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A phenomenological theory is developed which accounts for the
ionization produced by single collisions between heavy atoms or
ions at kiloelectron volt energies. The collision ionization is
regarded as a two-step process. First, as the two electron dis-
tributions sweep through each other, a certain amount of energy
is transferred by a friction-like mechanism from the kinetic energy
of translation of the atoms to their internal degrees of freedom.
Second, this transferred energy, which is analogous to heat energy,
is statistically distributed among the electrons. The probability
that any given number of electrons acquire more than the ioni-
zation energy is then computed by a straightforward statistical

analysis. The probabilities that the collision products are in the
various states of ionization are thereby calculated as functions of
the collision parameters. This ionization mechanism is analogous
to the evaporation of molecules from a heated liquid.

The theory is compared with experiment for the case in which
singly charged argon ions are scattered by neutral argon atoms at
energies of 25, 50, and 100 kev. At each bombarding energy the
probabilities of finding the detected atom in any of the charge
states, from zero to seven times ionized, as functions of the angle
of scattering are predicted with reasonable accuracy with only
two adjustable parameters.

1. INTRODUCTION amount of energy is transferred to the internal motion
of the colliding atoms.

The detailed assumptions which define the proposed
model are presented in Secs. 2 and 3. Section 2 deals
with the statistical distribution among the orbital
electrons of the energy transferred to the internal
degrees of freedom. In Sec. 3, the energy transferred
to the internal motion is obtained as a function of the
collision parameters. In Sec. 4, the theory is compared
with experiment in the case of scattering of singly
ionized argon atoms incident upon neutral argon atoms
at energies of 25, 50, and 100 kev. Agreement with the
data is found to be good. In the concluding section, the
assumptions made in Secs. 2 and 3 are examined by
analyzing the effects on the over-all agreement when
they are altered.

HEN two atoms collide at sufficiently high
energies, a scattering occurs which can be

adequately accounted for in terms of an elastic collision
between two shielded point charges. ' In addition, the
scattered systems are found to be in various states of
ionization. Recently, considerable experimental data
has been accumulated on the scattering of heavy ions
by heavy neutral atoms, giving the probabilities of the
various states of ionization as functions of the energy
and the scattering angle. ' 4

Inasmuch as a rigorous quantum-mechanical ap-
proach to the problem appears to be of prohibitive
difFiculty, it seems to be a worthwhile endeavor to
formulate a phenomenological model of the collision-
ionization process at these energies, which correlates
the existing experimental data. It is hoped that this
will supply an intuitive understanding of the process
which may not only provide a framework for conceiving
new experiments, but also indicate the approximations
most appropriate in an eventual rigorous quantum
mechanical approach to the problem.

Basically, in the model suggested by the data, the
collision-ionization is regarded as a two-step process.
First, as the two charge distributions sweep through
each other, a relatively small ainount of the kinetic
energy of translation of the atoms is transferred to
their internal degrees of freedom by a friction-like
mechanism. Second, upon separation the "heated"
atoms get rid of this excess energy partly by photon
emission and partly by electron evaporation. It is to
be expected that there will be a statistical distribution
in the number of electrons evaporated when a given

2. DISTRIBUTION OF THE ENERGY TRANSFERRED

The purpose of this section is to determine how the
energy transferred to the internal degrees of freedom
is distributed among the electrons. For the sake of
explicitness, the present work is restricted to the case
in which both atomic particles, target and projectile,
have outer shells of eight electrons and in which the
translational energy of the projectile is between about
2 kev and 1 Mev. These requirements are fulfilled by
the argon-argon collisions for which the theory will be
compared with the experimental data.

A. Assumptions

Four assumptions are made. They will be discussed
below and re-examined in the light of the experimental
data in Sec. 5.

*This work was sponsored by the Office of Ordnance Research,
U. S. Army, through the Ordnance Materials Research Office at
Watertown and the Springfield Ordnance District.' Everhart, Stone, and Carbone, Phys. Rev. 99, 1287 (1955).' Fuls, Jones, Ziemba, and Everhart, Phys. Rev. 107, 704 (1957).' Carbone, Fuls, and Everhart, Phys. Rev. 102, 1524 (1956}.

4 D. M. Kaminker and N. V. Fedorenko, Zhur. Tekh. Fiz. 25,
2239 (1955).

(1) The energy transferred is distributed among the
eight outer electrons only.

(2) The energy transferred is statistics, lly distributed
among these electrons. To make the problem tractable,
the energy scale is divided into cells of equal width e.

(3) The ratios of the statistical weights of the cells
in the bound energy region to those of the cells in the
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FIG. 1. Broadened energy-level diagrams for neutral argon. The
shaded area shows the allowed energy ranges for an individual
electron. The vertical axis has —(1+E) plotted on a logarithmic
scale in order to show the entire energy range of interest, including
all bound states. For collision times corresponding to each of the
three bombarding ion energies, all energy levels were broadened
to cover a range 2AE, where hE is the Heisenberg uncertainty in
the energy. The bound excited levels were obtained from that part
of the optical spectrum in which one 3s electron is elevated to the
respective vacant levels. The lines, wherever drawn, show the
original unbroadened levels.

hE 5/T = Ivvr/D.

