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proposed on simple theoretical grounds to limit the
possible P couplings. It is universal, it is symmetric, it
produces two-component neutrinos, it conserves leptons,
it preserves invariance under CI' and T, and it is the
simplest possibility from a certain point of view (that
of two-component wave functions emphasized in this
paper).

These theoretical arguments seem to the authors to be
strong enough to suggest that the disagreement with
the He' recoil experiment and with some other less
accurate experiments indicates that these experiments
are wrong. The rr~e+P problem may have a more
subtle solution.

After all, the theory also has a number of successes.
It yields the rate of p decay to 2'Po and the asymmetry
in direction in the 7r—+p~e chain. For P decay, it agrees
with the recoil experiments" in A" indicating a vector
coupling, the absence of Fierz terms distorting the
allowed spectra, and the more recent electron spin
polarization' measurements in P decay.

' Herrmansfeldt, Maxson, Stahelin, and Allen, Phys. Rev. 107,
641 (1957).

Besides the various experiments which this theory
suggests be done or rechecked, there are a number of
directions indicated for theoretical study. First it is
suggested that all the various theories, such as meson
theory, be recast in the form with the two-component
wave functions to see if new possibilities of coupling,
etc. , are suggested. Second, it may be fruitful to analyze
further the idea that the vector part of the weak
coupling is not renormalized; to see if a set of couplings
could be arranged so that the axial part is also not
renormalized; and to study the meaning of the trans-
formation groups which are involved. Finally, attempts
to understand the strange particle decays should be
made assuming that they are related to this universal
interaction of definite form.
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Dispersion relations for scattering of a Dirac particle by a potential are shown to hold for a broad class
of potentials. In contrast to the held theoretic case, the derivation here makes no use of the concept of
causality but is instead based directly on the analytic properties of the Fredholm solution of the scattering
integral equation. It is shown that the scattering amplitude, considered as a function of energy and momen-
tum transfer, can be extended to a function analytic in the complex energy plane, for real momentum
transfer. The dispersion relations then follow in the standard way from Cauchy's theorem. The Anal results
involve one "subtraction. " It is also shown that the analytic continuation into the unphysical region for
nonforward scattering can be carried out by means of a partial wave expansion.

I. INTRODUCTION
' 'T has recently been shown' that, under certain broad

conditions, dispersion relations of the type so much
discussed for relativistic field theories' also hold in
ordinary nonrelativistic quantum mechanics for scatter-
ing of a particle by a potential. The treatment of this
problem is quite straightforward and explicit; in contrast
to the 6eld theoretic case, one can show explicitly that
the dispersion relations involve no "subtractions" and
that the scattering amplitude can be analytically
continued into the unphysical region for nonforward
scattering by means of a partial wave expansion. In this

* Lockheed Fellow, 1956—1957.
'

¹ N. Khuri, Phys. Rev. 107, 1148 (1957).' Chew, Goldberger, Low, and Nambu, Phys. Rev. 106, 1337
(1957). For a complete list of references see R, H. Capps and G.
Taireda, Phys. Rev. 103, 1877 (1956).

sense, nonrelativistic quantum mechanics provides a
complete and simple model of a system for which dis-
persion relations are valid. It has already been used as a
basis for investigating to what extent the dispersion
relations, taken together with the unitarity of the
S-matrix, constitute a self-contained formulation of
scat tering theory. '

In the present paper, the discussion of dispersion
relations in ordinary quantum mechanics is extended
to the case of scattering of a Dirac particle by a potential.
Using arguments similar to those employed for the
Schrodinger case, ' one again finds that dispersion rela-
tions hold for a broad class of potentials. The restric-
tions on the potentials are now somewhat more severe;
and in the present case one 6nds that the dispersion

' S, Gasiorowicz aud M. Ruderman (to be published),
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relations involve one, but only one, "subtraction. "
Again, however, it turns out that the analytical con-
tinuation into the unphysical region for nonforward
scattering can be effected by a partial wave expansion.

The Dirac case represents an especially interesting
model, for it is the analog in ordinary quantum me-
chanics of the field-theoretic discussion of pion-nucleon
scattering. 4 The final dispersion relations are similar
in form for the two cases. Both involve the scattering
amplitude for particle and antiparticle. Despite the
similarities, however, it must once again be emphasized
that the discussion of dispersion relations for field
theories invokes the concept of microscopic causality;
in the ordinary quantum mechanical case this concept
seems to play no explicit role and is in fact not even
formulated —at least in the present treatment.

The plan of the paper is as follows. In Sec. II the
theory of Dirac potential scattering is formulated in
the usual way in terms of a scattering integral equation;
and the formal solution is obtained by the Fredholm
method. The scattering matrix T, an operator in spinor
space, is defined in the standard way and is conceived
as a function of the two variables: energy E and
momentum transfer w. In Sec. III the T matrix is
extended to a function of complex energy, the momen-
tum transfer being kept real. After a discussion of the
branch cuts, it is shown that T can be extended to a
function analytic in the complex E plane, with poles on
the real axis corresponding to bound states. The behavior
of the T matrix for large

~
E

~

is discussed, as well as the
behavior under charge conjugation. In Sec. IV the
analyticity of T in the complex E plane is used in the
familiar way, via the Cauchy integral theorem, to
obtain the sought-for dispersion relations. It is also
shown in this section that the analytic continuation
into the unphysical region for nonforward scattering
can be eBected by a partial wave expansion. Finally,
in Sec. V the contribution to the dispersion relations
coming from bound states is discussed, and a simple
example is worked out in detail.

