PHYSICAL REVIEW VOLUME 109, NUMBER 6 MARCH 15, 1958

First-Forbidden Transitions in Parity-Nonconserving Beta Decay*}

MasaTo MoriTAf AND REIKO SAITO MORn‘A§
Department of Physics, Columbia University, New York, New York

(Received September 17, 1957)

Our previous work on beta-gamma directional correlations is extended to phenomena of nonconservation
of parity in beta decay. The parameters, b.r/™, which express the beta-ray angular distributions, are given
for first-forbidden transitions of a general interaction, STPV 4, where we assume no interferences between
STP and VA. All of the possible interferences among the six nuclear matrix elements, Mt (8¢ -1), M (Bys),
M(Br), M(Ba), M(BoX1), and M (B;;#) for STP (and the corresponding matrix elements for VA) are taken
into account. By using these b7/, it is easy to express the correction factor of beta spectra, the beta-ray
angular distributions from oriented nuclei, and the angular correlations between beta rays and circularly
polarized gamma rays from unoriented nuclei in double and triple cascade transitions. The experimental
data on the beta decays of Sb'? and Au!®® are analyzed.

1. INTRODUCTION

AS a result of the discovery of nonconservation of parity in weak interactions," much experimental data*
on beta-ray angular distributions, polarizations of emitted beta particles, and angular correlations between
beta rays and circularly polarized gamma rays are being accumulated. In these experiments, most of the measured
beta decays are for allowed transitions, for which the theoretical formulas have been derived by many authors.®
A few of them are for first-forbidden transitions, for which there are no adequate formulas, except for the longi-
tudinal polarizations of the beta particles.®”

The aim of this paper is to generalize our previous work on beta-gamma directional correlations®2 to the
phenomena of first-forbidden transitions in beta decay with nonconservation of parity. In Sec. 2, we shall give
formulas for (a) the correction factor for the beta spectrum, (b) the beta-ray angular distributions from oriented
nuclei, and (c) the angular correlations between beta rays and circularly polarized gamma rays from unoriented
nuclei in double and triple cascade transitions, in the general cases of first-forbidden beta decay. We take a general
beta interaction, STPVA,® with the assumption of no interference between STP and VA. All the possible
interferences among the six matrix elements, I (Be 1), M (Bvs), W (Br), M (La), M (BoX1), and M (B,,f) for STP
(and the corresponding matrix elements for V'4) are considered. These interferences, especially between nuclear
matrix elements of different rank, have a very important role in our problems and they should not be dropped
without justification. In Sec. 3, angular correlation functions between beta rays and circularly polarized gamma
rays, for special decay schemes which are interesting in experiments, are given explicitly. In Sec. 4, some remarks
concerning applications are discussed. Two different approximations for the b.7,’s are obtained in Appendices 1
and 2. The experimental data on the first-forbidden beta decays of Sb'** and Au'® are discussed in Appendix 3.

2. FORMULAS

Since detailed treatments of beta-ray angular distributions from oriented nuclei,”** and of the angular corre-
lations between beta rays and circularly polarized gamma rays from unoriented nuclei in double”*#15 and in triple
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cascade transitions, have been already given, we write here the final results only. The calculations of this section
follow in a straightforward way from our previous work.*2 We use the following notation. The decay scheme is
7B) 71, 7(8)j1(v1) 2, or 7(8)71(v1) ja(v2) 5. The quantity m is the magnetic quantum number of j. W (abcd; ef)
and (f1jamims| jm) are the Racah and the Clebsch-Gordan coefficients, respectively. P,(cosf) is the Legendre
polynomial with integral number, #. The b1 are parameters which express the beta-ray angular distributions
and are given in this section. The definition of the b5, is given in Eqs. (3) and (4) in reference 11, where 2n
is replaced by #. L means the rank of the nuclear matrix element for beta decay, or the multipolarity, 2%, of the
gamma rays. The dependence on the circular polarization of the gamma ray is p*+¥+L+L"+n Here p is +1 (—1)
for left (right) circularly polarized gamma rays. § is equal to 0 (+1) for magnetic (electric) radiation.
(1) Correction factor for the beta spectrum.

Correction factor for the beta spectrum==5b¢® — (1/V3)01; Q4 (1/4/5)bs2®. M
(2) Beta-ray angular distribution from oriented nuclei.
W (0:8) =2 nz<rr fu(f) (=)0 (FLL; 0j1)brr™ Po(cosh), 2

with _
Fa()=22m (=) (1 jm—m|n0)an,

where the an, are the relative populations of the initial magnetic substates.
(3) Angular correlation between beta rays and circularly polarized gamma rays.

W(0,p1:8—v1) =2 [Lz:_‘,y (=)= W (j1/1LL' 5 17) (251+1)F]
S X[LZL (=)pertrp gttt aitn (4| L] 72) (Gall L4l 52 F (Lo’ 2 1) 1} Pa(cosh),  (3)
with ;
Fa(LL' jaju) =Fa(L'Ljags) = (=)o~ { (25s+1) (2L+1) QL'+ 1)} (LL'1—1{n0)W (fofuLL’ ; nja).
(4) Directional correlation between beta rays and gamma rays.
W (:8—+1)=terms involving P,(cosf) with even # in W (6,p1; B—v1). 4)

(5)- Angular correlation between beta rays and circularly polarized v, rays without observing v; rays in a
triple cascade transition.

W (0,p2:8—2) =Z{[L§L, (=) W (172 LL s n7) 251+ 1)*][; (A1l Lall 72 W (jinLage; 7172)
X Qe @A DL T ()it st tatistn G| L) ) G /| 9Pl a7 D Palcos). (3

(6) Directional correlation between beta rays and v, rays.
W (6:8—72) =terms involving P,(cosf) with even # in W (6,p2:8—"2). (6)

We use Eq. (1) of reference 1 as the beta interaction. The parameters, ..., have been given for allowed
transitions.!® For first-forbidden transitions, they are as follows:

STP

bod® = [ (Bo-1)|2(| Ca 2+ | €2’ |9 (1/9) K2 Lot 3K N o+ Mo [0 (Bve) (| Co |+ | C#'|) L
— (i (Ba-1)IN (Bys)} 2 Re(Cr*Cp+Cr'*Cp’) 3K Lo+No). (7)