For argon-argon collisions at bombarding energies of

25, 50, and 100 kev, for example, d,E is found to be

continuum are approximately unity. In other words,
all cells are taken to have the same statistical weight.

(4) A uniform ionization energy is assumed. Any of
the eight outer electrons that acquire more than this
energy will escape regardless of how many others also
escape.

The ultimate justi6cation for these assumptions is
that they are necessary in order to achieve agreement
with the data. Therefore, in Sec. 5, these assumptions
are varied and it will there be seen that any significant
change either destroys or appreciably reduces the
agreement. Nevertheless, the assumptions are intui-
tively reasonable a Priori, as the following plausibility
argument will show.

The collision process takes place during a finite time
T=D/vr, where D is a distance of the order of magni-
tude of the diameter of an atom and ml is the trans-
lational velocity of the projectile. Because of the
Heisenberg uncertainty principle, each sharp energy
level in the discrete part of the spectrum is broadened
to an interval of half-width

1.7, 2.4, and 3.4 ev, respectively. The effect of this
broadening on the energy spectrum of an isolated
argon atom is shown in Fig. 1. Between the first excited
state and the ionization energy, the width of the levels
is larger than the separation between them so that this
portion of the energy spectrum which contains the
bound excited states is smeared into a continuum. To
be sure, the broadening produced by the uncertainty
principle has been applied to the level structure of an
isolated atom. The structure will be diferent for a pair
of atoms in close proximity (during the collision), but
it is reasonable to assume that the orders of magnitude
of the spacings are the same as for the isolated atoms.
Thus, it does not appear unreasonable to assume a
statistical distribution of the energy transferred with
equal statistical weights (assumptions 2 and 3). The
lower limit of projectile energy for which these assump-
tions are expected to be valid is ~2 kev at which energy
the individual energy levels begin to resolve.

The broadening of the E and I. energy levels is
negligible by comparison with their separations and
does not even show up on the logarithmic scale of Fig. 1.
Therefore, it would appear that these electrons can
adjust adiabatically to the changing potential during
the collision. Moreover, if any of these electrons were
given any energy at all, they would have to be given an
inordinately large amount of energy (enough to raise
them to a vacant level). This seems to be a valid argu-
ment for restricting the distribution of the energy
transferred to the eight outer electrons (assumption 1).
The validity of this assumption fixes the upper limit
of collision energies at which the model can be expected
to hold. It should be noted, however, that the E and I
electrons can take part in electron-electron collisions
to the extent that they can give or receive an energy
of the order of magnitude of AE without leaving their
original states. Thus, these electrons can account for a
small part of the energy transferred. This point will be
discussed further in Sec. 5.

There is no a priori justification for assumption 4.
If electron evaporation took place long after the atoms
separated (i.e., when each was isolated), it would take
a minimum of 15 ev to get one electron out, ~45 ev
to get two electrons out, etc. ; that is, the greater the
number of electrons which are evaporated, the more
energy is required per electron. Such a "staggered
ionization energy" is considered in Sec. 5, and it yields
results in noticeably poorer agreement with the data.
Thus, it appears that evaporation takes place as the
two atoms are separating. (It should be pointed out
that this is implicitly required by assumptions 2 and 3,
for if the evaporation took place long after separation,
the uncertainty principle broadening would no longer
be valid. ) Inasmuch as electron escape appears to take
place when the atoms are not isolated, it is plausible
that a uniform ionization energy is a better approxi-
mation than a staggered ionization energy.
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B. Ionization Probabilities

As noted in assumption 2, the energy scale is divided
s'nto cells of equal size e and, according to assumption
3, of equal statistical weight. The ionization energy
may be taken as a convenient multiple of e. Too small
a multiple, however, would result in too coarse sta-
tistics, whereas a large multiple, although desirable
for accuracy, would result in calculations of exorbitant
length. As a compromise, 4e is taken as the ionization
energy.

The energy transferred, denoted by E&, is considered
to be mc if me&Er&(m+1)e, where m is an integer.
It follows from the four assumptions that the proba-
bility P (m) that a neutral atom will become n times
ionized if an energy E&=me is transferred to its internal
motion is given by the number of ways in which the
energy use can be divided among the eight outer
electrons so that e and only e electrons have 4e or
more, divided by the total number of ways that the
energy nze can be divided among eight electrons.

To facilitate the counting, the following quantities
will be introduced.