II. DIRAC SCATTERING THEORY

The solutions p we shall take to be plane waves, so that
they are characterized by the energy and momentum
eigenvalues as well as by spin. To describe the scatter-
ing of a particle with a certain initial momentum and
spin (corresponding free-particle wave function P), we
look for a solution of (1) which has the asymptotic
behavior

.y+ gizrp (4)

with k=+(E'—zzz2)&. This outgoing wave boundary
condition is automatically incorporated in the integral
equation formulation of (1), which in operator notation
can be written

P=y+ lim (E H+ie—) 'Vf
e—++0

(10)4=4+ Uy;E' H' U+iz— —

and, reversing the arguments which lead from (5) to
(6), we see that f satisfies the integral equation

The formal solution of this equation is given by'

tP=y+(E —H —V+ie) 'Vp,

where the limiting process 2~+0 is henceforth always
understood. It should be noted at this point that we are
discussing the scattering of a particle (E&~m). The
scattering of antiparticles will be dealt with later.

We now observe that

(E H V+iz) 'V— —
= (E—H V+ze) '(E+H—V+ze) '(E+—H V)V—
= (E' H' U+ze—) 'V—fE V+H+—(H, V)), (7)

where

(H, V) =HV VH= i(V—V—) n,

U=2EV V' i(VV—) 0.. —
Since g is supposed to satisfy (3), (6) may be written

We consider the scattering of a Dirac particle of total
energy E in a central field V. The Dirac equation reads'

(E-H)4 = V4,

where f is a 4-component spinor wave function and

H= iat V'+P—nz

is the free-particle Hamiltonian; a and P are the usual
Dirac matrices. We shall denote by g the solutions of
the free-particle equation

4'=4+ U4.
E2 H2+2 ~

It is this form of the integral equation which is a
convenient basis for obtaining an explicit solution by
the Fredholm method.

I.et us now introduce the following notation for the
various Green's functions:

gp= . ~ g=
E'—LP+i e E' H' U+iz——

(E—H)y=0.
and

E=gpU; G=gU.
4 See Chew et a/. , reference 2,
'A=c=1,

'M. Gell-Many. and M, L, Goldberger, Phys. Rey, 91, $98
(&958),
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We then have where
(14)

h„„(k;x,x')4 =4+Eh

4 =4+G4 (15) - (—1)"
=Q„,(x,x')+ P d'xi d'x„

n& ~! P1. P~&

)(,B~„" (X,X;xi'''x„;pi'''p );(16)

The kernel functions 6 and E are evidently related
by the integral equation

Written out explicitly, the operator equation (5) reads
" (—1)"

0 (k) =1+ P P I d'xi d'x.
8( P1 'Pss ~

eik(x—y(

X 1'(y)4.(y)d'y (5')
I
x—yl

where the Greek subscripts are spinor indices. Equation
(11), written in full, becomes

Q„(x,x')

B&p Qpiv(xi&x )

Qp„.(x,x')

&(D&"&(xi x p, . p )

Q„p, (x,x,) Q,p„(x,x„)

1 O e'klx yl

p„(x)=p„(x)——
II U„„(y)p„(y)d'y. (11')

4~ & fx—yf

This just expresses the well-known fact that the Green's
function go is

eik(x—y(

ro(x, y) = ——
4s. fx-yf

The arguments which led from (5) to (11) are just
equivalent to going from (5') to (11') by carrying out
a partial integration and making use of the fact that P
satisfies the Dirac equation.

Qplpl (xl&xl) Qplps(xl&XR) ' ' Qplpn (xltxn)

0 =F+(~/&)F
Comparing this with (15) we obtain, finally,

(2o')

6=E+ (6/ )+(6/ )E. (21)

O'"'= Qpspi(xs, xi)

Qp„pi(x. ,xi)

Using an operator notation (6 is an integral operator in
coordinate space as well as a spinor operator; is just
a number) we may write

This is the result which we require for the discussion of
dispersion relations. The question of the convergence of
the series involved in the Fredholm solution will be
deferred till later.

