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Temperature Dependence of Ferromagnetic Anisotropy
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The temperature dependence of the crystalline anisotropy constants of iron, cobalt, and nickel is discussed.
It is shown that Zener's result for iron (i.e., the first anisotropy constant varies as the tenth power of the
magnetization) also may be derived from molecular field theory. In cobalt a satisfactory agreement. with
experiment is obtained by using Zener's results together with the postulate that the intrinsic anisotropy
varies with thermal expansion in the manner recently calculated by the author. For nickel the temperature
dependence of E& seems to require, in addition to the tenth power of the magnetization, a multiplicative
factor that is linear in the temperature. No explanation has been found for this latter term.

INTRODUCTION

~ 'HE crystalline anisotropy energy of most ferro-
magnets is a rapidly varying function of temper-

ature; much more so, for example, than the spontaneous
magnetization. This fact has stimulated a considerable
interest in the problem and has lead to a number of
previous theories which are discussed below.

The anisotropy energy is described by "anisotropy
constants" in an expansion of the free energy in elements
of crystal symmetry. For a cubic crystal at a tempera-
ture T, the free energy, in terms of the direction
cosines of magnetization Ot;, is given by

~0(2 )+F 1(2 ) (121 &2 +rr1 rr3 +n2 mrs )
+&2(T)~1'~2'~2'+ (1)

The energy

F PO(0)+Ill(0) (rr1 122 +121 c23 +&2 mrs )
+E2(0)nt'o'2'(rs'+ (2)

at T=O is of special interest since in this case the
atomic moments are aligned parallel and Er(0), E2(0),
etc., are a measure of the intrinsic anisotropic coupling
between spins.

The discussion for cubic materials will be conhned
largely to the first constant E& since the subsequent
terms are smaller, and only E& is known experimentally
over a wide temperature range. The temperature range
of interest extends to a value somewhat smaller than
the Curie temperature, since near T. even the constant
E& becomes very small and inconsequential.

(A) Theory of Zener

The calculations of Akulov' and of Zener' have given
a clear understanding of the physical principle involved
in the rapid decrease of anisotropy with temperature
in iron.

Akulov observed that as T-+0 Eq. (1) can be derived
from Eq. (2) if the spins are thought of as completely
aligned but precessing about the applied field. For such
a case he showed that Er(T)/Er(0) would approach

zero temperature as the tenth power of the reduced
magnetization, I/Ie, in agreement with experiment.

Zener carried this idea much further by supposing
that over the whole temperature range there exists a
short-range ordering of spins about each atom and thus,
if the a; in (2) are taken to be direction cosines of the
ordered spins, it is necessary only to average properly
over all the directions of short-range order to obtain
(1), where the o., in (1) refer to the bulk magnetization.
Thus Zener obtained the result

&1P')/&1(0) = (I/Io)"

for the complete E~ es T curve, in excellent agreement
with experiment for iron.

Some details in this theory will be considered more
closely in the following section, where approximately
the same result is derived by a diGerent type of aver-
aging.

(3) Worlr of Van Vleck

Much of the pioneering work on anisotropy has been
done by Van Vleck. ' In essence Van, Vleck starts with
an approach in which two spins are coupled by pseudo-
dipolar and pseudo-quadrupolar interactions. The free
energy is then calculated by developing the partition
function in powers of T ' and by treating the above
interactions as perturbations.

The key point in the calculation occurs with replace-
ment of the exchange interaction by a molecular 6eld,
which allows the unperturbed state to be one in which
the individual spins are quantized separately. Another
approximation is made in which a small amount of
correlation among neighboring spins is introduced.
KeGer4 has pointed out that the lack of sufhcient spin
correlation makes the dipolar part of Van Vleck's
calculation depend too strongly upon temperature, and
the quadrupolar part not strongly enough.