(a) E„(m) is the total number of ways in which the
energy, E&——me, can be divided among n electrons.
This is just the number of ways of writing m as the
suni of e integers (where 1+2+3 and 1+3+2 are
counted as two diferent ways of writing 6 as the sum
of 3 integers). '

(b) Q„(m) is the number of ways in which the energy
me can be divided among e electrons such that mome

have more energy thar 3e. It is the number of ways in
which m can be written as the sum of e integers, all
less than or equal to 3.

electrons will have sufficient energy to get out. The
remaining electrons, which are excited but do not have
enough energy to escape, will fall back to their ground
states, giving up their energy by photon emission. The
Pauli exclusion principle does not a6ect the results
given by (2), since only a few electrons are distributed
over a large number of cells. Moreover, each cell can
accommodate a large number of electrons, equal to the
number of individual levels contained within the cell,
in the bound region and an infinite number in the
continuum.

It remains now to calculate the quantities E„(m)
and Q„(m), which can be obtained by means of recursion
relationships. Suppose that for given e the E„(m) were
known for all m. That is, for e electrons, the total
number of ways of distributing the energy nze has been
calculated for all m. It is then possible to calculate
E~i(m). The v+1st electron can be given any energy
from Oe to me. If this electron is given energy rc, the
remaining I electrons must share the energy (m —«)e
and this can be done in E„(m—«) ways.

E„+,(m) = P E'„(m—«).
r=o

(3)

To start this chain, it is necessary to have E2(m), the
number of ways that nest can be divided between two
electrons. The first electron can be given energy 0, e,

, me (i.e., m+1 possible values) and, of course,
there is then no further choice, since the second electron
must take what is left over. Therefore,

E2(m) =m+1.

The recursion scheme given by Eqs. (3) and (4) can be
solved explicitly:

%ith these definitions, the ionization probabilities are
found, by elementary algebra, to be

Po(m) =Q8(m)/E'8(m),

e—1

E„(m)= g (m+i) (e—1)!.

(g) m—4n (2)
P„(m) =

~ ~ P K„(i)Q& „(m 4e i)—/E8(—m),
I eJ '=0

(s) .
where

~ ~
is the binomial coefficient.

ye)
Equations (2) give the probability that when the

energy me is distributed among eight electrons, e

~ The electrons are here treated as distinguishable particles,
although they are not, of course, intrinsically distinguishable.
However, the eight electrons are initially in eight difterent angular
momentum quantum states, and a distinction can be made in
terms of these initial states. Thus, if only one electron escapes, it
makes sense to say the electron originally in state such-and-such
escaped. In fact, if only one electron is knocked out and the others
are unaffected by the collision, the distinction can clearly be made
experimentally by noting which quantum state is vacant after the
collision. If this reasoning is debatable, it would be well to point
out that the above argument is not essential to the validity of the
theory. The energy cells are highly degenerate and the occupation
numbers small, in which case Fermi-Dirac, Bose-Einstein, and
Boltzmann statistics all reduce to a common limit.

The recursion relationships for the Q„(m) can be
similarly obtained. If the Q„(m) are all known, then

Q~i(m), the number of ways v+1 electrons can share
me such that none has more than 3e, can be obtained
by giving the last electron any one of the four permitted
values of energy, 0, c, 2c, or 3e. The remaining e
electrons must then share the energy me, (m —1)e,
(m —2) e, or (m —3)e in such a way that none has more
than 3e. Thus

Q~ (m)= 2 Q (m —«)
r-O

As can be seen by direct counting,

Q2(m) =m+1 for 0&m&3
= 7—m for 4&m&6

0 for 7&ns.

(6)

No explicit solution analogous to Eq. (5) for this
recursion scheme was obtained, and the Q (m) had to



2018 A. RUSSEK AN D M. T. THOMAS

1.0

.9

.8

.7

.6
Pn 5

I
~

I ] & [ I /
'

f ~ $ ~ [ ~ I t I

be tabulated directly from Eqs. (6) and (7). Upon
using the values of the E„(m) and Q„(m) obtained in
this manner in Eqs. (2), the ionization probabilities are
obtained as functions of m =Sr/e and are shown in
Fig. 2 for the eight-electron case.

C. Comparison of Evaporation Theory
with Experiment

In order to compare the evaporation theory, just
presented, with experiment, account must be taken of
the fact that the incoming particle, which is already
singly ionized, comes into intimate contact with the
electronic shells of a neutral atom. There is an even
chance that, upon separation, this single electron
deficiency will be associated with either atom. Hence,
the probability that the projectile will be singly
charged, even before electron evaporation is taken into
consideration, is one-half. This modifies the ionization
probabilities as calculated in the previous section and
presented in Pig. 2.

The modified ionization probability is denoted by
P„. This is just the probability —,P (m) that upon
separation the observed atom was neutral and evapo-
rated e electrons plus the probability ~2P ~(m) that
it was already singly ionized and lost only e—1
electrons.

P„(m) =-,'E„(m)+-,'E i(m).

These probabilities are shown in Fig. 3, plotted against
the energy transferred ET in units of size t., this unit
being one quarter of the average ionization potential.

