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First-Forbidden Transitions in Parity-Nonconserving Beta Decay f
MASATQ MQRITAl: AND REIKo SAITo MQRITAjt

Deportmelt of Physics, Colttmbio Urtssersety, New York, New York
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Our previous work on beta-gamma directional correlations is extended to phenomena of nonconservation
of parity in beta decay. The parameters, bL, L, ("), which express the beta-ray angular distributions, are given
for first-forbidden transitions of a general interaction, STI'VA, where we assume no interferences between
STP and UA. All of the possible interferences among the six nuclear matrix elements, R(ISIr r), K(tips),
IJIf(pr), I)Jf(Ptr), K(ptr&&r), and I0f(11;P) for STP (and the corresponding matrix elements for UA) are taken
into account. By using these bJ.I. (")'s, it is easy to express the correction factor of beta spectra, the beta-ray
angular distributions from oriented nuclei, and the angular correlations between beta rays and circularly
polarized gamma rays from unoriented nuclei in double and triple cascade transitions. The experimental
data on the beta decays of Sb'2' and Au"8 are analyzed.

1. INTRODUCTION

A S a result of the discovery of nonconservation of parity in weak interactions, ' ' much experimental data'
on beta-ray angular distributions, polarizations of emitted beta particles, and angular correlations between

beta rays and circularly polarized gamma rays are being accumulated. In these experiments, most of the measured
beta decays are for allowed transitions, for which the theoretical formulas have been derived by many authors.
A few of them are for first-forbidden transitions, for which there are no adequate formulas, except for the longi-
tudinal polarizations of the beta particles. '~

The aim of this paper is to generalize our previous work on beta-gamma directional correlations' " to the
phenomena of first-forbidden transitions in beta decay with nonconservation of parity. In Sec. 2, we shall give
formulas for (a) the correction factor for the beta spectrum, (b) the beta-ray angular distributions from oriented
nuclei, and (c) the angular correlations between beta rays and circularly polarized gamma rays from unoriented
nuclei in double and triple cascade transitions, in the general cases of first-forbidden beta decay. We take a general
beta interaction, STI'VA, " with the assumption of no interference between STI' and VA. All the possible
interferences among the six matrix elements, K(ptr r), pp(pcs), K(pr), 9)I(pn), 9R(pIrX r), and 9R(B,,t') for STI'
(and the corresponding matrix elements for VA) are considered. These interferences, especially between nuclear
matrix elements of diferent rank, have a very important role in our problems and they should not be dropped
without justification. In Sec. 3, angular correlation functions between beta rays and circularly polarized gamma
rays, for special decay schemes which are interesting in experiments, are given explicitly. In Sec. 4, some remarks
concerning applications are discussed. Two diferent approximations for the b1.1.'"& s are obtained in Appendices 1
and 2. The experimental data on the first-forbidden beta decays of Sb"' and Au"' are discussed in Appendix 3.

2. FORMULAS

Since detailed treatments of beta-ray angular distributions from oriented nuclei, ' 4 and of the angular corre-
lations between beta rays and circularly polarized gamma rays from unoriented nuclei in double' ""and in triple
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f On leave from Kobayasi Institute of Physical Research, Kokubunzi, Tokyo, Japan.
$ On leave from Department of Physics, University of Tokyo, Tokyo, Japan.' T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956).' Wu, Ambler, Hayward, Hoppes, and Hudson, Phys. Rev. 105, 1413 (1957).

Garwin, Lederman, and Weinrich, Phys. Rev. 105, 1415 (1957);J. I. Friedman and V. L. Telegdi, Phys. Rev. 105, 1681 (1957).' For complete references, see C. S. Wu, Proceedings of the Israel Conference, September, 1957 (unpublished).
~ For complete references, see C. S. Wu, reference 4.' R. R. Curtis and R. B.Lewis, Phys. Rev. 10?, 543 (1957).
7 Alder, Stech, and Winther, Phys. Rev. 107, 728 (1957).Although they have calculated the formulas for beta-ray angular distributions

from oriented nuclei, and for angular correlations between the beta rays and the circularly polarized gamma rays for 6rst-forbidden
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is very small, Besides this, they have assumed the beta interaction to be a combination of scalar, tensor, and pseudoscalar.
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cascade transitions, '4 have been already given, we write here the Anal results only. The calculations of this section
follow in a straightforward way from our previous work. 8 "We use the following notation. The decay scheme is
j(P)ji j(8)ji(p&}j., or j(P}ji(pi) j&(p&)j,. The quantity mz is the magnetic quantum number of j .W(abed; ef)
and (jij&m&m2I jest) are the Racah arid the Clebsch-Gordan coeKcients, respectively. P (cos8) is the Legendre
polynomial with integral number, e. The bLL'"~ are parameters which express the beta-ray angular distributions
and are given in this section. The definition of the bz, i, &"& is given in Eqs. (3) and (4) in reference 11, wheie 2e
is replaced by ~~. I means the rank of the nuclear matrix element for beta decay, or the multipolarity, 2L, of the
gamma rays. The dependence on the circular polarization of the gamma ray is p'+'+ +z'+". Here p is +1 (—1)
for left (right) circularly polarized gamma rays. 5 is equal to 0 (+1) for magnetic (electric) radiation.

(1) Correction factor for the beta spectrum.

Correction factor for the beta spectrum=boo& i —(1/V3) bii ++ (1/+5) boo ' .

(2) Beta-ray angular distribution from oriented nuclei.

with
W(g:P) =P, z&z f (j)(—)&'' &'+ z+ z+~W(jjLL', egi)b~~ &"iP„(cosg),

f.(j)=Q (—)'-"(jjm—mle0)a,

(2)

where the a are the relative populations of the initial magnetic substates.
(3) Angular correlation between beta rays and circularly polarized gamma rays.

W(g)P1 ~ p 71)=2{[ p ( )' bLL' "—'W(jij iLL; i&j) (2ji+1)']
n L&I'

X[& (—)"+"'Pi'"'"+'""'(sillLillso) (zillLi'll jo)F.(L&Li'joji)]}P-(cosg), (3)

with

F„(LL'j,j&) =F„(L'Lj,jo) = ( )&b &~—{'(—2j&+1)(2I.+1)(2L'+1)}'*(LL'1—1
I
n0) W( j&j&LL'; nj,).

(4) Directional correlation between beta rays and gamma rays.

W(8:P—yi) =terms involving P„(cosg) with even e in W(g, P, ; P —y,).

(5) Angular correlation between beta rays and circularly polarized y& rays without observing p, rays in a
triple cascade transition.

W(g Po:P—») =Z {[ 2 ( )" 'b~z'" W(i ii —iLL ~j) (2ji+1)'][K(jillLill jo) W(ji«ijo jijo)
n L&L'

X (2j&+1)'*(2jo+1)~][ P (—) '+ "P&'o+'&'+zo+z"+" (j&IIL&ll jo) (j&IIL&'ll jo)F„(L&L&'joj&)]}P (cosg). (5)
L 2L2'

(6) Directional correlation between beta rays and p& rays.