(C) Other Methods

A logical extension to Van Vleck's work is the
evaluation of the pseudo-polar couplings by means of

' N. S. Akulov, Z. Physik 100, 197 (1936).' C. Zener, Phys. Rev. 96, 1335 (1954).
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' J. H. Van Vleck, Phys. Rev. 52, 1178 (1937).' F. KeiIer, Phys. Rev. 100, 1692 (1955).
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spin waves. Such calculations have been made by Pal'
and Keffer, ' both of whom obtained the tenth power law
for the cubic case, and by Kasuya' who obtained a
sixteenth power law, These results apply only in the
limited range of low temperatures.

Pal treats the temperature dependence of cobalt as a
competition between dipole-like and quadrupole-like
terms; whereas Vonsovsky' considers the excitation of
electrons to higher orbital states.

Other calculations to be considered later are those of
Sato and Tino, ' and Brenner. '

Arsisotropy of Irors

The method used by Zener to derive the temperature
dependence of anisotropy is a general one, independent
of the type of coupling between atoms, except that the
atomic coupling constants are assumed to be inde-
pendent of temperature. A questionable point in the
argument is the use of a random-walk distribution
function to describe the motion of magnetization within
a small volume element of the crystal. It is desired to
show that essentially the same result may be obtained
from molecular field theory.

For a large crystal the anisotropy energy of each
eigenstate may be written as the interaction of an atom
with its surroundings, multiplied by the number of
atoms. I et the volume of the "surroundings" be desig-
nated by G. Clearly, G must be as large in linear
dimensions as the range of the anisotropy forces and
evidently corresponds to the unspecified volume ele-
ment considered by Zener. The key assumption which
reduces the problem to a very simple classical one is
that, for the eigenstates of interest below the Curie
temperature, the spins in the region G are highly
correlated. Thus, the local magnetization, I~, approxi-
mately satisfies I&'= Ip', where Ip is the magnetization
of the crystal at T=O.

For definiteness one may think of the region G as
containing an atom, and several shells of nearest
neighbors. The most convincing evidence for presuming
the spins are ordered in a region of this size is the
observation, from neutron scattering, that magnetically
coherent regions of several unit cells in size exist even
at the Curie point. " Additional evidence has been
discussed by Eever. 4

Thus, the anisotropy of the atom at the center of G
is obtained from Eq. (2) if the u; are replaced by P,,
which refer to the local magnetization.

Since the component of magnetization in the field
direction in G must be the same as the bulk magnet-
ization I, evidently the local magnetization of magni-

5 L. Pal, Acta Phys. Acad. Sci. Hung 3, 294 (1954).' T. Kasuya, J. Phys. Soc. (Japan) 2, 944 (1956).' S. V. Vonsovsky, J. Phys. (U.S.S.R.l 3, 83 (1940l.
M. Sato and Y. Tino, J. phys. radium 17, 5 (1956).

9 R. Brenner, Phys. Rev. 107, l539 I,1957).
' C. G. Shull, in Les E/ectrons Dans Les Metaux, edited by

R. Stoops (Coudenberg, Bruxelles, j.955), p. 227.

and therefore

If i(T) Ifi(0)(P4(cosO)), (6)

where I'4 is the fourth-order Legendre polynomial.
Zener calculated (P4) by assuming the local magnetiza-
tion undergoes a random walk, subject to the side
condition that (cosO') is equal to the measured I/Is.
Alternatively, the averaging may be performed, in the
manner of Brenner, ' by using a more conventional
distribution function obtained from molecular field
theory. *Since the local magnetization is a large quantum
number, the classical or I.angevin function is the appro-
priate one to use. Thus

J
P4(cosO~)o -'8 sinO~dO~

(P4(cosO~)) =

oa cos8 sinQ~d0~
Qp

P4(8/sju)Z

where Z= (2/u) sinhu is the partition function, and
u(T) is (kT) ' times the "averaged" interaction between
the local magnetization and the remainder of the
crystal at a particular temperature; or in other words,
the product of (kT) ' and the magnetic moment times
the molecular field.

After the differentiation indicated in (7), the result
may be written as

35 (10 105' I
(P4(cosO)) = 1+——

i

—+
u' &u u' JI, '

with I/Is substituted for cothu —1/u, which is the
explicit expression for (cos0).