In order to compare the theory with the experimental
data, the ionization probabilities must be plotted not as
functions of E&, but as functions of the energy of the
incident projectile El and the angle of scattering 8.
Section 3 which follows is devoted to this aspect of the
problem. However, it is evident that E~ is a monotonic

0 4 8 l2 l6 20 24 28 32 36 40 44 48
ETy

FzG. 2. The ionization probabilities for a neutral atom containing
eight electrons in the outer shell are plotted as functions of the
energy Ez transferred to the internal degrees of freedom. The
energy is given in units of size e, e being one quarter of the average
ionization potential of the electrons in the outermost shell.

increasing function of 0, for the large deRections 0
correspond to violent collisions for which E~ is large,
and vice versa. Replotting the ionization probabilities
as functions of 0 instead of Ez has only the e6'ect of
horizontally distorting the curves of Fig. 3 with no
change in the vertical direction. If Fig. 3 were repro-
duced on a sheet of rubber which was capable of being
stretched arbitrarily in the horizontal direction but
was rigid in the vertical direction, it should be possible
for some inhomogeneous horizontal stretching, to make
them congruent, at each incident ion energy to a similar
figure in which the experimental ionization probabilities
are plotted as functions of 0. What is being said, in a
somewhat pictorial way, is that the evaporation theory
just presented predicts, unambiguously and without
any parameter adjustments whatever, not only the
heights of the peaks of all the ionization probability
curves as well as the height of the intersection of each
pair of curves, but also the horizontal order in which
they occur.

The evaporation aspect of the model is quite suc-
cessful as can be seen in Table I. This gives the heights
and order of occurrence as E~ increases. For comparison,
the corresponding values, taken from the experimental
results of reference 2, for collisions of A+ on A at 25,
50, and 100 kev, are listed in order of increasing de-
Qection 0. Agreement between theory and experiment
is seen to be quite good. Indeed, the agreement between
the experimental curves, themselves, at the three
different energies (insofar as heights of peaks and
intersections and order of occurrence is concerned)
constitutes a verification of the evaporation theory.
Despite the diGerence in appearance of the sets of
experimental curves shown in Fig. 4 (reproduced from
reference 2), they are all essentially horizontal dis-
tortions of a single set of curves, as Table I indicates.
With a single exception, the experimental peak and
intersection heights at the three different energies

agree with each other to within 0.05, and the theoretical
values for these points agree with the average of the
experimental values to within 0.04, the mean dis-

.60-
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0 5 IO l5 20 25 50 55 40 45 50

FIG. 3. The modified ionization probabilities, P„, defined by
Eq. (8) in the text. These are needed for the scattering of singly
ionized atoms by neutral atoms of the same type.
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crepancy being 0.02. These discrepancies are quite
small, by comparison with 0.5, the approximate height
these curves achieve.

3. ENERGY TRANSFERRED

The purpose of this section is to obtain a measure of
the energy Ez transferred to the electrons during the
collision. The energy transfer process is assumed to
consist of a number of two body electron-electron
collisions which jar the colliding electrons out of their
initial orbits into those of higher energy. This assump-
tion (number 5) takes the mathematical form

.50—

.40—

.30—

.20—

IO—

A

A"

.50—

A,
0' 4' 8' l2' I6' 20' 24' 28' 52' 36' 40'

+60 I j & j I j I
l

& j 1 j & j & j & j I

A'on A

Er(Er,«) = er(Er) ~(Er,~o), (9)

Intersection
or

peaka
Experimental valuesb

25 kev 50 kev 100 kev
Theoretical&

values

P2XP1
P3XPp

I'2
P3XP1
P4XPp
P3XP2
P4XJ'1

P3
P4XP2
PSXPp
P4XP3
PSXP2
P6XP1

P4
PgXP3
P6XPg
P5XP4
P6XP3
PVXPg

I'5
P6XP4

0.42
0.09
0.42
0.24
0.07
0.34
0.15
0.41
0.23

0.07
0.51
0.22
0.05
0.33
0.13
0.38
0.24
0.03
0.33
0.13
0.02
0.38

0.36
0.13
0.36
0.24

0.32
0.14
0.02
0.37
0.24
0.06
0.32
0.14
0.04
0.35
0.24

0.42
0.09
0,46
0.25
0,02
0.39
0.11
0.42
0.25
0,00
0.35
0.13
0.01
0.37
0.24
0.07
0.32
0.14
0.03
0.35
0.24

a Pz )&Pi refers to the height of the intersections of the curves Pz and Pi,
etc. P2 refers to the height of the peak of the curve P2, etc.

b Taken from Fig. 4.
e Taken from Fig. 3.

where e2 is the average energy acquired by each electron
in an electron-electron collision and v gives the number
of such collisions that take place during the over-all
atomic collision. The collision parameters are the energy
E& of the incident projectile in the laboratory reference
frame, and the distance ro of closest approach of the
two nuclei.

Two assumptions are implicitly made when E& is
expressed in the form of Eq. (9).

(Sa) The electrons can adjust adiabatically to the
nuclear motions, so that the energy transferred is
primarily due to electron-electron collisions. This is
equivalent to assuming that the orbital velocities are
large compared to the relative velocity of the atoms.