001 = {e* (Bo- I (Br) }[2 Re(Cr*Cs'+Cr'*Cs)2[ (1/9) K2A1— 3K L1o+3KN11— Nyo—m1)
+2Im(Cr*Cs’ +Cr'*Cs)2(3KH 124 J12) 1— {#* (Bo - 1) (Be) }4 Re (Cr*Cr") (3KA1+N1y)
+ {0 (Bo - )M (BoX1) }4 Re (Cr*Cr')[(2/9) K2A1— 3K Lio— Nuot+2m, 4 {10 (Bys)IN (61)}
X[2 Re (CP*Cs'+Cp'*Cs) (3KA1+Nu—2L12)4+2 Im(Cp*Cs'+Cp'*Cs) (Jui+2H1s) ]
+{M* (Bys) M (Be) } 2 Re (Cp*Cr’+Cp*Cr) 2814 {I* (By5) M (Bo X 1) }
X[Z Re (CP*CT/+CP,*CT) (—%KA1+L12+ N11)+2 Im (CP*CTI+CP,*CT) (Ju—ng)]. (8)
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bu®@=—V3{|IMBr) [2(|Cs|*+[Cs' | GR2Lo+3KNo+2Li+Mo)+ [M(Be) (| Cr |*+ [ Cr' [*) Lo
+ [ M (BoXr) [2([Cr[*+ | Cr'|?) GK2Lo— 3K No+5 Lt Mo)+ {D* (Be)IN (BoX1) }
X2(|Cr|*+[Cr' |9 (—3K Lo+ No) — {iD* (B)M (Be) } 2 Re (Cs*Cr+Cs*Cr') (3K LotNo)
+ {1 (B)IM (Bo X 1)} 2 Re(Cs*Cr+Cs*Cr') (Li—Mo)}. (9)
bu(D =\/7{'— [Wz(ﬁl‘) |22 Re (Cs*CsI)Z(%Kle—F%KNn-f- N12+A2""M1) - I%(Ba) I22 Re (CT*CT')ZAl
+ l?.m(ﬁo'Xr) 122 Re (CT*CT,) (”—%KQAI—%KLH—I‘%KNH"}" N12—%A2-|-27m)+ {%*(ﬁa)w& (ﬂer) }
X4 Re(Cr*Cr’) (3KA;— Nu+1L1o)+ {4 Br)IMN (Be) } {2 Re (Cs*Cr'+Cs"*Cr) (2KA 1+ Lo+ Nuy)
+2Im(Cs*Cr'+Cs"*Cr) (— Ju4-Huo) } 4 {#* (Br)IN (Bo X 1) } [ 2 Re (Cs*Cr’'+Cs'*Crr)
X (—3K2A;— 3K Lyo+3N1ig—Ay—2my)+2 Im (Cs*Cr'+Cs'*Cr) K I —3KH p+3T1) 1), (10)
bu® = —6H{— [MBr) |*(|Cs|*+|Cs'|*) BK L+ Li+2N 1)+ [IM(BoX1) [*(| Cr [*+ [ Cr'[*) (= 3K L1z — 3 L1+ N1o)
+ D B)M (BeX1)}2(|Cr |2+ |Cr'|DF Lia+ {iD* (B)M (Be) } [2 Re (Cs*Cr+Cs*Cr') L1
—2Im(Cs*Cr+Cs*Cr")Hia ]+ {iI* (Br)IN (B X1) }[2 Re (Cs*Cr+Cs*Cr')3 (—KLia— L1+ N1s)
+2 Im(Cs*Cr+Cs'*Cr’) (§KH12—3T12) 1}, (11)
boe® =6 {iIN* (By5)IM (B:;#)} [2 Re (Cp*Cr+Cp'*Cr")3L15+2 Im(Cp*Cr+Cp'*Cy’)3H 15
+{DF Bo- DI (B:#)}2(1Cr|*+|Cr' |9 (KLiz+3N 1)} (12)
b1 = —%(5/3)H{{M*(Br)IM (B:;#) } {2 Re (Cs*Cr'+Cs"*Cr)[2K*A1— KL13—3N 12+ (6/5)A2 ]
42 Im(Cs*Cr'+Cs™*Cr) (KH 19+ 3J12) } — {#ZM* (B)M (B }4 Re(Cr*Cr')3Las
+ { ’Lm* (BUXI’)EIR (B,'jﬁ) } 4 Re (CT*CT’) (%K2A1+KL12—3N]2—' %Ag)} . (13)
b12® = —{{I* (B0 (B:#)}[2 Re(Cs*Cr+Cs"*Cr’) (KL12—3L1+3N 1)
+2 Im(Cs*Cr+Cs'*Cr') (KH12+3T 12) 1+ {iD* B)M (B:;#) } 2(| Cr |24 | Co' | %) 3Ls2
— { i (Be X)W (B:#)}2(| Cr|*+[Ca’|?) (KL1e—3L1—3N12)}.  (14)

b12® = (9/4/10) { {D*(Br)IN (B.;#) } 2 Re(Cs*Cr'+Cs"*Cr) 2A5— {iM* (Bo X 1)IN (B;,f) }4 Re(Cr*Cr')As). (15)
b2 @ = [IM(B:#) [2(|Cr[*+ | Cr' [HL(1/12) K2 Lot+£ L1 IV/5. (16)
boe® = M (B;,f) |22 Re (Cr*Cr')[ (1/12) KA1+ (9/20) A5 ]/10. 17
b2®=— [IN(B.;) [2(|Cr [+ | Cr' [HF(F) L. (18)
b2y® = — [ (B:;%) |22 Re(Cr*Cr’) (9/+/10)As. (19)
bos®=0. (20)

The numerical factor, 2 or 4, for Re(C;*C;") or Re(C*C/) is left in the above equations, for convenience in
further calculation.

| 2

The b1.-’s for VA are easily deduced from those for STP. In the expressions for the by.,("’s, the K™ term
for P+ (BX)M (BX;) should be replaced by (—)™*+ K™ for Pe*(X,)IN (X;). Besides this, a few terms consisting of
the imaginary part of the product of different coupling constants appear in V4, while the corresponding terms
in STP vanish, and vice versa. The results are:

boo®@ = [M(e-1) |2(|Ca |+ [C4'[H[(A/9) K Lo—3KNo+Mo ]+ M (vs) [*(| Ca|*+ | C4’[2) Lo
+ D (0 )M (v)}2(|Ca*+|Ca'|) GKLo—No).  (21)
bor® = (¥ (0 DI (1)} {2 Re (Ca*Cy'+Cu"*C)2[ — (1/9) K2Ay— K Lig+ LK Ny Nog+- 4]
+2 Im(CA*Cy'+CA™*Cy)2(3KH 12— J19) } — {iD* (o 1) () }[2 Re (Ca*Cyv'+Ca"*Cy) (3KA1—Nuy)
+2 Im(C4*Cv'+Ca"™*Cv) T ]+ i (0 1) (o X 1) }4 Re(C4*Ca")[— (2/9)K?A,— 1K L1p+ Nig—2m4 ]
- {igﬁ*(%)im (l') } [2 Re (CA*CV'+CA'*CV) (_%KAI‘JF N11—2L12)+2 Im (CA*CV,+CAI*CV) (J11+ 2H12):|
—{ D (ve) M (@)} 2 Re (CA*Cv'+C4"*Cv) 20— {D* (v6) M (0 X 1) }4 Re (C4*Ca’) (3KA 1+ Lo+ Nip).  (22)
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b1 @ = —V3{ M (@) [*(|Cv [+ | Cv'|?) GK2Lo— 3K No+2L1+Mo)+ M () [*(| Cy [+ | Cv'[%) Lo
+[MoX0) [2(|Ca |2+ |C4'[?) GK*Lo+3KNo+3Li+Mo)+ {M* ()M (0 X 1) }
X2 Re(Cy*Ca+Cy"™*Cu") GKLo+No)+ {#* ()M () } 2(| Cv >+ | Cv' |2) GK Lo—No)
(9 (DM (@ X1))2 Re (Cy*Cat-Cy*Cay (Lim M)}, (23)