In order to proceed with the derivation of the dis-
persion relations, it will be necessary to have an explicit
representation for the solution of our scattering equa-
tion. We shall obtain this by the method of Fredholm. '
This method cannot, however, be applied directly to
the integral equation (11'), since the Green's function
gs(x, y) is singular at x—y=0. We therefore ite
(11') once, obtaining

Let
F=y+E@ Q=E'.

rate The matrix element which describes the scattering
of a particle from an initial state i to a final state f is

(17)
given by

~~'= (4v, l'4') =(4r, v4')+(4v, ~G4~) (22)
(18) For later reference we note that this can also be written

Written out explicitly,

Q„„(x,y) = go (x,x') U„,(x')go(x', y) U,„(y)d'x'. (19)

~i'= (1/2&) (4'r U4")
(1/2+) ((0'f U4' ')+ (0f UG4'') j ~ (23)

The Fredholm solution of (17) may now be obtained
in the standard way and is we11-defined. One finds

t A„,(k; x,x')
P„(x)=F„(x)+)

i F„(x')d'x'; (20)
CI (A)

7 The present work was motivated by the interesting application
of the Fredholm theory to scattering problems discussed by R.
Jost and A. Pais, Phys. Rev. 82, 840 (1951).

We take the free particle solutions p to be plane waves,
so that for a particle of momentum k we have

yg ——u(k) e'"'
where m(k) is a 4-component spinor normalized to

Ntl= 1.

(24)

(25)

The spinor I also carries a spin label, which we shall,
how&ver, not explicitly write, Let us now defin the
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T (kg,k;) = V(kg —k;)

where

+ e '"~ *V(x)G(x,y)e'"' '~'d'xd'y, (27)

r
V(k~ —k;) = e '&"& ""'*V(x)d'x. (28)

The spinors appearing in (26) satisfy the Dirac
equation

(n k+Pm E)N—,=0 (29)

It is easy to show that by use of this equation the T
matrix as it appears in (26) can always be reduced to
the form

T=a+Pb. (30)

Alternate ways of representing the T matrix are possible
and will in fact be more convenient at a later state.
For the purposes of Sec. III, however, the above form
is the most useful one. Since the potential V is spherical
it now follows that the functions c and b can depend only
on the energy and on the magnitude of the momentum
transfer.

Let us define

~=kg —k;; ~= —',(kr+k;); (31)

and note that ~ ~=0. The scattering angle 0 is related
to the momentum transfer r by

coso = 1—7'/2k'.

We also introduce the variables

R=-', (x+y), r=x —y.

(32)

(33)

The T matrix, which is a function of r and E= (k'+m') &,

can now be written

T matrix by

M(ki, k;) =N~(kg) T(kg, k;)u(k, ). (26)

It is an operator in spinor space. From (21) and (22)
we see that

physical values of the variables E and v . E and 7 both
real, and E)+(eP+r2/4)&. We now want to extend G
and T to functions of the complex variable E, ~ being
kept real. We will find that for a certain class of poten-
tials the extended function T is analytic in the complex
E plane, with singularities on the real axis between
—m and m.

Since the kernel function G was originally expressed
in terms of k= (E'—tm')*'it will first be necessary to
make cuts in the complex E plane in order to define
G as a function of complex K The cuts run from nz—&~

and —m—+—~; and we choose the Riemannian sheet
such that the imaginary part of k is always non-
negative: Imk=~&~0. Just above the rea, l energy axis,
the real part of k is positive for E)m and negative for
E(m. The converse holds just below the real energy axis.
On the real axis for —m(E(ns, k is pure imaginary.
Similar cuts are chosen to define (E'—m' —r'/4)' for
complex E. We now define

and

G~(E) = lim G(E+ic) (E real),
e~D

T~(E)= lim T(E+is) (E real).
&~0

(35)

(36)

The T matrix for physical scattering corresponds to
T~(E) for E) (m'+r'/4)'*. It is clear from what has
been said that

G+(E) =G (E)(—m&E&m);

T+(E)=T (E)(—m&E =m).

(37)

(38)

Before proceeding to the main task of this section
we want to establish here certain symmetry properties
of the T Inatrix which are essential to the derivation of
the dispersion relations. At this stage it is useful to
avoid commitment to the particular representation of
Eq. (30), so we simply write T= T(E,kr, k;).

T(E,7) = V(r)+)I exp) —i(E'—m' —~'/4)&n r
Define

T(E,1 „1,) =PTt(E,k, ,k;)P, (39)

I')
&(exp( —i~ R)V~ R+—

(2) T+(E,kq, k,) =T (E,k;,kr). (4o)

where T~ is the Hermitean conjugate of T. Ke will
show that

where (41)

To establish this result, let us first introduce the
following notation:

t' r ry In the representation of Eq. (30) this implies
XGi E; R+—,R—— id'rd'R, (34)

a+*(E,~) =a-(E,~),

b„*(E,r) =b (E,r).n= ~/x-.

III. EXTENSION TO THE COMPLEX
ENERGY PLANE

A

Up to this point the T matrix, :~s well as the kernel
function G, are defined and have meaning only for

(42)

From (23) and (26) we then have

2ET~(E,kr, k,) = (wr, Uw;)+ (Wg, UG~w, ); (43)
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and from (13) and (16)

UGg = Ug p~U+ UG~g p~U,
= Ugo+U+ Ugo+UG+

matrix. Thus

(55)T~'(E)kf, k,)=CT ( E—, —k, ,
—kf)C.