(5b) An electron-electron collision transfers a sig-
nificant amount of energy to the internal motion only
if the impact parameter of this collision is less than
some fixed length I. which is small compared to the

TABLE I. Heights of intersections and peaks of the theoretical
ionization probability curves compared with the experimental
values.

.40—
P

.30—

.20—

.IO-

I

0 4' 8 l2 I6' 20 24 28 32 36 40
@60 I j I j I j 1 j l j i j I

j
I j I j I

A'on A

loo kev
.50-

.40-

.30—

20 -A

A

A
t I I

0 4' 8' 12' I6' 20' 24' 28' 32' 36' 40'
ANGLE OF SCATTERING e, LABORATORY COORDINATES

.IO—

FIG. 4. The experimental ionization probabilities for A+ on A
at energies of 25, 50, and 100 kev taken from reference 2, are here
shown plotted as functions of 0 the angle of scattering in laboratory
coordinates.

size of the atom. The forces between charges at larger
separations combine to form an average force on each
charge which contributes to the deflection of each atom
as a whole by the collision. As a consequence of this
assumption, forces due to all other charges can be
neglected during each electron-electron collision,
thereby justifying the expression of ET in terms of
two-body collisions.

As a rough approximation, the energy transferred per
electron-electron collision will be taken to be the average
energy possessed by each electron in one atom with
respect to a frame 6xed in the second atom,

eT (Er) = (om(vo+vr) )= eo+ (m/~)Er. (10)
This is the average energy which each electron has as
it smashes through the other atom. Here vo and eo

denote average orbital velocity and energy respectively,
m and M represent the electron and atom masses
respectively, and v& and E& the velocity and energy of
the incident projectile. It should be stressed that Eq.
(10) is not an assumption, but rather, an approximation.
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refer, not to over-all densities, but only to the densities
of those electrons allowed to participate in collisions;
i.e., M-shell electrons.

The number of collisions v is essentially just the
number of electron pairs, one from each "squashed"
atom, which lie within a distance L of each other in
the plane into which the two atoms have been squashed.
In fact, v is given by this quantity except for a multi-
plicative function g(Ez) to be discussed presently. Thus

v=g(Ez) o t(xz,yt)os(xs ys) f(R»)dxtdytdxsdys, (12)

where
R12 [(xr x2) + (yt y2) ]

f(Rrs) =1 if Rrs&L
=0 if Rg2&L,

(13)

FIG. 5. A typical scattering event. The actual path of the
incident atom is shown as a solid line, while the dotted straight
line parallel to the s axis at distance ro is the approximate path
used in the theory. In the region in which the charge density is
appreciable (within the circle), the two paths do not difFer greatly.

A typical scattering event is shown in Fig. 5, where
the actual path of the incident atom is shown as a solid
line. The dotted. straight line parallel to the s axis at
distance ro closely approximates this path in the region
in which the charge densities appreciably overlap. This
straight line path, which may be taken parallel to the
s axis for convenience, can therefore be used to simplify
the calculation of the number of electron-electron
collisions v. The latter quantity is equal to the number
of electrons of one atom which sweep past any electron
of the other atom with a distance of closest approach
less than or equal to L. Since all of the electrons in a
cylinder parallel to the s axis will sweep past any point
with the same minimum distance, as can be seen in
Fig. 6, it is convenient to introduce the density function
o.(x,y) for either atom, where o(x,y)Cxdy gives the
number of electrons in one of the cylinders of cross-

' sectional area dxdy shown on the 6gure. This number
of electrons is

and 0.
& and-02 are the squashed densities of the two

atoms. If these density functions do not vary rapidly
over distances comparable with L, the theorem of the
mean may be employed to simplify the result. Thus,
f(Rts) will be approximated by a multiple of the Dirac

function, wL'8(Rrs). integrating over xs, ys and
replacing xy, yy by x, y,

where
v=~L'g(&r)~(ro),

2'(r, ) = "o,(x,y)o, (x,y)dxdy.

(15)

(16)

In the above description, it was implicitly assumed
that the electrons did not move in their respective
orbits as the two atoms sweep through each other. The
orbital motion of the electrons will increase the number
of electron collisions. This can best be seen by imagining
a very slow atomic collision. During the time of sweep-
through, each electron will make several revolutions,
so that the same pair of electrons may bump into each
other several times during the collision. The factor

o (R) = ~ p(r)ds, (11) y

where R= (x'+y') ' and r = (x'+y'+s')'*. Here, p is the
number of electrons per unit volume. The density 0. is,
then, just the area density that would result if the atom
were squashed Oat in a plane perpendicular to the
direction of motion, as shown in Fig. 6. For this reason,
0 will be referred to as the "squashed density. " It
should be pointed out that p and cr should properly

FrG. 6. A three-dimensional view of the scattering event
shown in Fig. 5.
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g(Ez) gives the dependence of the number of electron-
electron collisions on the incident ion energy. For an
infinitely fast collision it should reduce to unity, since
the remaining factors in Eq. (15) were derived on. the
basis of electrons fixed in their respective atoms during
the collision. The increase in the number of collisions
due to a finite collision time is expected to be propor-
tional to the time of collision. Therefore, it is reasonable
to assume that g(Ez) has the form:

g(Ez) = 1+If'/»= 1+». f, -
where 8 is an undetermined positive parameter.