by =VZ{— [ (r) |22 Re(Cy*Cv")2 (3K Lo+ 3K N1 — Nig— Ag+m1) + | (@) |22 Re (Cy*Cy')2A,
+ M (eXr) |22 Re(C4*Ca’) (§K2A1—5KL1o+3K N1 — Nio+540—2m) + {D* ()M (0 X 1) }
X[2 Re(Cy*Ca'4+Cv"*Ca) GKA1+Nu—3L12)+2 Im (Cy*Ca’+Cy"*Ca) (Juu+3H1) ]
— {1 ()M (@) }4 Re(Cv*Cv') (—2K A1+ Lo+ N1+ {0 ()M (0 X 1) {[2 Re (Cv*Ca'+Cyv'*C )
X (AK2A;—1KL1s— 3N+ Ao+ 2m1) +2 Im(Cy*Cu/+Cy'*Ca) GKIn—3KH—3T10) ). (24)

bu® = —6H{— D0 (| Cr [+ €’ |9 (— 3K Lusrt Lk 2N1)+ [0 X (| Cat [+ | O |) GK L3 Lt Vi)
(D (M (0X D)} [2 Re(Cr*Cat-Cy™*C )3 Lipt-2 Im (Cy*Ca-t-Cy*C')3H ]
F{iM* ()N () } 2(|Cv |24+ | Cv' |2) Lo+ {#F (0)IMN (e X 1) } [2 Re(Cy*Ca+-Cy'*Ca’)3 (KL1a— L1+ N12)
—2Im(Cy*Cat+Cy™*Ca") (§KH12+3T12)]}.  (25)

box® = (1/4/6) { {iI* (ys)D(Bij)} 2(| Ca|*+|Cu'[%)3Lsz
+{ (o DI (B:)}2(|Cal?+|C' |3 (—KL1s+3N 1)}, (26)
b12® = —3(5/3){ {M* (M (B:7) }[2 Re (Cv*Cu'+Cv'"*Ca) (—3K?A1— K L15+3N1— (6/5)A2)
+2 Im (Cv*CA,-l-CV,*CA) (KH12"‘3J12):H' {1%* (C()g)?. (B”) } [2 Re (CV*CA,+CV,*CA)3L12
-2 Im(CV*CA'+CV’*CA)3H12:|+ { m* ((rXr)im (B{j) }4 Re (CA*CA,) (—%K2A1+KL12+3N12+%A2)} . (27)
b12®@ = —3{{I* ()M (Bij) }[2 Re(Cv*Ca+-Cv'*CA") (— KL12—3L1+3N12)
+2 Im (C; *CA-I“CV/*CA,) ( KH12+3]12)]+ { lED}*(Ot)ED'(‘_ (B”) } [2 Re (CV*CA+CV,*CAI)3L12
42 Im(Cy*Ca+Cv'*Ca")3H 1o ]+ {i* (e X 1) (Bij) }2(|Ca |2+ | Ca’ |2) (K Lis+3L143N 1)} (28)

b12® = (9/4/10){ — {D¥* (D (B:;) } 2 Re(Cy*Ca'+Cy"*C ) 2A0+ {iD* (o X 1) (B:;) 14 Re(C4*Ca') Az} (29)
bas® = [M(By)) |2(|Ca |4 | C' DL (1/12) K Lo+-3LiIN/5. (30)
bos® = — | (Bs) |22 Re (Ca*C4)[ (1/12) K?As+ (9/20)AsTh/10. (31)
2®=— lm(Bu)! (]CA 2+ ICA,|2)4 3)iL.. - (32)
bss® = M (B:s) |2 Re(C4*C4’) (9/4/10)As. (33)
by =0, (34)

STPVA with Assumption of No Interference between STP and VA

Now, let us assume no interference between STP and VA. This is satisfied, for example, by the modified two-
component neutrino theory, namely, C;=—C/ with 1=S§, T, P, and C;=C; with 7=V, A6 The b1 for this
STPV 4 interaction are:

brrW=(brr for STP)+ (br™ for VA). (35)

In Egs. (7)-(34), the M (X;) are reduced nuclear matrix elements. Their definition is equal to that of Konopinski
and Uhlenbeck!” except for a constant common factor, e.g., [ (27:+1)/(27+1) M*(B)IN(Br) = (S Ba)*- (SBr).
In the calculation of the b1./(”, we have assumed that the strong interactions are invariant under time reversal.
Consequently, the products of two matrix elements in curly brackets, namely, {Jt* (X0 (X;)} or {#0¢* (Y)W (Y,)}

16 This choice of coupling constants was once introduced by the present authors (unpublished paper) to yield the Fierz terms equal
to zero. One can explain the lack of the Fierz terms in several ways: (A) Csor Cy=0and Cror C A 0, and similar relations for coupling
constants with primes; (B) Cs=2Cs’, Cyv=FCy' and Cr=FCyp’', Ca==xC4’; (C) Cs==xCs', Cy=FCy’ and Cr==xCr’, Ca=FC4’;
(D) Cy/Cs=ig" and Ca/Cr=ig with real g and ¢’, and similar relations for coupling constants with primes: or different choices of
(A), (B), (C), and (D) for Fermi and Gamow-Teller interactions. Here the assignment Cr=Cz’ (or Ca=—C4') is excluded by some
data in allowed transitions with AJ==1. The same choice of the relative sign of the coupling constants has been also considered by
T. D. Lee and C. S. Wu [Proceedings of the Israel Conference, September, 1957 (unpublished)], to explain the cross section of neutrino
capture by CI37 [R. Davis, Jr. (to be published)] and other data on beta decay.