If we represent T' in a form analogous to Eq. (30),
(44)

Just as in (39), define

(45)
TG gc+pbc (56)

where 6~ is the Hermitean conjugate of 6, which, it
must be remembered, is an integral as well as a spinor
operator. Thus

then (41) and (55) imply

, (E, )=.*(—E, ),
b~'(E, r) = —b~*(—E, r). (57)

Define U and go in the same way. It is evident that

~= U
& go~=go+. (46)

There remains to find relations which connect T(E)
with T(—E). It is at this stage that we are led into a
discussion of the scattering of antiparticles. As is well

known, an antiparticle of energy E and momentum k
is described by a charge conjugate spinor u' given by

uc(E k) Cue( —E, —k), (49)

where the charge conjugation matrix can be taken to be

From (43) we see that

2ET+(E,kr, k,) = (w, , Uwr)+ (w, ,G+Uwf). (47)

But from (44)

G+U=Ugp U+Ugp G+U=UG . (48)

Equation (40) is thus proved.

F(r)& ~V' —~ ~V(,

F(r) &2m~ V~,

F(r) ~& M'/r', M'( ~,

(58.a)

(58.b)

(58.c)

We now turn to our main task, which is to show that
the matrix T can indeed be extended to a function
analytic in the full complex E plane, the momentum
transfer r being real. We must first show that the
Fredholm series in (21) and (22) converge to an analytic
function of E and that the kernel function G is analytic.
We must then show that in (34) the integral which
defines T converges to an analytic function. Finally,
in order to employ Cauchy's theorem at a later stage,
we must study the behavior of T for

~
E~~~.

The results may be stated in advance. It will turn
out that the kernel function 6 can be extended to an
analytic function of E if there exists a spherically
symmetric function F(r) such that

C= —imp, F(r)rdr&~ M", M"(~. (58.d)

C=C-'= Ct.
7 (51)

where the tilde symbol denotes the transposition
operation. The charge conjugate spinor u'(E, k) satisfies
(29). In analogy with (26), the matrix element for
antiparticle scattering is written

M'(E, kr, k,) =u't(E, kr) T+'(E,kr, k;)u'(E, k,). (52)

From (49) it follows that

M'(E, kr, k;) =ut( —E, —k~)

XCT+'(E,kg, k;)Cu( —E, —kr). (53)

But we also have

~(—E, —k;, —k&) =ut( —E, —k,)
XT (—E, —k, ,

—kr)u( —E, —kf), (54)

where we write T ( E) rather than T+(—E) in order—
that (E'—m')& shall have zero phase in T' for E)m;
i.e., so that T+' will correspond to an out-going wave

in the usual representation for Dirac matrices. It has
the properties

Cn,C=n;, j=1, 2, 3

CPC= —P,

Furthermore, for fixed momentum transfer r, the
matrix T can be extended to an analytic function of E if

f e'"'F (r) r'dr & M"'(~
0

(59)

T,(E,r) = expL —i(E'—mP —r/4)&n r7 exp( i~ R)—
( r ry

X&,
~
E;R+-, R——~d'rd'E; (61)

2 2)

The proof of these assertions follows almost exactly
as in reference 1. Thus, although the results are of
central importance for this paper, we need indicate the
derivation only in brief outline. We do this much, in
fact, only to call attention to the slight technical
differences between the Dirac and Schrodinger cases.

For convenience we use (21) to rewrite (34) in the
following form:

T(E,.) = V(r)yT, (E,.)
+T,(E, )/~+T. (E, )/Z, (60)

where
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and, in matrix notation,

X2= VE, Xa= Vh, E4= VhE. (62)

Ke now use the theorem, stated in reference 1, which in
effect says that for the T; to be analytic in an open
region F, where F is bounded by a closed curve 8 in
the complex energy plane, the integrands in (61) must
be analytic in F and continuous in the closed region
I'+B. Furthermore, for all E on 8 the integrand must
be bounded by an integral function of r and R. In our
case 8 is the curve shown in Fig. 1; the semicircles
have large but finite radius E~, and the horizontal
segments approach the real axis in the limit.

That T& meets the above requirements for analyticity
is trivially shown. From (12') and (62) one finds the
bound

f V(x) f (Es ) e "~* &~

l&2(Exy) I ~&
I

+1
f F(y) (63)

4' ( m 2 fx-yf

for all E on B. This is integrable in (61). To establish
the analyticity of T3 and T4 we must study the proper-
ties of 6(E, xy). We shall prove below that for all E
in F, 6 is analytic and satisfies the inequality

where E is a finite constant. Using this one then shows
that the series defining 6 is a series of analytic functions,
and invoking Hadamard's lemma to obtain upper
bounds on the Fredholm determinants one finds:

y 'F(y)
a(E~xiy) ~&l +1 f

m & 43rfyf

(v+1)«"+'&

Xf1+P
~~1 nl

+1 f
cV- . (6V)

This differs from the Schrodinger case by the factors
(fE f/m+1) and by the factor 4", the latter coming
from the summation over spinor indices. The above
series converges for any finite fEf. Hence, the ana-
lyticity of 6 in the region F is proved. Furthermore,
for all

f Ef ~& Es we see that

to that in reference 1.First, one shows that for potentials
satisfying the conditions (58), the kernel Q is bounded,
as follows:

F(y)
fQ(E,x,y) f&&f +1 f e "*", (66)

I m ) 4irfyf

e "~*—&~
f
h(E,x,y) f

&~Cps
lyl

(64) f~f&c~" (68)

where C~~ is a constant which depends on E~. From
this result we find, as in reference 1,

f T&, 4(E,r) f ~ CE&' el'~* r~F(x)F(y) d'uPy. (65)

The integral exists for any j- for which (59) holds, hence
T3, 4 are analytic in F.