W(g: p —yo) = terms involving P„(cosg) with even e in W(g, po. p —yo). (6)

We use Eq. (1}of reference 1 as the beta interaction. The parameters, bi, i, &"', have been given for allowed
transitions. "For first-forbidden transitions, they are as follows:

STP

boo"'= l~(P~ r) I'(ICrl'+ ICr'I')[(1/9)&'Lo+-'&&o+~o]+ l&(Pro) I'(ICpl'+ IC~'I'}Lo
—{iK*(p&r r)K(pro)}2 Re(CT*Ci+Cr'*Cp') (oELo+&o). (7)

boi&'i = ('K*(Po"r)P&(Pr) }[2 Re (Co*Cs'+C&' Cs) 2[(1/9)K'A, —oEL»+'oKN» —N» —mi)

+2 Im(C&*Cs'+Cr'*Cs) 2(oEH&o+ J»)]—{iK*(Pe r)~(Pn) }4Re(CT C'p ) (-', .KAi+Ngi)

+{iK*(Per)K(PeXr)}4 Re(C&*C&')[(2/9)K'i1& —-'oEL&.—Nio+2mi]+{iK'(Pyo)K(Pr)}
X[2 Re(Cz*Cs'+Ci '*Cs) (oK&i+Nil 2L„)+2 Im(Ci*Cs'+Cp Cs) (Ji,+2H„)]
+{+*(P»)PP(Pa)}2Re(Cr*Cr'+Cp CT)241+(K (P+5)K(P~Xr)}

X[2 Re(Cp*Cp'+Cr'*Co)( ——,XAi+L»+Nii)+2Im(Ci*Cr'+Ci'*Co)(J&i —H»)]. (8)



2050 M. MO R I TA AN 0 R. S. M OR I TA

b»"'= —v3( IK(pr) I'(I cs I'+
I
cs'I') (-'-E'Lo+-'ENo+» i+~o)+ IK(pn) I'(I cr I'+

I
cr'I') Lo

+ IK(PeXr) I'(I Cr I'+
I
Cr' I') (-'E'Lo —

—o,ENo+-', Lg+Mo)+ {K*(Pn)K(PeXr)}

X2(l Cr I'+
I
Cr'I') (—-',EIo+No) —{iK*(Pr)K(Pn) }2Re(Cs*Cr+Cs'*Cr') (gELo+No)

+{iK*(Pr)K(PeXr)}2 Re(cs*cr+ Cs'*Cr') (Lx—Mo)). (9)

bus
' =~2(—IK(Pr) I

2 Re(Cs*Cs')2(oEL&z+oEN»+Ngf+AQ Bzg) —IK(Pu) I'2 Re(cr*cr')2hg

+ IK(PeXr) I'2 Re(Cr*Cr') (—oE'A& —oEL»+-'oEN»+N» oho+2rll)+ {K (Pn)K(PeXr) }

X4 Re(Cr*Cr') (-', Eh& —N»+ —',L»)+ {iK*(Pr)K(Pu) }{2 Re(Cs*Cr'+Cs'*Cr) (oEA1+L12+Nll)

+2 Im(Cs*Cr'+Cs'*Cr) (—J»+H») }+{iK*(Pr)K(PeXr) }[2 «(Cs*Cr'+Cs'*Cr)
X ( oE Al oEL]2+oN12 A2 2~1)+2 Im(cs*cr'+cs'*cr) (oEJll oEH12+ 2 J12)])~ (10)

b, &'& = —6'*{—IK(Pr) I'-(I Cs I'+
I
Cs' I') (-', EL~o+L~+2N»)+ IK(PeXr) I'(I Cr I'+

I
Cr' I') (—-', EL~o——,'L,+N»)

+{K*(pn)K(po'Xr) }2(lCr
I + I

Cr'I') oL»+ {iK*(pr)K(pn) }[2 Re(Cs*Cr+Cs'*Cr')L»
—2 Im (Cs*Cr+Cs'*Cr') II»7+ {iK*(Pr)K (Pe Xr) }[2 Re (Cz*cr+Cs'*Cr') ,' ( EL» —L—]+N»)

+2 Im(Cs*Cr+Cs'*Cr') (oEKo—zoo)]) (11)

boo'" 6 l——{{i-K*(Pyo)K(B;,S)}[2 Re(c rcr+C 'r*Cr') 3'+ 2Im(cr*cr+Cz'*Cr')3II»]
+{K*(Per)K(B"')}2(ICrI'+ ICr'I') (EL»+3N»)).

bio"' = —-', (5/3) &( {K*(Pr)K(B,,'~) } {2 Re (Cs*Cr'+Cs'*Cr) [oE'hi —EL»—3N»+ (6/5)h 2]

+2 Im(Cs*Cr'+Cs'*Cr) (EH»+3J&o) }—{iK (Pn)K(B;,s) }4Re(Cr Cr')3Llo

+{iK*(PeXr)K(B,,~) }4Re(cr*cr') (-',E'h~+EL~o —3N~o —oho) }. (13)

b»"'= ——',({K*(Pr)K(B,,s) }[2 «(Cs*Cr+Cs'*Cr') (EL» 3Li+3~»»)—
+2 Im(Cs*cr+Cs'*Cr') (EII»+3~»)]+{~g) ~*(Pn)K(Bv') }2(I Cr

I

'+
I
Cr'I') 3L»

—{iK*(PeXr)K(B,,') }2(lCr I'+ ICr'I') (EL»——,'Li —3N»)). (14)

b»&'& = (9/+10) ( {K*(Pr)K(B,,&) }2 Re (Cs*Cr'+Cs'*Cr) 2h 2
—{iK*(Po Xr)K(B,,~) j4 Re (Cr*cr')h&) . (15)

bo, "'——IK(B;, ), '(ICr I'+
I
Cr'I') [(1/12)E'Lo+4L,]+5. (16)

boo&'& = IK(B;;~)I'2 Re(Cr*Cr') [(1/12)E'h~+ (9/20)ho]~~10. (17)

(B,,s)
I (Icr lo+ Ic,'I )-;(-,')'L, . (18)

bo, &'& = —IK(B;;s) I'2 Re (Cr*Cr') (9/+10)A, . (19)

b„(&=0. (20)

The numerical factor, 2 or 4, for Re(c;*C;&") or Re(C,*C ) is left in the above equations, for convenience in
further calculation.