With Eqs. (10), (15), and (17) substituted into Eq.
(9), Er then has the form:

ET (Ez,ro) =A (1+rrzEz/Meo) (1+&Ez ')M (ro) (18)

where, eoxI.' has been replaced by the second undeter-
mined parameter A. This involves no loss of infor-
mation, inasmuch as I. is also undetermined.

Equation (18) gives the energy transferred as a
function of Ey and ro, while the experimental data is
given in terms of E~ and 8. However ro is a known
function of Ez and 0, (see reference 1) so that Eq. (18)
can be re-expressed in terms of the proper variables
with no further assumptions required. This is done in
the following section.

It may be noted, at this point, that the parameter
A and the unknown ionization energy of the previous
section actually constitute but a single adjustable
parameter, inasmuch as only the ratio of the two enters
into the theory. Therefore A/e and 8 are the only two
adjustable parameters of the theory.

24-

25
I

I

I

I

l

I

I

I

I

I

20-& I

I
I

l

II

lI
ll
I

I

i5-
II

ll

ll

1

1

I 0-
l
l
I

I

{a)

Hartree Densities

M- shell

~ shell ——--
K+ L+MJ

/

4. COMPARISON WITH EXPERIMENT

The complete theory described above will now be
compared with experiment for the case in which singly
ionized argon atoms are scattered off neutral argon
atoms at bombarding energies of 25, 50, and 100 kev.

Figure /(a) shows the radial distribution of electrons
4m.r'p, where p is the number density, which follows
from a Hartree self-consistent calculation for neutral
argon. The part due to M-shell electrons only is required
by the theory of Secs, 2 and 3 and is shown as a solid
curve. The broken curves show the distributions due
to (L+M)-shell and (E+L+M)-shell electrons, for
comparison. The abscissa in this figure is r/ai, where
ai is ao/Z', ao being the radius of the first Bohr orbit
in hydrogen. A numerical integration of p, as indicated
in Eq. (11), results in the squashed density o.. The
squashed densities which follow from the three distri-
butions described above are shown in Fig. 7(b). Again,
the one required by the theory is shown as a solid curve.

With this squashed density, the function M(ro) is
computed by means of Eq. (16). This was done for
nine values of the parameter ro in the range 0&ro&2a~.
The solid curve of Fig. 8 shows the function M, for
M-shell electrons only, plotted in terms of the dimen-

5-

I.O

(b)

2.0 xo R/0

FIG. 7. (a) shows the radial charge distribution dZ/dr= 4rrr'p-
that follows from a Hartree self-consistent calculation. The
3f-shell distribution is shown by the solid curve, while the broken
curves show the distributions that result from I-+ Jt/I and
X+I.+3f electrons. The abscissa is given in terms of the dimen-
sionless variable r/ai. (b) shows the squashed densities o, de6ned
by Eq. (11) in the text, that follow from each of the above dis-
tributions. Again the lV shell is designated by the solid curve.
The abscissa is given in terms of the dimensionless variable ff/a&.

sionless variable ro/ai. Next, M(ro) is expressed as a
function of angle of scattering and energy by deter-
mining the dependence of ro on 0 for each of the bom-
barding ion energies. This dependence is shown in Fig.
9, the curves being interpolated from the results ob-
tained by Kverhart, Stone, and Carbone' and tabulated
in Table I of that paper, after converting to the labora-
tory coordinates for the angle of scattering. It should
be noted that the length a defined. in their paper is not
the same as a~ defined here. In fact, a~ =aV2 in this case.
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Fzo. 11.The ionization probabilities are plotted as functions of
8 for each bombarding ion energy. These result when functional
dependence oi Er on 8 is that given by the theory of Sec. 3 (the
solid curves of Fig. 1.0). This illustrates the agreement obtained in
comparing the entire theory with experiment.

Table I that the heights of these intersections are
successfully predicted. )

The major source of discrepancy lies in the calculation
of the energy E& transferred to the internal motion by
the collision and, in particular, with the assumption
that only M-shell electrons participate in electron-
electron collisions. If, instead of using the function

M(rs) calculated with M-shell electrons only in Eq.
(18), the function shown by the dashed curve of I'ig.
8 is substituted, the energy transferred is that given

by the dashed curves of Fig. 10, after readjustment of
A and 8 to 13.0&a&' and 7.90 ev' respectively. This

~ ~

corresponds to allowing E and L electrons to partccs-

pate, to a limited extent, in electron-electron collisions,

as can be seen in Fig. 8. The consequent agreement

FIG. 12. The ionization probabilities are plotted as functions of
8 for each bombarding ion energy. These result when the func-
tional dependence of Ez on 0 is that given by the dashed curves
of Fig. 10.This illustrates the agreement obtainable by the theory,
but using a charge distribution and consequent 3/I(ro/u&) inter-
mediate between that which follows from 3II-shell electrons only
and (A+M) -shell electrons.

between theory and experiment, which is markedly
improved, is shown in Fig. 12.