We are left with the task of proving our assertions
about h(E,x,y). Once again, the procedure is similar

Pre. i. Contour in complex energy plane.

where Cx~" is a constant which depends on E~. To
prove the inequality (64) it sufFices to establish, in
addition to (68), the following two limits, for E in F:

lim e"&* && fb, (E,x)y) f
=0,

l xl —+oo

lim e"~* &~ f6( ,Exy) f
=0.

l yl

(69)

These are proved by writing the series defining 6 and
noting, by use of the triangle inequality, that every
term in the series when multiplied by e"l' ~l vanishes as
fx f

or fy f
tends to ~. Since we have shown that the

series defining 6 converges Nniformly for all x and y
(E finite), the results (69) follow.

Finally, we note that the analyticity of the Fredholm
denominator Q can be proved by similar methods; in
contrast to the Schrodinger case, however, it no longer
holds true that CI—&1 as fE~-+~; but this is of no
importance. What concerns us here is that the zeros of
Q will give rise to poles for the matrix T.

Now just as in the Schrodinger case, the Fredholm
resolvent kernel 6 as it has been defined is not an
irreducible fraction. It can however be replaced, using
the Poincare method, by 6'/0', an irreducible fraction;
6' and Q' have no zeros in common. b, ' and Q' are
defined in the same way as 6 and Q, but with elements
of E replacing elements of Q in the Fredholm determi-
nants and with zeros along the diagonals. The ana-
lyticity properties of the Fredholm resolvent kernel
are unaffected by the Poincare procedure.
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The zeros E; of Q' correspond to energies for which
the homogeneous equation

(H V+—E;)(H+ V E;)f,=—0. (70)

has at least one solution. It is clear from the definition
of E that such solutions satisfy the second order
equation

Let us define the linear combinations

Fi(E,r) =A (E,r)+A'(E, r),
F2(E,r) =A (E,r) —A'(E, r),
F4(E,r) =B(E,r)+B'(E,r),
F4(E,r) =B(E,r) B'(E—,r).

The corresponding boundary values have the simple
properties

Jt is easy to show that the eigenvalues E; just coincide
with the eigenvalues of the first order Dirac equation; and
i.e., the second order Eq. (70) introduces no spurious
eigenvalues. It is also easy to show that the eigenvalues
all lie between —m and ns. Thus the Fredholm denomi-
nator Q' has zeros on the real axis between —ns and m,
the zeros corresponding to bound states.

F+(E,r) =F *(E,r);

F."(E.)=F".*(-E -)

Fg, 4~(E,r) = —F2, 4~*(—E, r)

(77)

(78)

(79)

We have so far shown that T(E,r) is regular in I',
except for poles in the interval —m&E&ns on the real
axis. Of course we can choose E~ as large as we please, as
long as it is finite. Hence T is analytic in the whole
6nite E plane, the cuts excluded. But before we can
derive dispersion relations, we still have to show that
T has no essential singularity at infinity. In fact, we
claim that for the class of potentials under consideration
T has the asymptotic behavior

(71)

The derivation of this result is outlined in the Appendix,
where we employ methods taken from some work of
Schi8 8

We have seen in Sec. III that the matrix T (and
also T') has the asymptotic behavior

T/E e, lEl— (80)

Evidently this also describes the asymptotic behavior
of the amplitude A (and A'). For the amplitude B
(and B'), on the other hand, this implies

E2B/E~ (81)

Now all of our amplitudes, as we have seen, are analytic
functions of energy in the cut E plane, with poles
corresponding to bound states lying on the real axis
between —ri4 and 4ri. Let E;(j=1, 2, ) denote the
singular points for the T matrix. From our charge
conjugation condition (55) we know that T' then has
singularities at the points

IV. DISPERSION RELATIONS E.c (82)

For practical purposes it will now be convenient to
represent T in a manner which differs from Eq. (30).
We write

T(E,m, s) =A(E,r)+io r4XsB(E,r), (72)

A+(E, r) =A *(E,r), A~'(E, r) =A~+( —E,r),
B+(E,r) =B *(E,r), B+'(E,r) =-B+*(—E,r);

(74)

and from (38) we have for
l El (444,

where c is the usual 4)&4 spin matrix. Similarly,

T'(E,r.,~) =A'(E, r)+io mX~B'(E, r). (73)

From (40) and (55) it follows that

Let E.;& and E.;& denote respectively the residues of the
amplitudes A and 8 at the singular points E,. From
(75) it follows that the residues of the charge conjugate
amplitudes, at the poles E,', are related to these by

] F4 4(E' r)
dE'

2mi
(84)

(83)

We are now ready to apply Cauchy's theorem to our
amplitudes F(E',r), choosing the contour in the E'
plane shown in Fig. 1 (the semicircles have infinite
radius). Consider 6rst the amplitudes F4 and F4, and
let E be a point which in the limit approaches the real
a,xis from above, with E) (rN'+r'/4)'. By Cauchy's
theorem the integral

is equal to the sum of residues of the integrand; and
from (80) and (81) it is evident that the integral receives
zero contribution from the semicircles. Invoking (77),
(78), (79), (82), and (83), we then find, carrying out' L. I. Schi8, Phys. Rev. 103, 443 (1956}.