The bl.l. &"'s for VA are easily deduced from those for STP. In the expressions for the b»'""s, the E term
for K*(PX,)K(PXj) should be replaced by (—) +"E for K*(X,)K(X,). Besides this, a few terms consisting of
the imaginary part of the product of different coupling constants appear in VA, vrhile the corresponding terms
in STP' vanish, and vice versa. The results are:

boo"'= IK(e r) I'(I c~ I'+
I
C~'I') [(1/9)E'Lo —oENo+hIo]+ IKh o) I'(I c~ I'+

I
C~'I')Lo

+(iK*(e r)K(yo) }2(IC,I'+ I
c~'I') (oELo—No) (21)

boy'"={K*(e r)K(r))(2 Re(c~*cv'+C~'*Cv)2[ —(1/9)E'A, ——', ICL»+-', EN~~+N»+m~]

+2 Im(c~*cv'+C~' Cv) 2(oEH~o —J~o)) —{iK*(er)K(n)) [2 Re(CA, Cv +Cg C'v) (-', Eh 1 N»)

+2 Im (C~*cv'+C~'*Cv) J~~]+(iK*(e".r)K (eXr) )4 Re (C~*c~')[—(2/9) E'h ~
—-', EL~o+ N ~o

—2m~]
—(iK*(yo)K(r))[2 Re(c~*cv'+Ca'*Cv) (——,EAx+Nqq —2Lqo)+2 Im(c~*cv'+C~'*Cv) (Ji~+2Hqo)]

—{K (yo)K(n)}2 Re(c~*cv'+C~'*Cv)2A, —{K*(yo)K(eXr))4Re(c~ C~')(-', EA&+L»+N»). (22)
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b„&"= —W3( IK(r) I'(I Cv I'+
I
Cv'I') (-'E'Lo —-'E&o+2Li+~o)+ IK(n) I'(I Cv I'+

I
Cv I') Lo

+ IK(&Xr) I'(ICOSI + IC~'I')(sE'Lo+sE&o+sLi+~o)+ {K*(n)K(&Xr)j
X2 Re(Cv*C~+Cv'*C~') ('sELo+Xo)+ {sK*(r)K(n) j 2(I Cv I'+

I
Cv' I') (-,'ELo —&o)

+{sK*(r)K(nXr)}2Re(Cv*Cg+Cv'*Cg') (Li—Mo) }.
b„&'& =v2 (—I K(r) I

'2 Re (Cv*Cv') 2 (siELis+ —',ENii —Nis —As+mi)+ I K(n) I
'2 Re (Cv*Cv') 2k i

+ IK(nXr) I'2 Re(C~*C~') (sE'&i —sE&is+sENii —Nis+s&s —2~i)+{K'(n)K(nXr) j

X[2 Re (Cv*Cg'+Cv'*Cg) (sEA i+Nit —
s Lis)+2 Im(Cv*Cg'+Cv'*Cg) (Jii+ s His)]

—{t'K*(r)K (n) }4 Re (Cv*Cv') (—sEA i+Lis+ N»)+ {iK*(r)K (o Xr) }[2 Re (Cv*C~'+Cv'*C~)

X ('sE'A, ——',EL»—-', N»+As+2m, )+2 Im(Cv*C&'+Cv'*C&) (-',EJ»—-', EH» —-', J»)]}.

(23)

(24)

b» ' ———6-:(—IK(r) I'(I Cv I'+
I
Cv'I') (—sEL»+L,+»»)+ IK(nXr) I'(I C~ I'+

I
C~'I') (sEL» ——,'L,+&»)

+{K*(n)K(&Xr)j [2 Re (Cv*C~+Cv' C~') sI is+2 Im(Cv*Cx+Cv'*Ca') sos)
+{iK*(r)K(n)}2(ICvI'+ ICv'I')L»+ {iK (r)K(nXr) }[2Re(Cv*C~+Cv'*C~')s (ELis —Li+Eis)

—2 Im(Cv*CA+Cv CA ) (oEH 12+ sJ»)]}. (25)

boo"'= (1/~'6) f {sK*(»)K(B'i)}2(IC~I'+ IC~ I')3L&s

+{K*(nr)K(B'~)}2(IC I'+IC 'I')( —EL +3& )} (

b, s~'& = ——,
' (5/3) l{{K*(r)K(B,,) }[2 Re (Cv*C&'+Cv'*C&) (—-', E'A. i—ELis+3Nis —(6/5)As)

+2 Im(Cv*C~'+Cv'*Cg)(EHis —3Jis))+ {iK*(n)K(B;,) }[2Re(Cv*C~'+Cv'*C~)3Lis
=2 Im(Cv*Ca'+Cv'*Ca)3H»)+ {iK*(a'Xr)K(B,;)}4Re(C&*Ca') (—sE &i+ELis+3Nis+s+s)}. (27)

bio&" = —-', ( {K*(r)K(B;,) }[2 Re (Cv*C~+Cv'*C~') (—ELis—3Li+3N'is)

+2 Im(Ci*C@+Cv'*Cg') (—EH»+3J'»)]+ {iK*(n)K(B,;)}[2 Re(Cv*Cg+Cv'*C~')3L»

+2 Im(Cv*Cg+Cv'*C~')3H»)+{sK (nXr)K(B;;)}2(IC~I'+IC~'I') (EL»+-,'Li+31V12)}.

bist" ——(9/+10)( —{K*(r)K(B,;) j 2 Re(Cv*C&'+Cv'*C&)2hs+{iK*(aXr)K(B,,) }4Re(C& Cg )A2}.

bss"&= IK(B")

I'(ICOSI'+

IC~'I')[(1/12)E'Lo+sL, )+5
bss&'& = —IK(B;;)I'2 Re(C~*C~') [(1/12)E'Ai+ (9/20)As)/10.

b»"' = —IK(B'f) I'(I c~ I'+
I
c~'I')-'(-')'*Li

b» '& = IK (B;;)I
'2 Re (Cg*C~') (9/+10)h s.

b (')=0

(28)

(29)

(30)

(31)

(32)

(33)

(34)

STPVA with Assumption of No Interference between STP and VA

Now, let us assume no interference between STP and t/'A. This is satis6ed, for example, by the modified two-
component neutrino theory, namely, C,= —C with i=5, T, P, and C, =C,' with j=V, A."The b» '"' for this
STPVA interaction are:

b~q '~&= (b~~ &~& for +TP)+(b~~ t~l for Vg). (35)

In Eqs. (7)—(34), the K(X,) are reduced nuclear matrix elements. Their definition is equal to that of Konopinski
and IJhlenheck'r except for a constant common factor, e.g. , [(2ji+1)/(2 j+1))K*(pn)K(pr) = (J f3n)* (JPr)
In the calculation of the bl.I.'"&, we have assumed that the strong interactions are invariant under time reversal.
Consequently, the products of two matrix elements in curly brackets, namely, (K*(X,)K (X;)}or (iK*(Y;)K(Y,)}

' This choice of coupling constants was once introduced by the present authors (unpublished paper) to yield the Fierz terms equal
to zero. One can explain the lack of the Fierz terms in several ways: (A) Cz or C&=0 and Cp or C&=0, and similar relations for coupling
constants with primes; (B) C8=&C8', CI =WCI 'and Cy=WCp', Cg=%C~',. (C) C8=&C8', CI =WCI 'and Cg=&Cy', Cg=WC~',
(D) Cv/Cs=fg and Cg/Cr=fg with real g and g, and similar relations for coupling constants with primes: or diferent choices of
(A), (8), (C), and (D) for Fermi and Gamow-Teller interactions. Here the assignment Cz=Cz' (or Cz= —Cz') is excluded by some
data in allowed transitions with hJ= &1. The same choice of the relative sign of the coupling constants has been also considered by
T. D. Lee and C. S. Wu LProceedings of the Israel Conference, September, 1937 (unpublished) ], to explain the cross section of neutrino
capture by CP' LR. Davis, Jr. (to be published)] and other data on beta decay."E.J. Konopinski and G. E. Uhlenbeck, Phys. Rev. 60, 308 (1941).
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are always real numbers, and may be positive or negative. If the strong interactions are not invariant under
time reversal, the expressions for the bl L,

(")'s should be slightly modified, and a few terms shouM be added, which
do not appear in our case. W, p, and E are the energy and momentum of the electron and the energy of the
neutrino, respectively. The other symbols are combinations of electron wave functions and are given below":

Lo= (2P'F) '[g-i'+fr'j~1.
—(2p2F) —lp—2[g 2+f 2j~p2/9

&2= (2P'F) 'p '[f ig i —fi—gi—j~ (P'/—3W) V. —
—(2p2F)

—lp—2[f 2+g 2j~(p2/9)+ (2P2/3W) V+V2

Lis=(2p'F) 'p '[g if2 cos(8 i—52) —f,g 2cos(5, —8 2)
—+—p'/3W.