For the present calculation let o. be that function of
temperature which exactly reproduces the observed

*KeRer (reference 4) also has given results for this type of
averaging in the general case of an nth-order polynomial.

tude Ip can be thought of as precessing about the
direction of the field with an average polar angle 0
given by

(cosO) =I/Ip.

It is necessary to average (2) over this precessional
motion and over the spread of angles 0 to obtain the
bulk anisotropy. At this point, it is not entirely apparent
that the result will be correctly a component of the
free energy, but such is shown to be the case in the
Appendix. The average over the azimuthal angle is
readily performed, ' leading to

IC (0)(P '0 '+0 '0 '+0 '0 ')= l& (o)(1—&P (coso))j
+IC (i0)(P4(c soO))( ui us+ui us +u u ) (5)
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magnetization, i.e., which satis6es

cothcr —1/n = (I/I p)

The results substituted into (8) are plotted in Fig. 1,
giving good agreement with the measured Ei(T) over
the entire temperature range. In eGect, the calculated
curve of Fig. 1 results from substituting the measured
magnetization into the calculated expression for (I'4),
written as a function of the calculated magnetization.
The reason these points are quite different from those
calculated by Brenner' is that Brenner used the Weiss
6eld approximation for 0., rather than the experi-
mentally determined values used here. It is interesting
to note that this di6erence in the partition function,
which introduces only a small error in (cosO), leads to
a large discrepancy in the average of the anisotropy
energy. In fact, at low temperatures, the difference
between the curve in Fig. 1 and Brenner's curve is just
ten times the diGerence between the usual I.-angevin
function and the measured magnetization. The result
points out the difficulty of a calculation on the temper-
ature dependence of anisotropy based entirely on
quantum mechanical first principles, without relating
the results to other measured quantities.

It is of further interest to understand why the
molecular field averaging agrees with Zener's tenth
power law. This fact is understood when it is observed
that over the temperature range of principal interest
(T/T, & 0.8), coth4r may be replaced by unity and

I/I p 1—1/rr

.8

K,(T) '
K (o)

,4

00 .3
T/T

l.4 1.5

Thus, it is shown that in Zener's calculation the
random walk approximation is not a critical part of
the theory. " Near the Curie point the molecular field
result seems to differ somewhat from the tenth power
law, but the measurements of magnetization are not
precise enough to determine which is in better agree-
ment with the experimental curve.

FIG. 2. Comparison of the second anisotropy constant of cobalt
with a tenth power law. ———Tenth power of the reduced magnet-
ization, from measurements by H. P. Meyers and W. Sucksmith
(reference 13). Anisotropy as a function of temperature
according to recent (1954) data of Sucksmith and Thompson.
This curve differs considerably from the older measurements of
Honda and Masumoto (1931) and Gans and Czerlinski (1932)
(reference 12).
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Hexagonal Cobalt

The free energy of hexagonal cobalt has the sym-
metry

while with the same approximation, from (8), Ii = Ii p+Ei sin'0+Ep sin40~+ (13)

(I'4(cos0~)) 1
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the first three terms in (12) agreeing exactly with those
of (11), and the succeeding terms having order of
magnitude agreement.

with 0 the angle between magnetization and the c
axis. When averaged over the motion of the local
magnetization the following expressions result for the
temperature dependence of the anisotropy constants,

8
) (I)' 8 (Il"E (T) =

I E,(o)+-E,(o) il
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+. =Ei(O) (I!Io)' (14)

The above formulas were obtained by using the random
walk distribution, but no essential difference arises
from a molecular field function.
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FIG. 1. Comparison of experimental curve, the tenth power
law (taken from Zener2) and the result of molecular field averaging
for the temperature dependence of E1 in iron.