A~(E,r)=A (E,r)=A '( Er)=A '( Er)— —
75

+(E,r) B (E,r) B'(—E—r)=-B-'(——E, r)
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the integrations,

ReB (E,r)+ReB'(E, r)

2 p" E'
=g R, ii —— +-

E E,—E+E, -zr " . E" E&,'—

X {ImB(E',r)+1~ (E' r))dE' (»&)

ReB (E,r) —ReB'(E,r)

1 1 2 (

2 RjB + +
E E, E—+E, m. ~,„E" E~—
X {ImB(E',r) ImB'(—E', r))dE'. (86)

ReA (E,r)

(E, iR,g(r) 1 (" (E, )=A (0,.)+P I

—
I

, &E,) E-E, ~ iE)
ImA (E', r) ImA'(E', r)

dE', (90)
E&—E E'+E

ReA"'(E, r)

( E ) R,~(r) 1 t-" (E )
+&I —

I +
&E,) E+E, ~~. &E'i

ImA'(E', r) ImA (E',r)
dE', (91)E'+E

The amplitudes which appear in these equations are
in fact the physical amplitudes 8+ and 8+'—we hence-
forth drop the subscripts. The integrals are principle
value integrals.

For the amplitudes Ii ~ and Ii 2 we cannot write similar
dispersion relations. The asymptotic behavior here is
governed by Eq. (80), and in this case the contributions
from the Cauchy integral (84) over the infinite semi-
circles do not vanish. We instead form the integral

ReB(E,r)

Rz&(r) 1
+—

~ E—E,,

ReB'(E, r)

I E —E E'+E

ImB(E', r) ImB'(E', r)
+ dE', (92)

1 Fi, z(E', r)
dE'.

2m.i 8' 8'—E
(87)

R&zz(r) 1+-
& E!+E&

The extra factor E' in the denominator now guarantees
that the semicircles make no contribution; but it in-
troduces a new singularity at E'=0 (which we assume
does not coincide with any of the natural, bound-state
singularities). Proceeding as before, we then find

ReA (E,r)+ReA'(E, r)

(E~ 1 1
=2A(o, r)+Q I

—IRJ~ +
&E) E—E, E+E;

2 t" (E'& ( 1
+—E

z E'i (E" E'I—
X {ImA (E',r)+ImA'(E', r))dE', (88)

ImB'(E', r) ImB(E', r)
X +— dE'. (93)

I& '+E

We remark again that principal value integrations are
always understood. Note also that for nonzero momen-
tum transfer r the dispersion relations involve integra-
tion over an unphysical region running from nz to
(zzz'+r"-/4) '*. We shall return to this point shortly.

C

The dispersion relations take on an especially useful
form for forward scattering, since in this case one can
invoke the well-known optical theorem. In general, the
differential scattering cross section (initial spin state i,
final spin state f) is given by

ReA (E,r) ReA'(E&r)—
(94)

dQ z& dE (2zr)'

where djz(/dE is the density of final states and z& is the
velocity. For forward scattering the matrix M is
diagonal in spin space and is just equal to the amplitude
A (E,O). The optical theorem tells us that

X {ImA (E',r) ImA'(E', r))dE'. (89)—

(E)
I

1 1 2 (" 1
=~I —IR' — +-E ~(

EE;3 IE—E, E+E, ~ &„, E' E—
Once again, the amplitudes which appear here are in fact
A+ and A+'. We have used the fact that A (O,r) =A'(O, r)
in arriving at these results.

Finally, solving these equations for the individual
amplitudes, one obtains the dispersion relations

1k
ImM(E, G) = ImA (E,O) = —— 0(E), —

2E
(95)

where 0(E) is the total cross section. .Analogous results,
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of course, hold for antiparticle scattering. For forward
scattering the dispersion relations can therefore be
written

ReM(E, O)

momentum quantum numbers, (—1)' and j respec-
tively. Let 8~ and 8E be the respective phase shifts
for j=l+-', and j=l——',, with parity (—1)'; and let fi+
and fi be the corresponding partial wave amplitudes:

(E ) E,g(0)=A (0,0)+2 I

—
I; gE,.j E

E p" ( k' q 0 (E'} e'(E')
dE', (96)

2' & (E"j E' EE'+—E

fi~= . Lexp(»8i+)-1j.
2ik

The partial wave expansion for f(8) is given by'

j(8)= Z ((~+1)fi++~fi-}&i(cos8)
L=O

(101)