Vis= (2P F) p [f if2 cos(8 i—82)+gig 2 cos(8i —8 2))~(P /9)+(P /3W)V.

L» ——(2p'F) —'p '[fif2 sin(&i —&2)+g ig 2 sin(B i—8 2)$~-'p.

Nii ——(2p'F) 'p '[f ifi —g igi] sin(& i—82)~—sp —(p/W)V.

Nis ——(2p'F) 'p '[f ig 2 sin(8 i—5 2) gif2 sin—(bi —4)j~—(p'/9W) —-'pV.

Ai ——(2p'F) 'g ifi sin(5 i—bi) —+p/2W.

A2 ——(2p'F) 'p 'g 2f2 sin(& 2 4)~p'/18W.

222i ——(2p'F) 'p 'f igi sin(8 i —8i)—+—(p'/18W) —spV —(p/2W)V'.

P»= (2P'F) 'p '[g if2 sin(B i—ft2) fig 2 sin(—&i &2)—j~ 'Pn—Z-

Jis= (2P'F) 'p '[f,f—, s—in(S, —82)+g,g 2 sin(5, —5 .2)j~[(P'/12W)+-,'PV7nZ.

= (2P F) p Lf f (& ~ )+g—g- " (& o )3 —L(P—/4W)+(1/3W) j Z

Jii ——(2p'F) —'p—'[f ifi+g igi] cos(& i—&i)~—(1/3W)oZ.

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(46)

(47)

(48)

(50)

(51)

Jis ——(2p'F) 'p '[f ig 2COS(8 i—h 2) gif2COS(—5i—4)i—v[(p'/12)+(p'/4W)V+(1/3W)VjrtZ. (52)

Here V=nZ j2p. The arrow in each equation indicates the approximation (nZ)2(&1. When we need the correction
to the bl. l,'""s due to the Rnite de Broglie wavelength, we can obtain more accurate forms of bl, l'") from
Eas. (7)—(34), together with higher order expansions of the functions in Eqs. (36)—(52). To include the finite
nuclear size correction, the expressions for the bl, l, (") should be modified as for the beta-ray spectrum. See
for example Matumoto and Yamada, " If one assumes invariance of beta interactions under time reversal,
the bl. L ' '"' are reduced to those for directional correlations given by Morita ef al. ' "

In this section, the b~~, '") are given for an electron decay. In order to obtain the corresponding bz, ~ (") for a
positron decay, the following substitution should be performed: Z—+—Z, C,—+—C,~, C —&C * with i=S, A, P;
and C,~C,*, C,'~—C *with j=t/', T.

3. EXPLICIT FORMS OF BETA-GAMMA ANGULAR CORRELATIONS

In some special decay schemes, Eqs. (2)—(6) are greatly simplified. For example, in the cases of j(P:allowed) ji
(p: 2L pole) jr+I, the angular correlation between the beta rays and the circularly polarized gamma rays is

TABLE I. p (j,j&,j2) and v(j,ji,js).

Decay scheme
i(P)iI(V) J2

J(~)&-1b)J—1-L
)(e)J(~))-I-
~(~)~+1h)&+1-I-
&(~)Z-1(~)J-1+I-
~(o)Jb)J+L
~(~)~+1(~)Z+1+I-

I (i,i~,i2)

1
-1/j—(1+2)/(1+1)

( j+1)jj—
1/j+1

1

0
t:(j+1)/j7'

0
0—

Lj/(j+1)3'
0

'8 Equations (36)—(47) were defined to calculate electron-neutrino angular correlations. See M. Morita, Phys. Rev. 90, 1005 (1953);
Progr. Theoret. Phys. (Japan) 9, 345 (1953).

"Z. Matumoto and M. Yamada, Progr. Theoret. Phys. (Japan) (to be published). A. D. Dolginov and I. N. Topigin )Nuclear
Phys. 2, 147 (1956)g considered a similar effect for angular correlations with the old theory of beta decay.
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expressed explicitly by
W(8,Pr. P—y) =1&2 (t&/c) cos8, (53)

where the upper (lower) sign refers to the right (left) circularly polarized gamma rays. The asymmetry, &, is:

A = &&u(J,J&,Js) Re(Cr*Cr' C—g*C~')W
I. 1

0!Z
Im(Cr*Cg'+Cr'*Cg) Mor'

+v( j,jt,js) Re(Cr*Cs +Cr Cs CA Cv CA Cv)

where

QZ 2
Im(Cr*Cy'+Cr'*Cv —C&*Cs'—Cx'*Cs) MF MoT (54)

61+(b/~) j

I=Mr'(ICs I'+
I Cv I'+ ICs I'+

I
Cv'I')+Mor'(I Cr I'+

I
C~ I'+

I
Cr I'+

I
C~ I'),

$b =~2p Re[Mp'(CB*Cv+Cs'*Cv')+Mar'(Cr*C~+Cr'*Ca')],

v = [1—(«)'l'.
In A, and $b, the upper (lower) sign refers to the electron (positron) decay. p(j,jr, js) and v( j,jr,j,) depend on
the spin of the parent nucleus, j, and are given in Table I for relevant decay schemes. Mp and 3fGT are taken to
be real numbers. Therefore their product, Mp MGT, may be positive or negative. Similar formulas for beta-ray
angular distributions have been given by many authors [see, e.g. , Eq. (1) of Ambler et al. ,

" or reference 4].
No restriction on the coupling constants is used in Eq. (54).

In the cases of first-forbidden transitions, the angular correlations between the beta rays and the circularly
polarized gamma rays are more complicated. Ke give two examples, which are frequently encountered in experi-
ments.

(1) 2 (p)2'(7)0'.

W(8 pt..p —y) =(bi&o& —3-lb»&o&+5-rb»~o&) —[6—rbs &"+-'(2-1)b t' —-'(7/30)lb»&'& —r'(10)-rb»&'&3ptP, (cos8)
—[-,'(6 1)bt t'&+(14) &best'&y-', (14)—lb& "'—3(14) lbsst"jPs(cos8)

+[2(35) lb&sos&+ (4/7) (2/5) lbssts&iP&Ps(cos8). (55)

Here pr ——+1(—1) for left (right) circular polarization. From Eq. (55), the directional correlation is obtained
by dropping the Pt(cos8) and Ps(cos8) terms. Equation (55) is applicable to CPs," K4s,"As7s, s' Rbss, s' Sb'","
and I"',"for which the directional correlations are anisotropic, and to Au"',"for which the directional correlation
is isotropic but the polarization correlation is asymmetric.