Before concluding this section, it is appropriate to
compare the values of the parameters A and 8 as
obtained by empirical adjustment to the orders of
magnitude expected on a priori grounds. The parameter
A of Sec. 3 is equal to xL'eo, where I. is the impact
parameter for electron-electron collisions below which
an appreciable fraction of the momentum transfer will
be of the random, thermal type, and eo is the orbital
kinetic energy of M-shell electrons. By adjustment, A
was found to be of the order of magnitude 206cy',

where c is one quarter of the ionization energy. Taking
the ionization energy to be approximately equal to the
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first ionization energy of a neutral atom, ~eo, and
equating the empirical value to the above expression
for A,

20(ep/4)uP= prLPep,

from which it is found that 1.=1.3u1. This is indeed a
reasonable size for a length which should be small,
but not negligible compared to the size of the atom.

The term 8/Zr& of Eq. (17) might naively be ex-

pected to be roughly equal to the number of orbital
revolutions made by an M-shell electron during the
time of collision. Taking the time of collision to be
equal to the time it takes for the nucleus to travel a
distance equal to the diameter of the M shell, the
number of revolutions completed during the collision
time is found to be 2.1, l.5, and 1.1 revolutions at 25,
50, and 100 kev, respectively. This would yield a
theoretical value for 8~330 ev& as compared to the
value 7.9 ev' obtained by empirical adjustment. How-
ever, it should be noted that at all of the bombarding
energies considered, an M-shell electron makes at least
one revolution, so that each of the electrons might be
supposed to make at least one collision during the time
the atoms are in contact. Inasmuch as just one electron-
electron collision transfers nearly all the orbital kinetic
energy of the affected electron into the "thermal"
energy Ez, the effectiveness of successive collisions in

increasing Ep is relatively small. Therefore, the eGective
value for 8 should be much smaller than that obtained

by merely considering the dependence of the number of
electron-electron collisions on the time of collision.

S. ANALYSIS OF THE ASSUMPTIONS

In Secs. 2 and 3, a model of the collision-ionization
process was proposed via five assumptions. It was seen,
in the previous section, that they yield good agreement
with the data. However, before concluding that they
are supported by the data, it is worthwhile examining
the necessity of these assumptions by varying them and
noting the effects produced thereby on the over-all
agreement with the data.

A. Concerning Assumption j.

This assumption stated that primarily the eight
M-shell electrons, took part in the electron-electron
collisions. However, it was pointed out that the un-

certainty principle broadening of the energy levels
would permit the E- and L-shell electrons also to
participate to a limited extent in these collisions. In
order to examine the validity of this assumption, not
only was the function M(rp) calculated using just the
M-shell electrons, but also similar calculations were
performed using I; and M-shell electrons as well as
E , L , and M-shell ele-ctrons (i.e.-, the over-all density).
These curves are all shown in Fig. 8. In addition, Fig.
8 contains an empirically determined function'M(rp)
which, when used with Eq. (18), yields the energy
transferred E&(8,Er), shown by the dashed curves of

Fig. 10, which most closely approximates the empirically
obtained function Ez, shown by the dotted curves. It is
seen in Fig. 8 that the effect of including collisions of the
inner electrons is to give the function M(rp) a steeper
slope for small values of ro. It is also seen that the
empirically determined curve lies between the one
obtained using M-shell electrons only and those ob-
tained when inner electrons are included, but that it
lies closer to the former. This would appear to lend some
support to the assumption and the reasoning behind it.

P„'(m) =-,'P '(m)+-,'P„g'(m), (19)

where I'„' is given by the following modification of the
P„edfi end by Eq. (2):

P„'(nz) =w' —"P„(re) P w' —"P (m).
r=o

(20)

TAsr.z Il. Comparison of theoretical heights of intersections
and peaks for various statistical weights with the average experi-
mental value.

