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Center-of-mass motion, generally not considered in the Brueckner theory, can cause divergences in the
case of a finite nucleus. A possible way of avoiding this difficulty is presented,

'N Brueckner's treatment of the many-body problem, '
~ - "model wave functions" and a "model Hamiltonian"
are defined. These are used to calculate the energies
and other properties of a real nucleus. The Hamiltonian
for a system of nucleons with two-body forces is

H= PT,+Ps;;,

where T; is the kinetic energy of the ith particle and
v;; is the two-body interaction. The model Hamiltonian
1s

H~=Q;T;+Q; V;, (2)

where V; is a single-particle potential defined in terms
of the two-body potential v;, by use of the t-matrix and
a self-consistency requirement. The exact details of the
de6nition of V; are irrelevant to this discussion. The
essential feature of the Brueckner method which is
considered here is the use of the model Hamiltonian (2)
as the unperturbed Hamiltonian in a perturbation
treatment to solve the problem defined by the Hamil-
tonian (1).

The real Hamiltonian (1) is translation-invariant,
and its energy spectrum is continuous because states
of center-of-mass motion with arbitrary momentum are
included. There is no reference to a 6xed origin in space
and the nuclear eigenfunctions have a uniform proba-
bility density t.hroughout all space. The model Hamil-
tonian (2) is not translation-invariant in the case of a
finite nucleus. The energy spectrum is discrete and the
model wave functions are concentrated within a finite
volume of space. As a result, center-of-mass motion is
not treated properly in the nuclear shell model, as has
been noted. ' ' Furthermore, any perturbation treat-
ment of the real problem starting from the model
Hamiltonian (2) does not converge. ' Thus, one should
expect to encounter convergence diKculties in treating
a finite nucleus by the Brueckner method. (This
problem does not exist, of course, in an infinite nucleus. )

These diKculties can be avoided by the use of an
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alternative Hamiltonian to the real Hamiltonian (1):

II'= Q T~+ P v,;+Mtos(P x,)'/2A, (3)

II'= Q T,+ Q v,;++ -', M~osx, s—Q Altos(x —x.)'/A

=Q T+Q -'M 'co+xQ I;s, (4)

where

st;;= v;,—Kos(x,—x;)'/A

can be considered as a modi6ed two-body interaction.
The Hamiltonian (4) with a harmonic oscillator shell-
model potential and modified two-body interaction is
still exactly equivalent to the original problem except
for center-of-mass eGects.

The modified Hamiltonian (4) can be treated by the
standard Brueckner methods by defining a modified

where M is the nucleon mass, co is a parameter which
can be set at a convenient value, x; is the coordinate
of the ith particle, and A is the number of particles.
The Hamiltonian (3) differs from the original Hamil-
tonian (1) only by the addition of a function of the
center-of-mass coordinate (P, x,). The internal motion
of (3) is therefore identical to that of (1) and all
quantities of physical interest in the original problem
can be calculated directly from the Hamiltonian (3).
The only difference is that the center of mass is bound
by a harmonic oscillator potential instead of being free.
Thus, instead of the continuous spectrum of states
describing free translation of the nucleus there will be a
discrete spectrum of states describing oscillation of the
whole nucleus in the 6ctitious potential binding the
center of mass to the origin of the coordinate system.
Since this center-of-mass oscillation is completely
decoupled from the other degrees of freedom of the
system, these "spurious states'" should cause no
diKculty. They need only be recognized and rejected.

Since the Hamiltonian (3) describes a system having
a discrete spectrum and having wave functions con-
centrated in a finite volume of space, it may oGer a
more suitable point of departure for the Brueckner
treatment, avoiding convergence difficulties while still
giving all desired results.

The added term in (3) can be conveniently split into
two parts
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model Hamiltonian:

H~' ——P; T;+Q; ,'M(—o'x,s+Q; U;, (6)

where the modi6ed single-particle potential U; is
related to the modified two-body interaction I;; in the
same manner as V; is related to e;; in the usual treat-
ment. The correspondence between Eqs. (1) and (2)
on the one hand and Eqs. (4) and (6) on the other can
be shown formally by writing

T = T;+,'M(v'x-, s. (7)

Equations (4) and (6) are then obtained from Eqs. (1)
and (2) simply by replacing T; by T, e;; by I;;, and
V; by U;. Since the usual manipulations of Srueckner
theory in a finite nucleus do not require explicitly that
T; be the kinetic energy operator, the same manipu-
lations can be done with T . Therefore all the formal
treatment of Brueckner theory can be applied to Eqs.
(4) and (6).

In conclusion, we can say that Eqs. (4) and (6)
present a modi6ed point of departure for Brueckner
theory, with the following diGerences from the usual
treatment:

1. There should be fewer convergence diKculties due
to center-of-mass motion.

2. A harmonic oscillator shell-model potential ap-
pears in the Hamiltonian from the beginning before any
approximations are made. It is only the deviation of
the shell-model potential from the harmonic oscillator
which appears in the perturbation treatment. This
seems to be reasonable, since the harmonic oscillator
potential has been used widely with good results in
practical shell-model calculations.

3. The modified interaction I;; is not a short-range
interaction because of the term (x;—x;)s. This may
cause difficulty if short-range approximations are
desirable in calculations.
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Photoprotons from a deuterated para%n target irradiated with betatron x-rays have been detected with
a NaI(TI) scintillator. The angle and energy of the protons have been measured, and the data has been
fitted to the angular distribution form f(S) = (A+B sin'8) (1+28cosg). The ratio A/B rises from a value
of 0.015~0.041 for the 9- to 12-Mev photon group to a value of 0.133~0.020 for the 20- to 23-Mev group.
A/8 increases in a complicated way suggesting several contributions to the isotropic component. The value
determined for P agrees with the calculation of v~jc.A Schiff thin-target spectrum is assumed for the incident
photons, and the cross section obtained is consistent with the Marshall and Guth calculations, although
the energy dependence of the data has slightly less slope than the calculated values.

I. INTRODUCTION

'HE theoretical calculations' of the photodisinte-
gration of the deuteron below photon energies of,

say, 25 Mev predict a predominantly sin'8 angular
distribution. The electric dipole, ED, transition from
the 'S~ part of the ground state to the 'Pg states
accounts for most of the disintegration process. The
electric quadrupole absorption causes a fore-aft asym-
metry modifying the distribution to sin'8(1+2P cos8).
In addition a small isotropic component is predicted,
the explanation of which has become one of the most
interesting aspects of the deuteron photodisintegration
problem at intermediate energies. The usual forms
assumed for the angular distribution are

f(8)=A+8 sin'8(1+2P cos8), (1)
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The recent experimental determinations of the angu-
lar distribution, that of Halpern and Weinstock' and
that of Allen, ' have shown the isotropic component in
the region of 20 Mev to be considerably larger than that
predicted by most of the theoretical work. Experi-
mentally the ratio A/8 is found to be about one-tenth
at this energy. A brief review of the attempts to explain
the observed isotropic component follows.

1. A small contribution comes from the magnetic
dipole, MD, transition '51~'So. Using the usual poten-
tials, Yukawa or Hulthen, this is estimated to contribute
0.01 or 0.02 to the ratio A/8 at these energies. ' '

2. The 'S—+'I'g transition in the presence of a tensor