17 E. J. Konopinski and G. E. Uhlenbeck, Phys. Rev. 60, 308 (1941).
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are always real numbers, and may be positive or negative. If the strong interactions are not invariant under
time reversal, the expressions for the &7 1,(’s should be slightly modified, and a few terms should be added, which
do not appear in our case. W, p, and K are the energy and momentum of the electron and the energy of the
neutrino, respectively. The other symbols are combinations of electron wave functions and are given below!®:

Lo= 2p*F)[g-*+ f*]-1. (36)
L= (2p*F) o[ g2+ [ 1—1/9. (37
No= 2p°F) ' f1g-1— figaJ>— (p*/3W) — V. (38)
Mo= Q2pF) o[ -+’ T~ (p*/9)+ 2p*/3W) V+ V2 39
L= (2p*F) 9 [g_1f2 cos(6_1—82) — f1g—2 cos (81 —06_2) J=>—p*/3W. (40)
Nip= (2p*F)7"07* f-1f2 cos(8_1—8) +gig—2 cos (81 —0-2) ] (p*/9)+ ($*/3W) V. (41)
Lio= (2p°F)"p'[ f1f2 sin (81— 82) +g-18—2 sin (6_1—6_5) ]—3p. (42)
Nu= QpF) ' [f-1fi—g1g1] sin(-1—8)——3p— (p/W)V. ' (43)
Nio= 2p*F) o[ f-1g-2 sin(6-1—5_2) —g1 /2 sin (81 —82) J>— (p*/9W) —3pV.. (44)
A= (2p*F)"Yg_s f1 sin(6_1—81)—p/2W. (45)
No= (2pPF) 5% fs sin(5_y—8:)—*/1817. 46)
my= (2p°F) o7 f_1g1 sin (0_1—8:)—— (p*/18W) —5pV — (p/2W) V. (47)
Hyp= 2p*F) [ g_1f2 sin(6_1—83) — fig—2 sin(8;—08_g) J=>—%paZ. (48)
J12= Q2p*F) 7 p [ f1 o sin(6-1—8) +g1g-2 sin (6, —6-2) ][ (#*/12W) 43 pV JaZ. (49)
Hiz= (2p°F) 79[ f1f2 c0s (81 —82) +g-18—2 cos (b1 —d_2) J>—[ (p*/4W)+ (1/3W) JeZ. (50)
Ju= 2pF) 7 p7 [ f-1fitg-181] cos (31— 81)—>— (1/3W)eaZ. (51)

Jia= QPF) 5 foags cos(b1—b_2) —gufa cos(br—3) JoL (p/12)+ (p/AW)V+(1/3W)VIaZ.  (52)

Here V=aZ,2p. The arrow in each equation indicates the approximation (eZ)*<1. When we need the correction
to the b.z'™’s due to the finite de Broglie wavelength, we can obtain more accurate forms of b.r‘™ from
Eas. (7)-(34), together with higher order expansions of the functions in Egs. (36)-(52). To include the finite
nuclear size correction, the expressions for the brz/(” should be modified as for the beta-ray spectrum. See
for example Matumoto and Yamada.® If one assumes invariance of beta interactions under time reversal,
the brr.(vem are reduced to those for directional correlations given by Morita ef al.510

In this section, the b;7.( are given for an electron decay. In order to obtain the corresponding b1 for a
positron decay, the following substitution should be performed: Z——Z, C;/——C*, C/—C/* with =5, 4, P;
and C,—C,*, C/——C/* with j=V, T.

3. EXPLICIT FORMS OF BETA-GAMMA ANGULAR CORRELATIONS

In some special decay schemes, Eqs. (2)—(6) are greatly simplified. For example, in the cases of j(8: allowed) 7,
(y: 2% pole) 1= L, the angular correlation between the beta rays and the circularly polarized gamma rays is

TaBLE L. u(4,71,72) and v (7,71, 72).

Decay scheme L . L.
7B i1 () sz w(4,41,52) v(4,71,52)

i®i—=1(mj—1—-L 1 .0
JB)Ii(v)i—L LGH+D/5R
J(Bi+1(y)j+1-L —(J+2)/(J+1) 0
iBi— 1(7)1—1+L (=7+1)/7 .0
7(B) I (V) i+ 1/7+1 —Li/G+D T
J(ﬂ)]+1(7)J+I+L 1 0

18 Equations (36)—(47) were defined to calculate electron-neutrino angular correlations. See M. Morita, Phys. Rev. 90, 1005 (1953);
Progr. Theoret. Phys. (Japan) 9, 345 (1953).

19 Z. Matumoto and M. Yamada. Progr. Theoret. Phys. (Japan) (to be published). A. D. Dolginov and I. N. Topigin [Nuclear
Phys. 2, 147 (1956)] considered a similar effect for angular correlations with the old theory of beta decay.
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expressed explicitly by
W (0,p1:8—) =144 (v/c) cosh, (53)

where the upper (lower) sign refers to the right (left) circularly polarized gamma rays. The asymmetry, 4, is:

1 aZ
=a_—1-[ :i:u(j,jl,jz)[Re(CT*CTI—CA*CA/)q:'—- Im(CT*CA’+CT,*CA):|MGT2
» /

+v(4,71,72) [Re (Cr*Cs’+Cr'™*Cs—C4*Cy' — C4'*Cy)

oZ

F—1Im (CT*CVI-I“CT’*CV— CA*CS,— CAI*CS)]MF : MGT (54)
b4

g1+ /w7
wheré )
E=Me(|Cs|®+|Cv |2+ |Cs |24 |CV | +Mar?(|Cr |2+ | Ca |2+ | Cr |24 | C4' |3,
gb=+2y Re[M#*(Cs*Cy+Cs*Cy")+Mar* (Cr*Ca+Cr'*C4’)],
v=[1—(a2)*]%

In 4, and £b, the upper (lower) sign refers to the electron (positron) decay. u(4,71,72) and »(4,41,72) depend on
the spin of the parent nucleus, j, and are given in Table I for relevant decay schemes. My and Mgr are taken to
be real numbers. Therefore their product, M- Mgr, may be positive or negative. Similar formulas for beta-ray
angular distributions have been given by many authors [see, e.g., Eq. (1) of Ambler ef al.,® or reference 4.
No restriction on the coupling constants is used in Eq. (54). :

In the cases of first-forbidden transitions, the angular correlations between the beta rays and the circularly
polarized gamma rays are more complicated. We give two examples, which are frequently encountered in experi-
ments.

(1) 22(B)2*(v)0*.

W(B,p; : ﬁ—’}’) = (bo()(o> - 3_%1)11(0) +5_%b22(b)) - [6—%b01(l’+% (2—%)b11(1) —“% (7/30) %blz(l) —% (10)_%b22(1)]1§1p1 (COS@)
—[3(67%)b1u® 4 (14)b0s®+ 3 (14)=35,5® — 3 (14)~ 155, TPy (cosh)
+[2(35)"%b12® 4 (4/7) (2/5) 2@ Tp1Ps (cosd).  (55)

Here p1=-+1(—1) for left (right) circular polarization. From Eq. (55), the directional correlation is obtained
by dropping the P;(cosf) and Ps(cosd) terms. Equation (55) is applicable to Cl382t K%22 As76 28 R86 24 Shi22 25
and I'*622 for which the directional correlations are anisotropic, and to Au'%8,%¢ for which the directional correlation
is isotropic but the polarization correlation is asymmetric.