Intersection Av.
or exp Theoretical value

peak' valueb m =1.25 1.00 0.715 0,500 0.100

J'2XP1
PSXPp

P2
P3XP1
P4XPD
PSXP2
P4XP1

P3
P4XP2
PgXP1
P4XP3
PSX+g
P6XP1

P4
PO,XP)
P6XP2
P5XJ'4
P6XP3
Pz&P2

P5
P6XP4

Mean
d1screp ance

0.42 0.42 0.42 0.42 0.42 0.45
0.08 0.08 0.09 0.08 0.08 0.05
0.47 0.46 0.46 0.47 0.46 0.50
0.23 0.25 0.25 0.25 0.25 0.24
0.06 0.02 0.02 0.02 0.02 0.00
0.34 0.38 0.39 0.39 0.39 0.42
0.14 0.11 0.11 0.10 0.10 0.07
0.37 0.42 0.42 0.43 0.43 0.47
0.24 0.25 0.25 0.25 0,25 0,25
0.06 0.04 0.04 0.04 0.03 0.02
0.33 0.36 0.35 0.36 0.37 0,41
0.14 0.13 0.13 0.13 0.13 0.09
0.02 0.01 0.01 0,01 0,01 0.00
0.37 0.37 0.37 0.39 0.40 0.45
0.24 0.25 0.24 0.25 0,25 0.25
0.06 0.07 0.07 0.06 0.05 0.02
0.32 0.32 0.32 0.33 0.34 0.38
0.14 0.15 0.14 0.14 0,14 0,11
0.04 0.03 0.03 0.03 0.02 0.00
0.35 0.35 0.35 0.35 0.36 0.43
0.24 0.24 0.24 0.24 0.24 0.24

0.015 0.014 0.017 0.020 0.045

+ P2 )(Pl refers to the height of the intersection of the curves P2 and Pl,
etc. P2 refers to the height of the peak of the curve P2, etc.

b The average is taken over the appropriate experimental values listed
in Table I.

B. Concerning Assumption 3

Assumption 3 holds that the statistical weights of
the cells in the bound electron energy range ((4p) are
approximately equal to the statistical weights of cells
in the free electron energy range ()4p). To test this
assumption the following variation was considered:

The four cells in the bound energy range were taken
to have the same weight m relative to the weight of a
continuum cell. Thus, zv represents some sort of average
statistical weight of these four cells. It then follows that
the ionization probabilities are given by
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That is, for each of the 8—e electrons which end up in
the first four cells and are therefore not evaporated, a
factor m must multiply the probability. The denomi-
nator, which is the same for all values of e, merely
normalizes the probabilities.

A number of statistical weights were tried about the
value of unity required by the theory. The results are
compared with experiment in Table II which lists the
heights of the peaks as well as the heights of the
intersections of the computed ionization probability
curves for statistical weights of 1.25, 1.00. 0.715, 0.500,
0.100. These are compared with the average values of
the corresponding experimental quantities, the average
being taken over the values obtained at each bom-
barding ion energy. Primary interest was focused on
statistical weights of the bound cells less than unity',
inasmuch as deviations would be expected in this
direction. (Some of the energy range between the
highest filled level and the ionization energy is not
covered by any broadened level. ) The mean discrepancy
is seen to be least for m=1.00, although there is hardly
enough difference between the weights 1.25, 1.00, and
0.715 to choose between them. The weights 0.500 and
0.100 are, however, eliminated.

C. Concerning Assumption 4

This assumption states that the amount of energy
needed by any electron to escape is independent of the
number of electrons that escape. Intuitively, however,
this is not the most reasonable assumption. Rather, it
might be expected that the energy needed by any
electron to escape would increase as the number of
escaping electrons increases. For example, in an isolated
neutral argon atom, one electron would need 15 ev
to escape; two electrons would need a minimum of

43 ev to escape; three would need a minimum of
~84 ev to escape, and so forth. An evaporation model
which simulates such a "staggered" ionization energy
was considered. If only one electron escapes it requires
an energy of 4e or more; if two electrons escape, they
each need 6e or more, etc. Thus a different ionization
energy E„"'")is used for each ionization state P, of the
neutral atom. This is taken to be the average minimum
ionization energy per electron needed to ionize e
electrons, so that Et"'"'=15/1 ev=4e, Es&' '=43/2
ev=6e, etc. Upon using this criterion to determine in
which ionization state a given distribution would result,
it was found that a small percentage of the ways of
distributing Ez were not included in any of the ioni-
zation probabilities as defined above. These had to be
counted individually and were credited toward the
various ionization probabilities by a rather complicated
supplementary condition. The results are, however,
relatively independent of the details of this condition.

Ill@

P,.8-

7.

.6

.5.

4-

3-

~2

30 6Q 90 I20 l50

FIG. 13. The ionization probabilities P„(') that result when a
staggered ionization energy as described in Sec. 5 is used instead
of the uniform ionization energy assumed in Sec. 2. These are
plotted as function of E~/e
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The final P (m) were obtained by averaging for each
its the ionization probability P„(m) of a neutral atom
with the corresponding ionization probability P i (te)
for an atom which was initially singly ionized before
receiving the energy no~:

P„(tts) = ', P„(n-z)+ ,'P„ t-*(m)

The P * were calculated in a manner similar to that
described for obtaining P„(m).

The results are presented in Fig. 13 which shows the
ionization probabilities as functions of E~/e. Even a
cursory glance at this figure is sufficient to observe that
this model cannot possibly account for the experimental
results. Peak heights are much too large, a large fraction
of the intersections of experimental curves do not even
occur in Fig. 13, and many more deficiencies are im-
mediately apparent. Nor does any statistical weight
from 0.1 to 10 improve the agreement. The fact that the
uniform ionization of assumption 4 gives much better
agreement with the data than the staggered ionization
energy considered above shows that the results are
quite sensitive to this assumption.