ReM'(E, O)

~E q Z,,(0)=A (0,0)+P I

—
I; (E;jEyE;

E P" ( k' ) Io'(E') o(E').
dE', (97)

2~ ~ „(E"j I E'—E E'+E

and, in particular,

Re M (E,O) —ReM'(E, O}

=&
I

—I»~(0);EEJ '
E—E, E+E,

E I" k'
(0(E ) gc(E .)}dE (98)E'(E" E')—

The "subtraction" constant A(0,0) does not appear
in this last equation, which makes it therefore especially
interesting. Also, we see that

ie hrXk ~ t' l
I(f+-f )

k2 l=i (1—cos28j
X jcos8Ei (cos8) —Ei i (cos8)}. (102)

Analogous results hold for antiparticle scattering. The
I'& here are Legendre polynomials, and 0 is the 2)&2
Pauli spin matrix.

Using these results, we could, of course, write our
amplitudes A and 8 as partial wave expansions, but
there is no need to do this. Instead, what we have to
consider is the following. Suppose we treat the scatter-
ing amplitude f as a function of k and r, writing
cos8=1—r'/2k'. For k'(r/4 the argument of the
Legendre polynomials becomes less than —1; as k—+0,
it approaches —0O. The question is: do the above series
converge for all k'(r'/4?

Carter" has rigorously shown that for suKciently
large t, (k 6xed), the phase shifts are bounded —to
within a constant of order unity —by the Born
approximation:

ReM (E,O)—+ReM'(E, O) (E—+~ ) . (99)

I8&~I ~&C~ (E+m) Ji+,'(kr)
I
VIrdr

0

For physical scattering the energy and momentum
transfer satisfy the inequality E) (m'+r'/4) &. For non-
forward scattering the dispersion relations therefore
involve integration over an unphysical region, and the
question arises how the analytic continuation into this
region can in practice be eGected. As in the Schrodinger
case, and using the same methods, we now show that
the continuation can be carried out by a partial wave
expansion.

For this purpose we introduce the conventional
scattering amplitude f(8).~ This is a 2X2 operator in
ordinary Pauli spin space. The differential scattering
cross section (initial spin state i, final spin state f) is
given by

«r'/d~l=
I f~'(8) I'. (100)

The total scattering amplitude can now be expanded in
the well-known way in terms of partial wave amplitudes,
the latter being labeled by the parity and total angular

' J. Lepore, Phys. Rev. 79, 137 (1950).

+(E—m))I Ji+ (kr)I VIrdr,
p

IBi I
&C (E+m) Ji+P(kr) I

VIrdr
0

(103)

+(E—m)~I Ji (kr) I
V

I rdr,
0

e'"r'F (r)dr( ~,
~Jp

(104)

the series in (102) will converge for all k&~ r/2. Notice

"D.S. Carter, thesis, Princeton, 1952 (unpublished).

where the J„are Bessel functions. Once these bounds are
known, one can proceed exactly as in reference 1. We
shall not reproduce the argument in detail. Essentially,
one shows that for momentum transfers 7- such that
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dg——-+ (2m —W —V)f=0,
df

V. BOUND STATE CONTRIBUTIONS

that (104) is a more stringent restriction than that radial functions satisfy the equations
required to derive the dispersion relations, Eq. (59).

Our final task is to discuss the bound state contribu-
tions to the dispersion relations; i.e., to show how the
residues R;g and E.;~ can be computed from information
about the bound states.

From (6) and (22) we have

1
r,;=(w, , Vw, )+~ w, , V Vw, i. (105)

Z—H —V+i e

Let us introduce a complete set of solutions of the Dirac
equation. This includes scattering solutions f„with
continuous label s, and discrete bound state solutions

P, , with —m(»(m. Using the completeness relation

df f—1—+ (W+ V)g=0.
dr r

(112)

Asymptotically, the radial functions have the follow-
ing behavior

g:ge «' f .- pge «

where .=Lw(2m —w)g&, p=LW/(2~ —w)g'; (114)

and N is the normalization constant. In general, let us
now write

(106)
g= ELe-""—u(r)),
f=pNfe "' v(r)j;— (115)

we write

1
~r'= V(~)+Z (wr) V4'i) (4i) Vw'')

~ E—E.
+continuum. (107)

We are interested only in the bound state contributions.
From the Dirac equation itself we have

where we only have to know about u and v that:
e'"u~e"'v —+0, as r +~; and —u(0) =n(0)=1. The func-
tions I and ~ do not contribute singular terms in the
matrix elements of (110) and hence do not contribute
to the residue. On the other hand, we 6nd

(116)
VA= (»—&)4~" (108)

and thus,
t 1 W ~e kq )i~q—e «e"'~'e. rd'r=

( [(
—[. (117)

Z2 —Z2I S ) &~u&Tr'= z (» ~)'(wf A 9) (kz,w')+ . (1o9)
~' E—E

We now evaluate the singular part of the spinor matrix

The residue of 7'r; at the bound state energy» is (wr&f;)(f, ,w;), then sum over magnetic quantum
numbers, use the Dirac equation to express the result
in the standard form of Eq. (72), and finally, pass to the

g)2(w p~) g,, w,) (110) limit E~». There results the following expressions for
the residues R~(7) and R~(r):

Despite appearances, this limit does not vanish; as we
shall presently see, the matrix elements have appro-
priate singularities.