@) 3(8)2* (0.

W(0,p1:8—7) = (—3711 @ +520229) +[3 (27 b1y O+ (15) 3012 Jp1.P1(cosh)
+[F (6701 @ 301224 (2/7) 122D TPy (cosh) — [F(2)1512® 44 (5) 10229 ]p1P3(cosb).  (56)

Here the coefficient of b,® is canceled accidentally. Equation (56) is applicable to Sb?4, for which the directional
correlation is anisotropic*?7:* and the polarization correlation is asymmetric.? In Eqs. (55) and (56), we use
the b12.(’s of Eqgs. (7)~(34) or Egs. (A1)-(A28), or Fgs. (A35)-(A48) if those approximations are valid. Further-
more, in the case, where the beta interaction is STP withC;=—C,’ and real coupling constants, Eqgs. (55) and
(56) have the form of Eq. (53):

2 Ambler, Hayward, Hoppes, Hudson, and Wu, Phys. Rev. 106, 1361 (1957).

2 P, Macq, Bull. classe sci. Acad. roy. Belg. 5¢ Série 40, 802 (1954) ; 41, 467 (1955) ; Nuclear Phys. 2, 160 (1956), and private com-
munication to M. Morita (1956).

2 D. T. Stevenson and M. Deutsch, Phys. Rev. 84, 1071 (1951).

2 H. Rose, Phil. Mag. 44, 739 (1953).

2 D. T. Stevenson and M. Deutsch, Phys. Rev. 83, 1202 (1951).

25 J. Shaknov, Phys. Rev. 82, 333 (1951).

26 F. Boehm and A. H. Wapstra, Phys. Rev. 106, 1364 (1957), and to be published.

27 E. K. Darby and W. Opechowski, Phys. Rev. 83, 676 (1951); D. T. Stevenson and M. Deutsch, Phys. Rev. 83, 1202 (1951).

28 M. Morita and M. Yamada, Progr. Theoret. Phys. (Japan) 8, 449 (1952); 10, 111 and 641 (1953).

» H. Appel and H. Schopper, Z. Physik 149, 103 (1957).
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(1) 27(B)2*+(v)0*.
—2(6) XY +1V2— 1 (3)W Y +[(1/48) K2+ (11/112) p]— (1/7) 42 cos®0

- , (87)
2 2 1 —3( 52 3( 2 2 2
X241 +5(21) 7 (p/ W)X — 1 (14)3(p /W)Y+[(1/12)K +/(%{672)181;|}) ST B2 W)W cosd
where X=¢/¢ and Y'=9/¢.
(2) 3=(8)2*(v)0H.
— VIV — (3/56)p+ (5/56) % cosih )

(/19 (/WY +LA/12)K+(2/20)p ][ (3/14) Y +(1/28)W (/W) cos’t

Equations (57) and (58) are also valid for VA with C;=C//, and in the special case of STPVA when C;=—C/
for =S, T', P and C;=C/ for j=V, A together with ==\, n=u, and { ==\, and the assumption of time-
reversal invariance.

4. CONCLUDING REMARKS

In the beta-ray angular distribution, Eq. (2), the f,(j) with odd # vanish except for polarized nuclei. Conse-
quently, W (6:8) is a linear combination of even powers of cosf in aligned nuclei. In this case, the b5z-¢v°™ given
in references 8-10 are determined up to the second forbidden transitions. These authors took into account all
the interferences among .S, T, P, V, and A4, but assumed invariance under time reversal for beta decay. For polar-
ized nuclei, W (0:8) is, of course, a linear combination of odd and even powers of cosf.

In the case of special decay schemes such as j(8)2L(v1)L(v2)0 with pure electric and/or magnetic 2*-pole
gamma rays [for example, 7(8)4(y1)2(y2)0 with pure quadrupole gamma rays ], the angular correlation between
the beta rays and the circularly polarized v; rays is equal to that between the beta rays and the circularly polarized
v2 rays. This implies that, for example, we need not discriminate experimentally between the two gamma rays
with energies of 0.89 Mev and 1.12 Mev following the beta decay of Sc® to the 2.01-Mev state of Ti*® (assuming
a low intensity of the beta group of Sc*® to the 1.12-Mev state of Ti*). This equality also holds in the case
where the circular polarization of the gamma rays is not observed, and in the case of gamma-ray angular
distributions from oriented nuclei in similar decay schemes.

The approximation for the b, in Appendix 2 is at least valid for the nuclei Rb%¢, Sb?2) T'%¢ and Au'®s. In
these nuclei, the beta-ray spectra have an allowed shape which may support the assumption of aZ/2p>>W,.
(Actually, aZ/2pW o ~6 for these nuclei.) One of the reasons why we do not neglect the )t (B;,#) term in the b,z
is that a small mixture of I (B;;#) greatly affects the beta-ray angular distributions and beta-gamma angular
correlations through its cross terms with the other matrix elements. Furthermore, if we assume that the j—j
coupling shell model or A. Bohr’s model of the nucleus is strictly valid, the nuclear matrix elements other than
I (B;,#) cancel. The arguments in this paragraph were once justified by us in the theoretical analysis of beta-gamma
directional correlations for K*2, As”, Rb%¢ Sb?2) and I'?6.%° The result was that the approximation for the b7,/
in Appendix 2 is good for Rb®6, Sb'?2 I'%6 and rather poor for K and As’®.

Upon using the &2/, applications to many phenomena involving double or triple cascade transitions in oriented
nuclei are easy.