(2) 3 (p)2'(7)0'

P'(8P&.P—y) = (—3 lbrt&s&+5 'bss&'&)+ Ps (2 &)btt&'&+ (15) lb, s~")P&P&(cos8)

+L'(6 ')b "&+lb "'+(2/7)'b '"1P (co 8) [l(l)'b "'+l(—l)'b "jp P.(cos8) (56)

Here the coefficient of b»"& is canceled accidentally. Equation (56) is applicable to Sb' ', for which the directional
correlation is anisotropic"" -' and the polarization correlation is asymmetric. " In Eqs. (55) and (56), we use
the br, r.'"'s of Eqs. (7)—(34) or Eqs. (A1)—(A28) or Eqs. (A35)—(A48) if those approximations are valid. Further-
more, in the case, where the beta interaction is STP withC, = —C, and real coupling constants, Eqs. (55) and
(56) have the form of Eq. (53):

s' Ambler, Hayward, Hoppes, Hudson, and Wu, Phys. Rev. 106, 1361 (1957)."P.Macq, Bull. classe sci. Acad. roy. Belg. 5' Serie 40, 802 (1954);41, 467 (1955); Nuclear Phys. 2, 160 (1956), and private com-
munication to M. Morita (1956).

ss D. T. Stevenson and M. Deutsch, Phys. Rev. 84, 1071 (1951).
~' H. Rose, Phil. Mam. 44, 739 (1953).
s' D. T. Stevenson and M. Deutsch, Phys. Rev. 83, 1202 (1951).
2~ I. Shaknov, Phys. Rev. S2, 333 (1951).
~' F. Boehm and A. H. Wapstra, Phys. Rev. 106, 1364 (1957), and to be published.
2' K. K. Darby and W. Opechowski, Phys. Rev. 83, 676 (1951);D. T. Stevenson and M. Deutsch, Phys. Rev. 83, 1202 (1951).
ss M. Morita and M. Yamada, Progr. Theoret. Phys. (Japan) 8, 449 (1952); 10, 111and 641 (1953).
'9 H. Appel and H. Schopper, Z. Physilt 149, 103 (1957).
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(1) 2 (P)2+(7)0+

—2(6) IX&+—V——(s)'WI +I (1/48)E'+ (11/112)p'] —(1/7)p' cos'0

X'+V'+is(21) '(p'/W)X ——'(14) '*(p'/W)V+I (1/12)E'+ 59 672)p']—L:,'(3 7) X——,'(14) &V+(3/224)W](p'/W) cos'0
where X=P—/t and V=—ri/{.

(2) 3 (P)2'(~)0'. ——' V' —-'W Y—(3/56) p'+ (5/56) p' cos'0
A=

F'+ (1/14) (p'/W) V+L(1/12)E'+ (2/21) p'] —L(3/14) V+ (1/28) W] (p'/W) cos'0

(57)

(58)

Equations (57) and (58) are also valid for VA with C, =C, and in the special case of STPVA when C,= —C;.'

for s=S, 2', P and C„=C; for j=V, A together with (=+X, ri= &p, and t =+X, and the assumption of time-
reversal invariance.

4. CONCLUDING REMARKS

In the beta-ray angular distribution, Fq. (2), the f„(j) with odd n vanish except for polarized nuclei. Conse-
quently, W(0:P) is a linear combination of even powers of cos0 in aligned nuclei. In this case, the b , i,.i»&'"' given
in references 8—10 are determined up to the second forbidden transitions. These authors took into account all
the interferences among 5, T, P, t/, and 2, but assumed invariance under time reversal for beta decay. For polar-
ized nuclei, W(0:P) is, of course, a linear combination of odd and even powers of cos0.

In the case of special decay schemes such as j(P)2L(yi)I. (ys)0 with pure electric and/or magnetic 2~-pole
gamma rays I for example, j(P)4(»)2(ps)0 with pure quadrupole gamma rays], the angular correlation between
the beta rays and the circularly polarized p& rays is equal to that between the beta rays and the circularly polarized
p2 rays. This implies that, for example, we need not discriminate experimentally between the two gamma rays
with energies of 0.89 Mev and 1.12 Mev following the beta decay of Sc" to the 2.01-Mev state of Ti" (assuming
a low intensity of the beta group of Sc4' to the 1.12-Mev state of Ti"). This equality also holds in the case
where the circular polarization of the gamma rays is not observed, and in the case of gamma-ray angular
distributions from oriented nuclei in similar decay schemes.

The approximation for the b~L, &") in Appendix 2 is at least valid for the nuclei Rbse, Sb'", I"', and Au"'. In
these nuclei, the beta-ray spectra have an allowed shape which may support the assumption of &rZ/2p))WO.
(Actually, &rZ/2pW«6 for these nuclei. ) One of the reasons why we do not neglect the PP (B;,P) term in the bz, r, &"'

is that a small mixture of K(B,,&) greatly affects the beta-ray angular distributions and beta-gamma angular
correlations through its cross terms with the other matrix elements. Furthermore, if we assume that the j—j
coupling shell model or A. Bohr s model of the nucleus is strictly valid, the nuclear matrix elements other than
9)t (B;,s) cancel. The arguments in this paragraph were once justified by us in the theoretical analysis of beta-gamma
directional correlations for K. ', As Rb" Sb' ', and I" "The result was that the approximation for the bL, L,

(")

in Appendix 2 is good for Rb", Sb"', I"', and rather poor for K" and As '
Upon using the bL, L, '"', applications to many phenomena involving double or triple cascade transitions in oriented

nuclei are easy.
An analysis of the experimental data on Au, and Sb

y
is given in Appendix 3.
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APPENDIX 1. bzr, &"& IN THE. APPROXIMATION (&rE)'« I

Using Eqs. (36)—(52), the br, r, &"& in Eqs. (7)—(34) become the following:

STP
bpp&'& = I m (p&r r) I

'(
I
Cr

I
'+

I
Cr'

I

') {(1/9) I
E'—2E(p'/W)+ p']+-'L —E+ (p'/W) ]V+ V'}

+ l&(Ovs) I'(I C~l'+
I
C~'I')+{i&*(p~ r)~(p») }2«(C~*C~+Cr'*C~') {sI

—E+(p'/W)]+ V} (A1)
' Matumoto, Morita, and Yarnada, Bull. Kobayasi Inst. Phys. Research (in Japanese) 5, 210 (1955). Their calculation assumed

the STP combination with real coupling constants. In this approximation, their result is also the same for VA or the special case of
SIVA, as is written under Eq (58). .
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bo] ' ——{K*(Pn x)K(Px) }{2Re(Cr*Cs'+Cr'*Cs) (p/W) j (1/9) (E' 4—EW+ 3P')+~~ ( E—+2W) V+ V~}

+2 Im(cr~cs'+Cr'*Cs) (aZ/W)C(1/18)( —3p'E —4E+3P W)+—(3P +4) V)}
—{iK*(Pn x)K(Pn) }4Re(Cr*Cr') (p/W) C3 (E—W) —V)