"At low temperatures it is unnecessary to consider a distri-
bution function at all, since for small 0, (cos"0') ~(cosO~)" and
thus X4(T)/IC4(0) =(P4(cosO)) P4(I/Io), which is the result o—f
Akulov. The experimental anisotropy for iron, in fact, does agree
with P4(I/Ip) up to T/T, 0.5. If I is written as IQ DI, it readily-
may be shown that as T-40, P4(I/Ip)41 —10(nI/Ip), giving the
tenth power law.
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crystalline Geld of the lattice, the result being

Et(0) =CS»—(12/7)Es(0), (16)

where C is a constant and S22 a lattice sum which is a
measure of the crystalline 6eld. Some years ago it was
pointed out by McKeehan" that the particular lattice
sum involved here is highly strain sensitive in the case
of cobalt. It is tempting, therefore, to attribute the
change in sign of E~ as due to thermal expansion. In
analogy with (14) let the anisotropy constant be
described by

12 /I ) '
Et(T) = ~S»(T) ——Es(0)

I

—I,
&I,) (17)

~2

-.40
~ 2 ~ 3

Tc

~6

where the term in the brackets is the intrinsic ani-
sotropy, depending upon temperature through strain,
and the factor (I/Is)' again results from the local
magnetization not being fully aligned with the field.
To agree with measurements at T=O, the constant C
must have the value

FIG. 3. Temperature dependence of E1 for cobalt. — Calcu-
lated from Eq. (23); o experimental data of Sucksmith and
Th™pson (reference 12); Q data from Honda and Masumoto
as given in reference 12; Q data from Gans and Czerlinski as
given in reference 12. and thus

Et(0)+(12/7)E, (0)

Sss(0)

Experimentally it is dificult to separate E2 from the
larger EJ term in the anisotropy, and the data" of
various investigators on Es(T) do not agree. This,
together with the uncertainties in the magnetization
as a function of temperature for cobalt, "prevents an
accurate check of Eq. (15). Nevertheless, the most
recent data by Sucksmith and Thompson" are in rough
agreement with a terith power law, as shown in Fig. 2.

The formula (14) for Et(T) obviously does not
describe the experimental points shown in Fig. 3, since
the latter decrease much more rapidly and change sign
at about 500'K. It is apparent, therefore, that the
intrinsic anisotropy, itself, is a function of temperature;
i.e., the coupling between atoms with parallel spins
changes with T. To understand such an e6'ect, it is, of
course, necessary to consider an atomic theory of
anisotropy. In a recent calculation, " the author de-
veloped a theory somewhat along the lines of a model
illustrated by Kittel" in which each atom, in conse-
quence of its orbital angular momentum, has a distorted
charge distribution that is coupled to the spin. These
charge distributions interact among each other and
with the crystalline 6eld to produce the anisotropy. In
cobalt, the principle interaction was calculated to be
that between the distorted charge cloud and the

"W.Sucksmith and J.E. Thompson, Proc. Roy. Soc. (London)
A225, 362 (1954).

''H. P. Meyers and W. Sucksmith, Proc. Roy. Soc. (London)
A207, 427 (1951).

'4W. J. Carr, Jr., Phys. Rev. 108, 1158 (1957).
'5 C. Kittel, Introductioe to Solid State Physics (John Wiley

and Sons, Inc. , New York, 1956), second edition, p. 429.

Et(T)

Et(0)

Sss(T) (I I '
1.48 —0.48

I

—I.
S»(0) KIs)

(19)

According to McK.eehan, the lattice sum depends upon
M, the c/a ratio, in the manner

Sss=0.00507—5.42(M —1.633)/1.633, (20)

if M is close to the value for ideal packing, 3..633.
Letting M= Ms(1+nT), where n is an average thermal
expansion coeKcient for c/a, one obtains

Sss=0.00507—3.32(Mo —1.633)—3.32MpnT, (21)

and hnally

Et(T)

Et(0)

4.9&00.T
(22)

0.00507—3.32(Ms —1.633) &Isa

In the absence of data for the complete temperature
range, a value 3.5X10 ' will be used for n, which has

"L. W'. McKeehan, Phys. Rev. 43, 1025 {1933);52, 18 {1937).

