the cross section which can be related
more directly to the model. At any event, it would be
premature to calculate this quantity before it has been
ascertained which energy region is of greatest experi-
mental interest.

V. CONCLUSIONS

It has been shown that the static source theory
predicts uniquely the matrix element for radiative
meson-nucleon scattering. Only experimentally deter-
mined quantities enter into the expression for the
matrix element; knowledge of the cutoG parameter,
of the "bare" nucleon magnetic moment, and of the
importance of nonlinear sects is unnecessary.

For a preliminary investigation, it will be convenient
to neglect all phase shifts but that in the resonant

(—;P)state. Then we may write

T'~, -e(p) = 12~(~'~ —3~'~J) (~-—e 3~«~e)h.e—'",'
(51)

h„=p ' sin8», 8»=833(p).

M,„=Mg+ My+ M3+M4,

M)=12~e(SKa)»(o,) '{(p e—3e oo. p)h„e"»

+(q e —-', q oo e)h,e'"),

Using the above. expression, we calculate for the matrix
element for radiative ~+—p scattering (remembering
that ie3 e~—+1 and h e 3r ~e—»+1 in this cas—e)—:

M4= —12~e(SK(o~,) &{h»hqye"»+'"+'&

X(q' —-'
q ')( K —~K')(p —-' p))

+h„h,e"»+'"+'rs(q, —-', o qo,)
X(e,K,+e,K;)(p; ', ~,~ —p)-}.

In the term M3, p, „represents the magnetic moment
of the proton, expressed in nuclear magnetons, and M
denotes the mass of the proton.

It must be emphasized that the matrix element we
have obtained is based on a model that is at best
incomplete. Recoil corrections and S-wave interactions
are minor effects, but should, nevertheless, be con-
sidered as well as other even more uncertain e6ects.
However, the above calculation should be useful as a
guide to experimental studies, and will enable one to
relate discrepancies between predicted and observed
spectra to deficiencies in the model. Certain refine-
ments, such as recoil corrections and S-wave corrections,
can be incorporated in an obvious way for E~ into
the "quasi-classical" term, but for K/0, uncertainties
arise; in particular, the recoil corrections to the inter-
action current term, M»0), cannot be obtained in such
a natural fashion. The interaction current term also
depends somewhat on the 8-wave interactions, and is
further modified if the p-ray wavelength is comparable
to the effective radius of the source. Therefore, the
greatest interest lies in experimental study of the
hardest p rays which are emitted in scattering, as they
can determine the importance of corrections to the
static model.

The calculation of bremsstrahlung cross sections,
based on the present work, but incorporating certain
corrections in a semiphenomenological way, will be
presented in a subsequent paper.
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