+{iK'(Pn x)K(Pnxx) }4Re(Cr*Cr') (p/W) C(1/9)E(E—W) ——',Wv —V')

+{iK*(Pys)K(Px)}{2Re(Cp*Cs'+C p'*Cs) (P/W) C(13E—W) —V)
—2 Im(Cp*Cs'+Cp'*Cs) (aZ/W) (1+-',p') }+{K*(Pys)K(Pn)}2Re(Cp*Cr'+Cp'*Cr) (p/W)
—{K*(P»)K(PnXx)}C2 Re(Cp*Cr'+Cp'*Cr) (p/W) (-',E+V)

—2 Im(Cp*Cr'+Cp'*Cr) (aZ/W) (p'/4)). (A2)

b»&'& = —%3{I K(Px) I
'(

I
Cs

I
'+

I
Cs'

I
') {(1/9) C3E' —2E (p'/W) +3p')+-', C

—E+ (p'/W)) V+ V'}

+ [K(Pn) I'(I Cr I'+
I
Cr'I')+ IK(Pnxx) I'(I cr I'+

I
Cr'I') f (1/18)C3E'+4E(p'/W)+3P')

+-'CE+ (p'/W)7V+V2} —[K*(Pn)K(Pnxx) }2(ICr I'+
I
Cr'I') PCE+ (p'/w)7+ V

—t'K*(P)K(P )}2R (c *c +c '*c '){FACE—(P'/w)) —vj
—

f iK*(Px)K(Pn Xx) }2 Re(cs*cr+Cs'~cr') C(2P'/3W) V+ V') } (A3)

bn" =&2{—IK(Px) I'2 Re(Cs*Cs') (p/W) ( EV+—V'—) —IK(Pn) I'2 Re(Cr*Cr') (p/W)
—IK(PnXx) I'2 Re(cr*Cr') (p/W)C(1/12) (E'+4EW+3p')+(-'E+W) V+V')
+}K*(Pn)K(Pnxx) }4Re(Cr*Cr') (p/W) C~i (2E+3W)+ V)

+(iK*(Px)K(Pn) }C2 Re(Cs*Cr'+Cs'*Cr) (p/W) (~E V) —2 Im—(Cs*Cr'+Cs' Cr) (aZ/W) (p'/4))

+ f iK*(Px)K(Pn Xx) }&
2 Re(Cs*Cr'+Cs'*Cr) (p/W) C ', (E'+E—W-)+-',WV+ V')

+2 Im(Cs*Cr'+Cs'*Cr) (aZ/W) C(1/24) (Ep' 4E+3p'W—)+&&(3p'+4) V)}}. (A4)

b "'= —v'6{—IK(Px) I'(I C.I'+
I
C.'I') (P'/W) C(1/9) (—2E+3W)+3 V)

+ IK(Pox x) I'(I Cr I'+
I
Cr'I') (p'/w) C(1/36) (4E+3W)+ l V)—[K*(Pn)K(Pnxx) j

X2(I C I'+ IC 'I') (P'/6W)+ tiK*(Px)K(P ) }L—2 Re(cs*c +Cs'*C ') (P'/3W)

+2 Im(Cs*Cr+Cs'*Cr') (p/4)aZ7+ {iK*(Px)K(Pn Xx) j C2 Re(Cs*Cr+Cs'*Cr') (p'/6W) (E+V)
—2 Im(Cs*Cr+Cs'*Cr')aZ(p/24) [CE+3(p'/W))+9V})}. (A5)

bp2"& = (1/g6) ( —j iK*(P»)K(B;,s) }C2 Re(Cp*Cr+Cp'*Cr') (p'/W) +2 Im(C p Cr+Cp'*Cr )4paZ)

+[K*(Pn x)K(B'~') }2(lCr I'+ ICr'I') (P'/W) L3 (—E+W)+ V)} (A6)

b&2&'& = —ii (5/3) &{[K*(Px)K(B,;s) } l 2 Re(Cs*Cr'+Cs'*Cr) (P/W) C(1/15) (5E' 5EW+6P')+—WV)

+2 Im(Cs'Cri+Cs'*Cr) (aZ/W) C(1/12) ( 3Ep' 4E+3p—'W)+—(-,'p'+1) V)}

{iK*(—Pn)K(B, ,s) }4Re(cr*cr')P
+ f iK*(Pnxx)K(B,;~) }4Re(Cr*Cr') (p/W) C(1/30) (5E'+10EW+9p')+WV)}. (A7)

b&2&'& = —{K*(Px)K(B,;~)}{2Re(Cs*Cr+Cs *Cr') (p'/2W) (—-',E+V)+2 Im(Cs*Cr+Cs *Cr')aZ(p/8)

x L{—E+ (p'/w) }+3v)}+{iK*(Pn)K(B,,s) }2(lcr I'+
I c,'I') (p'/2w)

—{iK*(Pnxx)K (B,,s) }2 (I Cr I
'+ [Cr'

I
') (P'/2W) C6 (2E+3W)+V). (AS)

b, 2&'& = (1/+10) ( }K*(Px)K(B,,s) j 2 Re(Cs*C'r'+Cs' Cr) (P'/W)
—{i K*(PnXx)K (B,;s) }4 Re(C.*C') (P'/2W) }. (A9)

b»"'= IK( '~') I'(ICrl'+
I

r'I')(E'+P')(&5)/12
b22&'& = IK(B"~) ['2 Re(cr*cr') (p/W) C(1/24) E'+ (1/40) p'7+10.

b» "&=—[K(B;;s) I

' ( I
Cr I

'+
I
Cr'

I
') (1/1 2) (-,') '*P'

b»&3& =—IK(B;;~)I'2 Re(Cr*Cr') (1/2+10) (p'/W).

(4) —{j

(A10)

(A11)

(A12)

(A13)

(A14)
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b»'" = IK(n') I'(I C~ I'+
I
C~'I') {(1/9) I E'+2E(p'/W)+P']+ '[E-+(P'/W)] V+ V'}

+ IK(vo) I'(I c,I'+ Ic,'I')+{iK*(n')K(vo) }2(le~ I'+ lc~'I') {-'[E+(p'/W)]+ V} (»»
bo&.

'&' = —{K*(n r)K(r) }{2Re(c&*cv'+C&'*Cv) (p/W) [(1/9) (E'+4EW+3P')+-', (E+2W) V+ V']
+2 Im(c~*cv'+C~'*Cy) (nZ/W) {(1/18) (3p'E+4E+3p'W)+-', (3p'+4) V j }—{iK*(n r)K(n) }
X{2Re(c~ Cy'+C~'*Cy) (p/W) [-', (E+W)+V] 2 Im—(c~*cy'+C~'*Cy) (nZ/3W) }
+{iK*(n r)K(nXr)}4 Re(c~*c~')(p/W)[ —(1/9)E(E+W)+-', WV+V']
+{iK~(vo)K(r)}{2Re(c~*cv'+C~'~cv) (p/W) [(oE+W)+V]
+2 Im(c~*cy'+C~'*Cv) (nZ/W) (1+-',p') }—{K*(yo)K(n)}2Re(c~*cy'+C&'*Cy) (p/W)