12 S»(T)
Et(T) = Er(0)+—Es(0)

I 7 Sss(0)

12 ]I ~'——E,(o) I

—
I (»)

&I,&

Taking Es(0)/Et(0) =0.28, which is an average value
from three sets of measurements, "one obtains
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been measured in the range 33 to 100'C." For solid
cobalt the more recent measurements by Owen and
Jones" furnish a room temperature value for c/a of
1.6322. Extrapolating this result back to absolute zero,
one obtains Mp= 1.6306. Thus, from (22),

Ei(T) ( I ) '
=(1—2.1x10-pT)

l

—
l

Ei(0) &I,3

( 3T) (I)'
T, ) &I,&

The above expression, as shown in Fig. 3, is in good
agreement with the experimental values. A better
comparison could be made if thermal expansion data
were available over a wider temperature range.

n
I

O

hC
—4

.2
I

~4
I

.6
I

O

.8
I

I 0
I

ki =Ei(0)L1—1.74(T/T. )). (25)

In particular, the positive part of E~ at high tempera-
tures is reproduced by this type of expression. However,
a theoretical reason for the postulate (25) is lacking.

Brenner' has shown that some linear dependence of
E~ upon T should exist due to thermal expansion, but
existing data show this eGect in Ni is too small to
account for (25).

The change in sign of Ei at T/T, =0.6, which
experimentally is still somewhat in doubt, is a key
point toward understanding the anisotropy of nickel;
for if it exists, the empirical relation of Briikhatov and
Kirensky, which other authors have attempted to
justify theoretically, is ruled out. Although the positive

Case of nickel

The first anisotropy constant of nickel as a function
of temperature decreases much more rapidly than that
of iron and corresponds more nearly to a 6ftieth power
of the magnetization. (Frequently, it has been mis-
stated as varying as the twentieth power. )

It is unlikely that this rapid decrease can be accounted
for by the motion of the spins. A priori, it would seem
that neighboring spins in nickel are correlated as in
the case of iron. Such would lead to a tenth power law,
with the additional dependence coming about because
the coupling constants themselves are a function of
temperature. One may write

Ei(T)= ki(T) (I/Ip)", (24)

where k& is the anisotropy for parallel spins.
Equation (24) agrees reasonably well with experi-

ment" (Fig. 4) if, as in cobalt, ki has a linear dependence
on temperature, i.e.,

ken from Bozorth)

FIG. 4. The anisotropy of nickel. The measured values are taken
from Bozorth (reference 19).

values of E& are quite small, the magnitude of the
positive coupling evidently is quite large; otherwise,
no measurable anisotropy would appear at these high
temperatures.

APPENDIX

The partition function for the whole crystal is given

by
( (Ep +Ei s))

Z=E expl— (26)

where Eo„ is that part of the total energy of the eth
eigenstate which is independent of the direction of the
applied magnetic field II, and E~ s is that part which
has directional dependence. The symbol s is an abbrevi-
ation for n Pnp'+n Pn p'+nPnp', the n's being the direction
cosines of H (or the bulk magnetization) with the
crystal axes. LIt is unnecessary in (26) to include states
for which the bulk magnetization of that state is not
alined with the 6eld, since measurements of anisotropy
are made by extrapolating to i.nfinite field. j

To obtain E~, one expands the thermodynamic
function for the free energy in powers of s,

(BFi
F=Fp+l l s+ (27)

4 as i,=p
' American Institute of Physics Handbook (McGraw-Hill Book

Company, Inc. , New York, 195'7), p. 4-54.
' E. A. Owen and D. M. Jones, Proc. Phys. Soc. (London)

B67, 456 (1954).
'9 R. M. Bozorth, Ferromagnetism (D. Van Nostrand Company,

Inc. , Princeton, 1951),p. 569.

and, by comparison with (1),
f'BF)

Ei(T)=
l( as), ,

(2g)
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But statistically" F= —kT lnZ and therefore,
(26) and (28),

Eon) ( Eon&
El@')=& expl — IE1- ~ expl- xr)

El„=El(0)P4(cosO, ). (31)Upon making use of the ideas discussed in the text,

from X atoms and the P's refer to the local magnetization
about that atom.