An analysis of the experimental data on Au'#82® and Sb**%® is given in Appendlx 3.
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APPENDIX 1. bz IN THE APPROXIMATION (aZ)2<1
Using Egs. (36)—(52), the b.,™ in Egs. (7)-(34) become the following:
STP
b0 =M (Bo-1) [*(|Cz|*+ [C' [D{(1/QLK>—2K (p*/ W)+ p*]+3[— K+ (p*/W) IV +V?}
+ (M (Bvs) |*(|Cp [+ |CH [+ {E* (Bo- )TN (Bys)}2 Re(Cr*Cr+Cr*CP) AL —K+ (/W) 1+V}. (A1)
‘“’—I\/Latu_n—l_oto, Morita, and Yamada, Bull. Kobayasi Inst. Phys. Research (in Japanese) 5, 210 (1955). Their calculation assumed

the ST'P combination with real coupling constants. In this approximation, their result is also the same for V4 or the special case of
STPVA, as is written under Eq. (58).
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bor® = {It* (B - )N (Br) } {2 Re(Cr*Cs'+Cr"™*Cs) (p/W){ (1/9) (K2—4KW+3p*) +3(— K+ 2W)V+V?}
+2 Im(Cr*Cs'+Cr'*Cs) (aZ/W)[(1/18) (= 3p*K —4K+3p*W)+5 (3p*+4) V]}
— (i (Bo- 1) M (Ba) }4 Re(Cr*Cr’) (p/W)[5(K—W)—V]
+ {{t* (Bo - 1)MN (8o X1) }4 Re(Cr*Cr’) (p/W)L(1/9) K (K—W) —3WV —V?]
+ (D (Bys)IN (Br) } {2 Re(Cr*Cs'+Cp*Cs) (p/W)LGK—W)~V]
—2Im(Cp*Cs'+Cp*Cys) (aZ/W) (14397} +{I* (Bvs)M (Be) } 2 Re(Cr*Cr'+Cr™*Cr) (/W)
— {*(Bys) M (Bo X1)}[2 Re(Cr*Cr'+Cr™*Cr) (p/W) GK+V)
—2Im(Cp*Cr’ +Cr'*Cr) (aZ/W) (p*/4)].

6@ =—V3{|IMMBr) [2(|Cs|*+|Cs'[){ (1/9[3K*—2K (p*/W)+3p*]+3[— K+ (p*/ W)V +V?}
+[IMB) 2| Cr >+ [ Co' )+ DM (BoX1) |2(|Cr |24 | Cr' |H{ (1/18) [3K>+4K (p*/ W) +3p*]
+3[K+ ¥/ W)V + V2 — (IM* ()M (Be X 1) }2(| Cr |2+ | Co' [ (3[K+ (p2/ W) ]+ V}
— (i ()M (Be)} 2 Re(Cs*Cr+Cs™*Cr') (3K — (p*/W)]-V}
— {#iM* (Br) M (BoX1)}2 Re(Cs*Cr+Cs*Cr)[(2p%/3W)V4-VZ]}.

bu® =V2{—[IM(Br) |22 Re(Cs*Cs") (p/ W) (—3KV+V?) — [M(Be) |22 Re(Cr*Cr) (p/W)
— [ (BoXr) |22 Re(C*Cr’) (p/W)[ (1/12) (K*+-4KW 342+ CK-+W) VA7)
+{D* (Be)I (BoX1)}4 Re(Cr*Cr’) (p/W)[§ 2K+3W)+V]
+{#D* (B (Ba) }[2 Re(Cs*Cr'+Cs™*Cr) (p/ W) GK—V) =2 Im(Cs*Co'+Cs"*Cr) (aZ/W) (p/4) ]
+ {#D* (Br)M (BeX1)} {2 Re(Cs*Cr'+Cs™*Cr) (p/W)[— 5 (K*+KW)+3WV+V]
+2 Im(Cs*Cr'+Cs™*Cr) (aZ/W)[(1/24) (Kp*—4K+3p*W)+3 G+ V 1}
bu®=—~/6{— [IMBr) [2(|Cs|*+|Cs'|») (p*/W)[(1/9) (—2K+3W)+3V]
+ [ MM BoX 1) [2(|Cr |2+ | Cr' %) (p/ W)L (1/36) (AK+3W)+3V]— (M (Be) I (BoX1) }
X2(|Cr |+ |Cr' ) (p*/6W) + {#0* (B)IMN (Be) } [ — 2 Re(Cs*Cr+Cs™*Co') ($°/3W)
+2 Im(Cs*Cr4+-Cs™*Cr') (p/A)aZ -+ {#* (BN (BoX 1)} [2 Re(Cs*Cr+Cs*Cr') (3/6W) (K+V)
—2Im(Cs*Cr+Cs™*Cr')aZ (p/24) {[K+3(p*/W)J+9V} }.
box® = (1/4/6){ — {iIt* (Bys)M(B. )} [2 Re(Cr*Cr+Cp™*Cr’) (p*/W)+2 Im (Cr*Cr+Cp*Cr)pal ]
+{I* Bo- M (B} 2(|Cr >+ Co'|%) (#*/ W) G (—K+W)+V ]}
b1a® = —3(5/3)H{{D*(Br)IM (B:)} {2 Re(Cs*Cr'+Cs™*Cr) (p/W)[(1/15) SK*—SKW+6p) + WV ]
+2 Im(Cs*Cr'+Cs™*Cr) (aZ/W)[(1/12) (= 3Kp*—4K+3p*W)+ (3p*+ 1)V ]}
— {1 (Be)IN (B:;%)}4 Re(Cr*Cr)p o
+ {0 (B XM (B:#) }4 Re(Cr*Cr’) (p/W)[ (1/30) SK*+10KW+9p)+WV ]}
bu® = — (IM*(BOIM(B:)}{2 Re(Cs*Cr+Cs*Cr') (¢°/2W) (—3K+V)+2 Im(Cs*Cr+C5*Cr')aZ ($/8)
X[{—K+(*/W)}+3V I} + (i Be)D(B:#)) 2(| Cr 2+ [Cr'[?) (p°/2W)
— (i (B X D) (B:)} 2(| Cr |2+ | Cr'|?) (p*/2W)[§ (2K +3W)+ V],
512® = (1//10) {{I* (B)M (B %)} 2 Re(Cs*Cr'+Cs*Cr) (p*/W)
— {10 (Bo X )M (B:,#) 14 Re(Cr*Cr’) (#°/2W)}.
b ®@=[M(B:#) |*(|Cr[*+ | Cr' |*) (K*+ 1) (v/5)/12.
bas® = |M(B:#) |22 Re(Cr*Cr’) (p/W)[ (1/24) K>+ (1/40)p* W/ 10.
baa® = — [IM(B:,7) [*(|Cr >+ Cr' %) (1/12) (3)
b2e® = — [IN(B:;#) |22 Re(Cr*Cr’) (1/24/10) (p*/ W).
Bar® =0,
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(A2)

(A3)

(A4)

(A5)

(A6)

(AT)

(A8)