—{K*(ys)K(nXr)}4Re(C~*C~') (p/W) (-',E—V). (A16)

b»"'= —~3{IK(r) I'(Icy I'+
I
cv'I') {(1/9) L3E'+2E(p'/W)+3P']+ '[E+(-P'/W)]V+ V'}

+ IK(n) I'(I Cv I'+
I
cv'I')+ IK(nxr) I'(I C, I'+

I
C~' I') {(1/18) [3E'—4E(p'/W)+3P']

+ ', [ E+—(p—'/W)] V+ V'}—{K*(n)K(nXr)}2 Re(cy*c~+Cv'*C~') {o[—E+(p'/W)]+ V j

+{iK*(r)K(n)}2(ICv['+ICy'I') {s[E+(p'/W)]+V}
—{iK*(r)K(nXr) }2 Re(cy*c~+Cy'*C~') [(2p'/3W) V+ V']}. (A17)

big"& =42{IK(r) I'2 Re(Cv*Cv') (p/W) (oEV+ V')+ IK(n) I

'2 Re(Cv*Cv') (p/W)

+ IK(nXr) I'2 Re(c~'C~') (p/W) [(1/12) (E'—4EW+3p')+ ( 'E+W)—V-+V']
—{K*(n)K(nXr)}{2 Re(Cy*C~'+Cy'*C~) (P/W) Lo ( 2E+3—W)+ V]
+2 Im(cy*c~'+Cy'*C~) (nZ/2W) (~p'+1) }+{iK*(r)K(n) }4Re(Cy*Cv') (p/W) (oE+V)

+{iK*(r)K(n Xr) j {2 Re(cy*c~'+Cy'*C~) (p/W) [-', (E'—EW) —-', WV —V']
+2 Im(cy*c~'+Cy'*C~) (nZ/W) [(1/24) (Ep' 4E 3p'W—) —

o
—(3p'+4) V]}}. (A18)

b "'= —6'{—IK(r) I'(I Cv I'+
I
Cv'I') (P'/W) L(1/9) (2E+ 3W) goo V]P IK(nxr) I'(I C.I'+

I
C.'I') (P'/W)

X[(1/36) ( 4E+3W)+—i~ V] {K*(n)K(—nXr) j [2 Re(cv*c&+Cv'*Ca') (P'/6W)

+2 Im(cy*cg+Cy C+ ) (p/8)nZ] —{iK*(r)K(n) }2(lcv I'+
I
Cv'I') (p'/3W)

+{iK*(r)K(nXr) }{2 Re(cy*c~+Cv'*C~') (P'/6W) (—E+V)
—2 Im(Cv*c&+Cv'*C&')nZ(p/24)[{ —E+3(P'/W}+9V]}}. (A19)

boo"' =6 '{—{iK*(vo)K(Bv) }2(I C~
I

'+
I
C~'I') (P'/W)

+{K*(n r)K(B,,) }2([C~I'+ Ic~'I') (p'/W)p(E+W)+V]}. (A20)

b, o&'& = —
2 (5/3)'*{—{K*(r)K(B;;)}{2Re(cv*c~'+Cv'*C~) (p/W)[(1/15) (5E'+5EW+6p')+WV]

+2 Im (Cv*ca'+ Cv'*Ca) (a Z/W) [(1/12) (3Ep +4E+3p'W) + (4po+1) V] }

+ {iK*(n)K(B,;)}[2 Re(cy*cq'+Cy'*C~) p+2 Im(cy*c~'+Cy'*Cg) (nZ/W) (~p +1)]
—{iK*(nXr)K(B;;)}4 Re (C~*cq') (p/W) [(1/30) (5E'—10EW+9p')+ W V]}. (A21)

big"& = —{K*(r)K(B,,)}{2Re(cv*cg+Cy'*Cg') (p'/2W) (-',E+V)

+2 Im (Cy*cg+Cy'*Cg') nZ (p/8) [{E+(p'/W) }+3V]}
+{K*(n)K(B;;)}[2 Re (Cy*c~+Cy'*C~') (p'/2W)+2 Im (Cy*c&+Cy'*C&') opnZ]

—{iK*(eXr)K(B;;)}2(le~I'+lcq'I')(p'/2W)[o( —2E+3W)+V]. (A22)

b, g&'& = 10-&{—{K~(r)K(B,,) j 2 Re (Cy*cp'+Cv'*C~) (p'/W)+ {iK*(nXr)K (B,,) }4 Re (Cp*c&') (p'/2W) }.(A23)

b»"' = IK(B ) I'(I c~ I'+
I
c~'I') ( '+P') (v' )/12 (A24)

b»"' = —IK(B'J) I'2 Re(C~*C~') (P/W) [(1/24)E'+ (1/'N)p']V'10 (A25)

b»'" = —IK(Bv) I'(I C~ I'+
I
C~' I') (1/12) (o)'P' (A26)

boo~'& = IK(B;,) I'2 Re(cq*c~') (1/2+10)p'/W. (A27)

$22(4) =0 (A28)



F I RST —FORD I D DEN TRANS I T ION S

SIVA with Assumption of No Interference between STP and VA

2057

See Kq. (35). Here the bz z, & "& (L=L', for STP) are equal to the sz given by Alder, Stech, and Winther'i except
for constant factors which come from a difference in definition. Again, the real part of the b1,1,

(' '"& are equal to
those given for directional correlations by Morita. "The b&L, ("~ above are given for electron decay. For positron
decay, see the last paragraph in Sec. 2.

APPENDIX 2. FURTHER APPROXIMATION FOR bl, J r( )

In this Appendix we assume that V=—&rZ/2p))Ws and that K(B;;~) is large compared with the other first
forbidden nuclear matrix elements. Furthermore, we make the following abbreviations:

i VCr&'~K(P&r r) C—p&'~K(Pys) =«—'&

i VCs "K(l3r) Cr"—'K(p&r)+ VCr ' K(p&rXr) =rl
' .—

iCr&~)K (g; .s) =f&o-

i VCg&"K(&r r) —Cs&'~K(ys) =—)&&'&.

v
I K (r) Cv I K (&r)+ VCA

~ K (&r Xr) =p ~)
~

iCsK (8;;)= &'v&—

(A29)

(A30)

(A31)

(A32)

(A33)

(A34)

Here the prime in parentheses means the quantity either with or without a prime. Upon using these abbrevia-
tions and Eqs. (A1)—(A28), the bzz &"' for STPVA are greatly simplified as follows:

boo'" =
I
tl'+

I
k'I'+ I) I'+ I)&'I'. (A35)

(A36)

(A37)

(A38)

(A39)

(A40)

(A41)

(A42)

(A43)

(A44)

(A45)

(A46)

(A47)

(A48)

b-"'= (p/W) [8'+«*~ )*~' )-'*~]+—. .
b "'=—~3i:I~i'+ I~'I'+

I ~l'+ I f 'I'].
\

b»&" =~~(p/W) L r)*rf'+P*P'—]+cc.