For each low-energy eigenstate e, one may picture
the local magnetization as making an angle O„(defined
by I„/Io) with the field direction. Thus, in analogy
with (5),

EOn+Eln(&1 422 +rri &3~+&2 rr3 )
+{k0n+Ii El(0)(Pln P2n +Pin P3n +P2n P3n )) (30)

Finally, upon replacing sums by integrals, (29) goes
over to

where ks„and X 'El(0) are appropriate to one of the El (T) = El (0) f(0)I'4(cosO)dr f(O)dr. (32)

"In reality the Gibbs' free energy is desired, since measure-
ments are made at constant pressure. However, the difference
between measurements at constant strain and constant pressure
is negligible for most materials.

Zener assumed a random walk distribution function
for f(O'); Brenner, a molecular field function.
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Low-Temperature Magnetic Studies of Uranium Hydride,
Uranium Deuteride, and Uranium Dioxide

WARREN E. HENRY
United States Sara/ Research Laboratory, 8'ashington, D. C.
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A study of magnetization as a function of temperature and magnetic field has been carried out for uranium
hydride, uranium deuteride, and uranium dioxide at temperatures from 300'K to 1.3'K and in magnetic
fields from 60000 gauss down to zero field. The apparent saturation magnetization for the samples of
beta-uranium hydride used is 1.18&0.03 Bohr magnetons per atom of uranium and for one sample of
uranium deuteride is 0.98&0,03 Bohr magneton per atom of uranium. The magnetic moment of uranium
dioxide, limited by what may be antiferromagnetic ordering, is about 0.025 Bohr magneton per atom of
uranium at 35 000 gauss and 1.3'K. This result makes possible corrections for the moments of UH3 and
UD3 on the basis of a known oxygen content or an estimate of the oxide impurity on the basis of apparent
saturation. A high zero-6eld remanent magnetization (over 50% of the saturation magnetization for a
spherical sample) is observed, attesting to the pronounced magnetic hardness of beta-uranium hydride.
Analytic expressions have been worked out for magnetization as a function of temperature for zero magnetic
field and 11 500 gauss, leading to a paramagnetic 8 of 180'K and a ferromagnetic 8 of 168'K. An estimate of
2)(10' gauss is made for the molecular field in UO2.

INTRODUCTION
' 'N recent years, much interest has been shown in
~ ~ the overlap of wave functions as associated with
exchange interactions, and how they foreshadow
ferromagnetism and antiferromagnetism. The formerly
conventional ferromagnetic and antiferromagnetic sub-
stances have been in the iron (3d unpaired electrons)
group; also the rare earth group (4f unpaired electrons)
has yielded ferromagnetic' and antiferromagnetic
substances. ' It is then of particular interest to study
possible exchange interactions originating in 5f and
6d configurations in the actinide elements and their
compounds. The discovery of a ferromagnetic transition
in uranium hydride' at 173'K heighteried the interest
in the study of some of these interactions. Various
low-field studies have been made of the magnetic

' Banister, Legvold, and Spedding, Phys. Rev. 94, 1140 (1954);
Klliott, Legvold, and Spedding, Phys, Rev. 94, 1143 (1954).

W. E. Henry, Phys, Rev. 98, 226(A) (1955).

properties of beta-uranium hydride. The susceptibility
above the Curie temperature was studied by Trzebia-
towski, Stalinski, and Sliwa, ' by Gruen, 4 and later by
I.in and Kaufmann. ' Estimates of 2.9 Bohr magnetons
per atom4 were made from the low-Beld susceptibility
measurements, using

f =CLX(2'+A) j'.
Here p is the intrinsic moment, p is the susceptibility,
T the absolute temperature, and C and 6 are constants.
In the neighborhood of 173 K, there is a more rapid
increase in the susceptibility. This, together with
hysteresis and direct zero-field magnetization measure-
ments, ' confirmed the strong ferromagnetism of

Trzebiatowski, Stalinski, and Sliwa, Roczniki Chem. 26, 110
(1952); 28, 12 (1954).

D. M. Gruen, J. Chem. Phys. 23, 1708 (1955).
~ S. T. Lin and A. R. Kaufmann, Phys. Rev. 102, 640 (1956).
6 W. E.Henry and D. M. Gruen, Phys. Rev. 98, 1200(A) (1955).