(A9)
(A10)
(A11)
(A12)
(A13)
(A14)
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v4

boo® =D (o~ 1) [2(| Ca |+ [C4’[H{ 1/ K>+ 2K (p*/ W)+ p*1+3[K+ (p*/W) IV + V)
+ M) [2(1Cal 2+ [CA D)+ (i (@ )M (v6)} 2(|Ca >+ | C4 D GLE+ /W) ]+ V). (ALS)
bor® = — {M*(e- )M (1) } {2 Re(C4*Cy'+C4"*Cv) (p/W)[ (1/9) (K2H-4KW+34?)+2(K+2W)V+ V7]
+2 Im(Ca*Cv'+Ca™*Cv) (Z/W){ (1/18) 3P K+-4K+3p*W)+5 Bp*+4) V) } — {i* (e )M ()}
X{2 Re(C4*Cy'+C4"*Cy) (p/W)[A(K+W)+V]—2 Im(C4*Cy'+C4'*Cv) (aZ/3W)}
+{@* (o )M (e X1)}4 Re(C4*C') (p/W)[— 1/ K (K+W)+3WV V]
+ (@D (ve) I (1) }{2 Re(C4*Cv'+C4a"*Cv) (p/ W)L GK+W)+V]
+2 Im(Ca*Cv'+Ca"*Cv) (aZ/W) (1457 } — {I* (v5) M () } 2 Re(C4*Cv'+Ca"*Cv) (p/W)
—{D* (vs)IM (e X1)}4 Re(C4*C4') (p/W) GK—V). (A16)

b= —V3{[M (@) [*(|Cv |+ [CV'[){ (1/N[3K>+2K (p*/ W)+ 3p*1+3[ K+ (p*/ W) IV +V?}
+ M) [P(ICv [P+ [CV [+ [M(eXn) [*(| Ca [*+[Ca’ ) { (1/18) 3R> — 4K (/W) 3%
H3L=K+ %/ W) IV+ 1V} = (D ()M(0X1)} 2 Re(Cv*Ca+Cy*Co) 3 — K+ (0*/W) 14V}
+{DF @D ()} 2(ICv [+ [CV'[) (3LKH+ (p*/ W) ]+ V)
— @M (e X1)}2 Re(Cv*Ca+Cy*CA[2p2/3W)V+V2]}. (A1)

bu®=V2{|M(x) 2 Re(Cv*Cv") (p/W) GKV+V+ M (e) |22 Re(Cv*Cv") (p/W)
+ [ (X8 |22 Re(Ca*Ca') (p/ W)L (1/12) (K2— 4K W+34)+ (— 3K+ W) V+V?]
— D (@M (X 1)} {2 Re(Cv*Cu'+Cv"*Ca) (p/W)[§ (—2K+3W)+V]
+2 Im(Cv*Ca'+Cv"*Ca) (@Z/2W) G2+ 1) } + (i ()M () } 4 Re(Cv*Cv') (/W) GK+V)
+ {1 @D (e X1) } {2 Re(Cr*Ca'+Cy'*C) (p/W)[2 (K2— KW) =2 WV — V7]
+2 Tm (Cr*C.a'+Cy™*C.1) (aZ/W)[ (1/24) (K p*— 4K — 32 W) — 1 B3>+ V]}).  (A18)

bu®=—64— M) [2(|Cv[>+|Cv'|3) (p*/ W)L (1/9) QK+3W)+3V ]+ I (e X1) [2(|Ca |2+ [C4'|H (p*/W)
X[(1/36) (—4K+3W)+3V]— {D* ()M (0 X1) }[2 Re(Cv*Ca+Cv*C') ($7/6W)
+2 Im(Cy*Ca+Cvy"™*C4') (p/8)aZ]— {i* @M ()} 2(|Cv [+ [Cv' |9) (p*/3W)
+ {9 ()M (e X1) } {2 Re(Cy*Ca+Cy'*Ca”) (p2/6W) (—K+V)
—2 Im(Cy*CatCy'*Ca)aZ (p/28)[{ —K+3 (/W) +9V1}}. (A19)
boe® =674 — {#* (vs) MM (Bij)} 2(|C4 |2+ | C4' %) (p*/ W)
+ D (o IM(Bip }2(|Ca >+ CA' D) (/W) F(EAW)+VI}.  (A20)

b1o® = —5(5/3){ — {(M* MM (B:)} {2 Re(Cy*Cu'+Cv"*C) (p/W)L(1/15) SK*+SKW+6p) +WV ]
+2 Im(Cy*Ca'+Cv"™*Ca) (Z/W)[(1/12) K p*+4K+3p*W)+ (3p*+1) V 1}
+ {3 ()N (Bij) }[2 Re(Cv*Ca’+Cv'*Ca) p+2 Im(Cv*Ca'+Cv'*Ca) (@Z/W) (3p2+1)]
— {9 (e X1)IM (B:;) }4 Re(C4*C") (p/W)[ (1/30) SK2—10KW+9p2)+WV]}. (A21)
b19®@ = — {P*(1)IN (B:)) }{2 Re(Cy*Ca+Cv"*C4") (p*/2W) GK+V)
+2 Im (Cv*Ca+Cv'*Cu")aZ (p/)[{ K+ (p*/W)}+3V 1}
-+ {SIR* (a)ﬂ'R (Bij) } [2 Re (Cv*CA+Cv'*CAI) (PZ/ZW)+2 Im (Cv*cA—FCV,*CAI)%[)aZ]
— (i (e X)W (B:) ) 2(|Ca 2+ [Ca'|?) (p*/2W)[§(—2K+3W)+V].  (A22)
b12® =10 — {M* (I (B.j) } 2 Re(Cv*Ca'+Cv"*Ca) ($*/ W)+ {iI* (e X)IN (Bi;) } 4 Re(Ca*Cu') (p°/2W)}. (A23)

bs® = [IM(Biy) |2(|Ca 2+ | Ca’ 9 (K+4) (v/5)/12. (A24)
bas® = — |9 (Bi;) |22 Re(C4*Cu') (p/W)[(1/24) K>+ (1/40)p* T3/ 10. (A25)
bua® = —|M(B) |*(1C 1+ C’ ) (1/12) B2, (A26)
Cbae® = |M(B;) |22 Re(C4*Ca’) (1/24/10) p3/ W (A27)

b22(4) =0. (A28)
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STPVA with Assumption of No Interference between STP and VA

See Eq. (35). Here the br1/™ (L=L’, for STP) are equal to the sk given by Alder, Stech, and Winther® except
for constant factors which come from a difference in definition. Again, the real part of the bz.(¢v*® are equal to
those given for directional correlations by Morita.* The b1/ above are given for electron decay. For positron
decay, see the last paragraph in Sec. 2.