$~~( ) —0

b„&'l =6-'(p'/W)
i
Pi-+ P'*g'+)&*v+),'*v']+c.c.

b»"' = s (5/3) 'PL %*i' ~'*—t + f *v'+/ '*v]+c c.

b. = (p/2W)L. -*t-+~'*t-'+.*+'*"]+. .
(3) —0

b-"=(5/»)(~+P')Elf i'+ll'I'+I i+i 'i ]
bss&" = 10**i (1/24) K'+ (1/40) P'] (P/W) Li *l'—v~ v']+ c.c.

b "'=—'(7/2)'P'Llf I'+ lf'I'+
I
vl'+

I
v'I']

b»"' =-', (10) (P'/W) i
—f'*f'+ v*v']+c.c.

b22(4) —0

If we assume C;= —C,' for i=S, T, P and C;=C for j=V, A, then p= —p', rf= —r)', |= —t', X=)&', p= p, ',
and v= v'. In the case of STP, the terms containing X, p, and v should be dropped. The above bl, ~ ("& are given
for electron decay. For the case of positron decay, see the last paragraph in Sec. 2.

APPENDIX 3. FIRST FORBIDDEN BETA DECAYS OF Sb"' AND Au"'

A recent experiment on the beta-gamma polarization correlation from Sc" has shown that the interference
between Fermi and Gamow-Teller interactions, Re(Cs*Cr'+Cs'*Cr —Cv*Cs' —Cv'*Cs), has the maximum
possible value. "This would imply that the beta interaction is invariant under time reversal. In contrast to the

"sm for
~
J'Pr( ( J'P&rXr( in reference 7 should be read as

sg = ——,
' Re(CsCr*+Cs'Cr'*7 (p2/E) pq+gg ,' Im/CsCr +Cs'Cr'")Znp(—(p'—/3E)+(t/9) g+ gg.

These authors may have dropped the L& term in the real part and a factor —,
' in the imaginary part."F.Boehm and A. H. Wapstra, Phys. Rev. 107, 1202 (1957).
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TABLE II. Theoretical values of the anisotropy' s(W) and the asymmetryb A of beta-gamma directional and polarization
correlations as functions of Y or' s for Sb"4 at the electron energy W'=Smc' and 8=150 .

—343—86—55—45
8.8
7.2
6.1

Experimental value

0.04
0.16
0.25
0.30
1.55
1.90
2.26

a(w)
—0.39—0.43—0.45—0.47—0.47—0.43—0.39

—0.43a0.04'

0.16
0.03—0.07—0.14—0.91—0.91—0.89

—0.13&0.06'

+ c(W) = {W(~) —W(~/2) l/W(~/2).
b The definition of A is given Eq. (53).' The quantity s is the magnitude of K(Bs&P) or Pt(Bs~); see text.
d See reference 27.
e See reference 29.

situation with Sc", the same interference appears to be very small from the experimental data on the beta-ray
angular distribution from polarized neutrons. ""Similar interferences are also expected in the erst-forbidden
transitions of beta decay. Fortunately, we have data on the beta-gamma polarization correlations from Sb'"
measured by Appel and Schopper, "and from Au"' by Boehm and Wapstra. "We shall analyze these data together
with data concerning other phenomena of the same nuclei.

To reduce the numerical task, we make several assumptions: namely, (nZ)'«1, otZ/2p)&We, and real coupling
constants. The beta interaction is assumed to be STP with C,= —C, or t/"A with C;=C;, or a linear combination
of these two interactions" with $= &), etc. Under the above assumptions, the asymmetry, A, of the beta-gamma
polarization correlation is expressed by Eq. (57) for Au"' and by Eq. (58) for Sb"4. Furthermore, the beta-gamma
directional correlation functions are equal to the denominators of Eqs. (57) and (58).

In the case of Sb"4, the results are shown in Table II. If we choose I'=0.25 —0.30, the theoretical values of the
asymmetry A, and the anisotropy a(W), of the beta-gamma polarization and directional correlations fit the
experimental data well. The parameter z= —iK(B,,&)/K(PeXr) [or —iK(B,~)/K(oXr) for VA], is a measure
of the magnitude of K(B,,&) [or K(B,,)$ and is related to V by z Y= —(nZ/2p) with the assumption x—y+1 =1.
(The definition of x, y, and z was given in reference 28, where an extensive analysis was performed on the beta
decay of Sb'".) It is interesting to notice that the values of s listed in the first column of Table II coincide with
those listed in Figs. 1—4 of reference 28; however, those listed in Figs. 1 and 3 disagree with the data given by
Appel and Schopper. ss With our choice of I =0.25 —0.30 we can fit the beta spectrum, ft value, and decay scheme
3 (P)2+(y)0+, for the same reason as given in reference 28. It should be noticed that the interaction STP without
K(B,; ) [or VA without K(B,;), or a linear combination of these two] disagrees with the large anisotropy of the
beta-gamma directional correlation of Sb"4.

In the case of Au"', the decay scheme is 2 (P)2+(p)0+. A small anisotropy of the beta-gamma directional
correlation requires a relation V= 2(s) &X. The maximum asymmetry of the beta-gamma polarization correlation
is A =0.60 at F= —0.33, while A, ~=0.52+0.09."As the allowed shape of beta spectrum of Au"' requires F&3,
we cannot obtain a consistent explanation with large values of K(B,, ) and K(B,,). Therefore, we omit these
matrix elements. The analysis without these terms is equivalent to that given by Boehm and Wapstra. "In this
case, it is necessary that the interferences among STP or t/A or both be maximum. "These interactions are also
consistent with the data on the longitudinal polarization of beta particles from Au" .'

For both Sb"' and Au"', the asymmetry and the anisotropy of the beta-gamma polarization and directional
correlations may be reduced by assuming complex coupling constants. If the coupling constants have very small
phase differences, we have no hope of detecting them.

Concluding the above analysis, the beta interaction is STP with C;= —C, or t/'A with C;=C, or a linear
combination of these two. All of the data on Au"' are favorable to the assumption of real coupling constants.
From the data on Sb"4, the reality of the coupling constants is indeterminate, because of large K(B;,&) and K(B;;)
terms.

"Surgy, Epstein, Krohn, Novey, Raboy, Ringo, and Telegdi, Phys. Rev. 107, 1731 (1957)."The data from polarized Cos' do not result in unique conclusions, because the beta-ray angular distribution shows that Re(Cs~Cr
+Cs'*Cr —Cv*Cs' —Cs'*Cs)2f'F/3for=0 LAmbler, Hayward, Hoppes, Hudson, and Wu, reference 20), and the beta-gamma direc-
tional correlation shows Im(Cs~Cr'+Cs'~Cr —Cv*Cs' —Cv'*Cs)Mv/Mar=0 (Ambler, Hayward, Hoppes, and Hudson, Phys. Rev.
108, 505 (1957)j.This implies that (Cs*Cr'+Cs'*Cr Cv*Cx' Cv'*Ca) =0—and/or M—r/3for =0

5 See reference 29. We have assumed that TV= 5mc2 and 8= 150' in their experiment."See reference 26. We have assumed that 8'= 2.8mc' and cos'0= q in their experiment.
Fujita, Yamada, Matumoto, and Nakamura, Phys. Rev. 108, 1104 (1957).They obtained a conclusion similar to ours by a theo-

retical analysis of the beta-ray spectrum of RaE.
's Benczer-Koller, Schwarzschild, Vise, and Wu, Phys. Rev. 109, 85 (1958).