The procedure is best illustrated now by means of a
simple example. " Suppose there is a bound S~ state
(even parity, total angular momentum -', ).Let W denote
the binding energy: W= m —E,. The bound state wave
function has the form (for magnetic quantum number m)

1 t' g(~h

r &if(r)(e r/r)y )
where y is a two-component Pauli spinor. A sum over
magnetic quantum numbers is implied in (110). The

(2')'
R~(r) =

(m —W) m(2m —W)'

X(2~(2~—W)+-:")~ZI' («g)

(2~)'
R~(.)=

(nz —W) nz(2m —W)'
(119)

The 6nal results thus depend on two parameters
which characterize the bound state: W, the binding
energy, and N, the normalization constant dered in
(115).The expressions become somewhat more trans-
parent if we replace X by another parameter, a charac-
teristic length rp defined by

"A similar calculation was first done for nucleon-nucleon
scattering, by Goldberger, Nambu, and oehme, Ann. Phys. (to be
published). kp

(1+p')e '"'— (g'+ f') dr (120).
/
1V/'
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One finds
1 q t

1

&1+p') 41—harp)
(121)

The crucial point is now this. For potentials which
satisfy the Eqs. (58) one can show explicitly that, for
large

~
E~,

~
R(x)

~

is bounded by a finite constant; i.e.,
for any fixed p&0

00

T(E,r) = U(E, r)+ Q T„(E,r),
2E ~~2

where U(E, r) is the Fourier transform of U and

(A1)

T~,= ~~ exp i (x—+—y)
2@~

&(exp[ ikn —(x—y) $U(x) K'„(x,y) d'xd'y. (A2)

From the recurrence formula

~ gikL x—z(

K'„(x,y) = ——
~

U(z) K„ i (z,y) d'z, (A3)
fx—zt

with

K, (x,y) =—K(x,y) =—— U(y),
4~ [x-yf

we can rewrite T~~ as follows, for e& 1:

T„+i—— ~ exp i (x+—y)—exp[ —ikn (x—y)j

where
XU(x)K„ i(x,y)R(y)d'xd'y; (A5)

f
R(x) = ——,exp~ i z~ exp( —ikn z)—-

)

For small binding energy ro plays the role of effective
range of the potential.
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APPENDIX

We shall derive here the result expressed in Eq. (71).
For this purpose it is convenient to introduce a strength
parameter X which multiplies U and which at the end
is set equal to unity. Using (16) and (43), let us first
write down the Born series for the matrix T, leaving
aside for the moment the question of convergence. For
very large ~E~ we can replace (E' rNs r'/4)&—by —k;
so for large ~E~ the Born series reads

R(x) & )) ~C, ~E) &~+~. (A7)

The factor U contains the troublesome term 2EV,
which would appear to lead to a divergence in (A6).
But one can carry out a partial integrations which
brings in a factor k in the denominator, so the integral
(A6) is in fact bounded as ~E~ +~, as —asserted in the
foregoing. We shall not go into the details here. "Using
(A7) then, and proceeding by induction, we find

T~i& ~XC~" '
~ exp i —(x—+y)

2E ~ 2

Xexp[ ikn—(x—y) jU(x)K(x,y) d'xd'y. (AS)

The foregoing integral is bounded by a finite constant
times ~Ej'. We therefore conclude that

(
T +.i/E) is

bounded, and that the Born series converges uniformly
and absol«ely if l)tCI &1 Thus ITIEI 's bounded if
/XC

f
&1.

But we now assert that for ~E~~~, T/E in fact
vanishes. It is evident that T„~i/E vanishes when
s=—Imk-+~, for in this case the integrand in (AS)
contains a damping factor exp{—K[

~

x—y ~

—n (x—y)])
which vanishes almost everywhere for ~~~. On the
other hand, for Rek-+ po, the integrand of (A2) oscillates
very rapidly almost everywhere because of the factor
exp[—ikn (x—y) j. If we divide both sides of (A2) by
E, the integral of the absolute value of the integrand
on the right-hand side will be finite. Hence, we conclude
using the Riemann Lebesgue lemma that T„+i/E
vanishes as ReE—+~.

This completes the proof that (71) holds true, at
least when the Born series converges uniformly —and
we know that for sufficiently small values of the strength
parameter, ))iC~ &1, the Born series does converge.
But now we note that considered as a function of A, ,
T is a meromorphic function of ) for any fixedE; T was
defined as a ratio of two entire functions of X. For real X

and
~ E )m, T has no poles. It is therefore clear that

if T/E vanishes as ~E~~~ for ~XC~ &1 it will vanish
for all finite real values of X.

)& U(x+ z) e'"d'z (A6)— .'~ For a detailed proof of the results of this appendix see N. N.
Khuri, thesis, Princeton, 1957 (unpuhhshed).