APPENDIX 2. FURTHER APPROXIMATION FOR byz,™

In this Appendix we assume that V=aZ/2p>>W, and that N (B;;f) is large compared with the other first
forbidden nuclear matrix elements. Furthermore, we make the following abbreviations:

iVCrOM (Bor-1) —Cp I (Bys) =E£O. (A29)

iV C s (Br) —CrIM (Ba) 4+ VCrOM (BoXr) =1, (A30)
iCrOM(Bi,f)=¢ . (A31)

iVCAOM (1) —CoOM (v5) =N, (A32)

iVCrOM(r) —CrOM () +VC1OM (0 X 1) = u®. (A33)
iCAM (Bij)=»". (A34)

Here the prime in parentheses means the quantity either with or without a prime. Upon using these abbrevia-
tions and Eqgs. (A1)-(A28), the b, for STPV A are greatly simplified as follows:

boo® = | £|24| &2 | X[ [N |2, (A35)
bos® = (p/W)[ '+ E*n—N*u! — N *u]+c.c. (A36)
bu®=—V3L ||+ o' [+ | ]2+ | ' |2]. (A37)
bu® =V (p/W)[ —n*n'+u*u' T+ c.c. (A38)
by =0. (A39)
bos® =64 (/W) LE+E5 M+ 1 cec. (440)
b1s® =1(5/3)ip[ —n*¢' —n ¢+ '+ v ]+ c.c. (A41)
b1a® = — ($2/2W) [ +-n'*¢ -+ v+ w* JHc.c. (A42)
B15® =0. (A43)
bn® = (5/12) (K2+ LIS 2+ 1|2+ 0|2+ v/, (A44)
b ® =101 (1/24) K>+ (1/40)p*1(p/W)[i*' —v*' ]+-c.c. (A43)
bon® = — 25 (1/24L [¢ 12+ ¢ |+ [ » |2+ |+ |2]. (A46)
b® =3 (10)73 (p/W)[ — %' +v*/ T+c.c. (A47)
b22(4) —_ () (A48)

If we assume C;=—C/ for i=S, T, P and C;=C/ for j=V, 4, then t=—¢, n=—v/, f=—¢', A=\, p=4/,
and =", In the case of STP, the terms containing A, u, and » should be dropped. The above b7 are given
for electron decay. For the case of positron decay, see the last paragraph in Sec. 2.

APPENDIX 3. FIRST FORBIDDEN BETA DECAYS OF Sb2¢ AND Au!®

A recent experiment on the beta-gamma polarization correlation from Sc® has shown that the interference
between Fermi and Gamow-Teller interactions, Re(Cgs*Cr'4+Cs'*Cr—Cy*C4’—Cy'*C4), has the maximum
possible value.® This would imply that the beta interaction is invariant under time reversal. In contrast to the

85, for | fBr| | SBoXr| in reference 7 should be read as
s2=—3 Re[CsCr*+Cs'Cr*1(p*/ E)[g-+£]—% Im[CsCr*~+Cs'Cr*1Zap[ (p*/3E)+ (1/9)g+£].

These authors may have dropped the L; term in the real part and a factor 3 in the imaginary part.
2 F. Boehm and A. H. Wapstra, Phys. Rev. 107, 1202 (1957).
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TasLE II. Theoretical values of the anisotropy® a(W) and the asymmetry? 4 of beta-gamma directional and polarization
correlations as functions of ¥ ore z for Sb12¢ at the electron energy W= 5mc? and 6=150°.

z Y a(W) A
—343 0.04 —0.39 0.16
— 86 0.16 —0.43 0.03
— 55 0.25 —0.45 —0.07
— 45 0.30 —047 —0.14
— 88 1.55 —0.47 —0.91
- 7.2 1.90 —043 —-091
— 6.1 2.26 —0.39 —0.89
Experimental value —0.43£0.044 —0.133:0.06°

ta(W) ={W(x) =W (x/2)}/ W (x/2).

b The definition of A is given Eq. (53).

¢ The quantity z is the magnitude of M (B:;iB) or M (Bi;); see text.
d See reference 27.

e See reference 29.

situation with Sc*%, the same interference appears to be very small from the experimental data on the beta-ray
angular distribution from polarized neutrons.®3¢ Similar interferences are also expected in the first-forbidden
transitions of beta decay. Fortunately, we have data on the beta-gamma polarization correlations from Sb!*
measured by Appel and Schopper,® and from Au'®® by Boehm and Wapstra.?® We shall analyze these data together
with data concerning other phenomena of the same nuclei.

To reduce the numerical task, we make several assumptions: namely, (aZ)*<1, aZ/2p>>W,, and real coupling
constants. The beta interaction is assumed to be STP with C;=—C/, or VA with C;=C//, or a linear combination
of these two interactions'® with £=4-), etc. Under the above assumptions, the asymmetry, A4, of the beta-gamma
polarization correlation is expressed by Eq. (57) for Au'® and by Eq. (58) for Sb**%. Furthermore, the beta-gamma
directional correlation functions are equal to the denominators of Egs. (57) and (58).

In the case of Sb'*, the results are shown in Table II. If we choose ¥'=0.25—0.30, the theoretical values of the
asymmetry 4, and the anisotropy a(W), of the beta-gamma polarization and directional correlations fit the
experimental data well. The parameter z=—Jt(B;,;f)/IM(BoXr) [or —iIN(B;;)/ M (aXr) for VAT, is a measure
of the magnitude of W (B.,f) [or M (B;;)] and is related to ¥ by 2V = — (aZ/2p) with the assumption x—y-+1=1.
(The definition of x, v, and z was given in reference 28, where an extensive analysis was performed on the beta
decay of Sb'*.) It is interesting to notice that the values of z listed in the first column of Table II coincide with
those listed in Figs. 1-4 of reference 28; however, those listed in Figs. 1 and 3 disagree with the data given by
Appel and Schopper.? With our choice of ¥'=0.25—0.30 we can fit the beta spectrum, f¢ value, and decay scheme
3~(8)2*(y)0H, for the same reason as given in reference 28. It should be noticed that the interaction STP without
PR (B:;8) [or VA without MM (B;;), or a linear combination of these two] disagrees with the large anisotropy of the
beta-gamma directional correlation of Sh'*,

In the case of Au', the decay scheme is 27(8)2+(y)0*. A small anisotropy of the beta-gamma directional
correlation requires a relation ¥=2(%)X. The maximum asymmetry of the beta-gamma polarization correlation
is A=0.60 at ¥ =—0.33, while 4¢p=0.5240.09.26 As the allowed shape of beta spectrum of Au'®® requires V>3,
we cannot obtain a consistent explanation with large values of I (B;;f) and IN(B;;). Therefore, we omit these
matrix elements. The analysis without these terms is equivalent to that given by Boehm and Wapstra.?® In this
case, it is necessary that the interferences among STP or VA or both be maximum.?” These interactions are also
consistent with the data on the longitudinal polarization of beta particles from Au'%.38

For both Sb'** and Au'®, the asymmetry and the anisotropy of the beta-gamma polarization and directional
correlations may be reduced by assuming complex coupling constants. If the coupling constants have very small
phase differences, we have no hope of detecting them.

Concluding the above analysis, the beta interaction is STP with C;=—C/, or VA with C;=C/, or a linear
combination of these two. All of the data on Au® are favorable to the assumption of real coupling constants.
From the data on Sb'?, the reality of the coupling constants is indeterminate, because of large It (B;,#) and N (B;)
terms.
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