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Theory of Interstitial Impurity States in Semiconductors

PETER E. KAUS
I/CA Laboratories, Princeton, Sew Jersey

(Received November 4, 1957)

The ionization energy and expectation value of the radius corresponding to the states of several interstitial
impurities in Ge and Si are calculated. The range of the valence electron of the impurity is divided into two
regions; an inner region, which is treated microscopically, and an outer region, which is treated macro-
scopically. The separation radius, which is primarily a function of the host crystal, is a parameter of the
calculation. At a critical separation radius a rapid change of ionization energy and wave-function results.
The calculations are carried out for several impurities in column I of the periodic table.

I. INTRODUCTION many unit cells that only a small fraction resides on
the core.

On the other hand, Reiss" pointed out that hydrogen
does not conform to the "hydrogenic" model. Large
amounts of hydrogen, possibly as high as 10"cm ', are
present in crystals of Ge and Si which are normally
nsidered pure. " The hydrogen does not acct the
electrical properties of the crystal which implies that it
does not ionize at room temperature. Reiss shows by a
variational calculation on a simple model that the
hydrogen impurity level may well be as deep as 1 ev.
The model consists of a cavity surrounded by a medium
of dielectric constant ~. The radius of the cavity and the
dielectric constant are the only crystal parameters
entering the calculation. The crystal periodic (effective
mass) behavior of the electron is neglected, because in
Reiss' calculation the wave function is so concentrated
around the impurity atom that fine details of the crystal
are unimportant. The energy of a state depends quad-
ratically on s, but only linearly on (m*/m). In other
words, for the shallow levels, the Schrodinger equation
with m* and I(: can be considered as the unperturbed
equation and the contribution of the core as a perturba-
tion. For deep levels, the periodic crystal potential and
the dielectric constant are considered to perturb the
wave function derived from a vacuum Schrodinger
equation. Such deep-lying impurity states are not
difficult to understand and appear in fact quite naturally
in the methodological calculations of Saxon and Hutner'
and Slater and Roster. ' The difficulty is to decide in an
actual case whether a level will be deep or shallow.

The purpose of this paper is to obtain a qualitative
picture of the dependence of impurity states on the
properties of both the crystal and the impurity. It is
primarily concerned with the calculation of energy
levels and wave functions of the outer electrons of
impurities in semiconductors. The calculation incor-
porates the following features in a consistent, though
only approximate fashion: The host crystal is charac-
terized by a scalar eGective mass m* and a dielectric
constant f(. The impurity atom is described by the
electron distribution of the core electrons. A parameter,

CHEMICAL impurities and lattice faults in semi-~ conductors usually produce one or more energy
levels in the forbidden energy gap. ' ' The wave func-
tions corresponding to these levels are localized in the
vicinity of the imperfection. When the impurity wave
function is spread out over many unit cells of the
crystal, as is often the case, then the energy of an eigen-
state (donor or acceptor) can be calculated by using the
macroscopic concepts of effective mass and dielectric
constant. ' ' When this is the case, the problem of the
impurity wave function approximately reduces to the
solution of Schrodinger's equation for an electron in
the field of a positive point charge. The mass of the
electron is changed to the effective mass and the point
charge is reduced by the dielectric constant. Solving for
the 1s state of this system yields an ionization energy of
—(13.6) (rN*/m) (1/K') ev and an expectation value of
the radius of (3/2)~(m/m*)as, where m* is the effective
mass and ~ the dielectric constant; ap is the vacuum
Bohr radius, 5.3X10 ' cm. This model, the "hydrogenic"
model, gives an ionization energy of about 0.01 ev for
impurities in Ge and 0.03 ev in Si; the corresponding
expectation values of the radius are approximately
100ap. These results are independent of the impurity
and depend only on the nature of the host crystal.
In the vicinity of the impurity, however, the macro-
scopic concepts do not apply, and this region ought to
be treated diGerently. ~" In the case of group III and
group V acceptors and donors in Ge and Si, this leads
to relatively small corrections to the energy of the
impurity state, in good agreement with experiment.
Fine details of the impurity core are not important in
these cases since the wave function is spread over so
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INTERSTITIAL I MPURITY STATES

the
effective

cavity radius, will be introduced to
separate the microscopic from the macroscopic region.

IL IMPURITY POTENTIAL AND WAVE FUNCTION

1. Hydrogen Impurity Potential

It is useful to look first at the potential due to a
single interstitital proton as felt by one electron because,
in this case, there is no complication due to other core
electrons of .the impurity. One can then write down the
field in two limiting regions, one far away from the
proton and one close to it. If one chooses some charac-
teristic length, L, the two limiting forms are

E= e/gr' r»L
E=e/r2, r((L.

The impurity potential in the two regions is obtained
by integration of (1):

V = e/~r, r&—&I.

V = —%+0, r«L.

The radius, L, is related to the lattice spacing. If the
integration constant, k, were known, then the impurity
potential V(r) would be known over all space, except
in the vicinity of L. In that case, extrapolating the two
limiting potentials into the region, L, will produce one
continuous potential which could be expected to give
fairly good results for the energy and wave function of
the impurity. The relation between the correct and the
extrapolated V(r) is shown schematically in Fig. 1

under the assumption that the correct k is known and
that the impurity potential is actually spherically
symmetric. The two extrapolated limiting potentials
join at a radius, E, which will be called the effective

—e/t' + k

FxG. 1. Schematic representation of correct and
extrapolated potential V (r).

cavity radius. No strict physical reality is to be given
to the dkctive cavity.

The extrapolated potential would be a fair repre-
sentation of the impurity potential if the constant k
were known. This constant, however, depends on the
solution of three problems, none of which can be solved
without calculations so lengthy that they would not be
in the spirit of the present article. Taken up in turn the
contributions to k are:

(a) Integration of the proton field If t.
—he field of the

interstitial proton is known, it can be integrated from
infinity to an arbitrary radius to yield the potential.
If this integration is carried to a small r((&L), the
contribution to the constant k could be obtained. The
only region of doubt is the region in the neighborhood
of the effective cavity radius, E. This involves the
precise way in which the field changes from dielectric
behavior into vacuum behavior, a very involved
problem. Certainly, spherical symmetry is violated in
the neighborhood of R.

(b) Crystal geld.—To the impurity potential must
be added the periodic crystal field. In the region r&E
this will be taken into account through the eGective-
mass formalism. In the region r(R, it should be made
a part of the potential for the electron having the
actual mass. But in this region the impurity potential
is generally much stronger than the crystal potential,
since we are dealing with an interstitial impurity.
Therefore, in the region r(E the crystal potential is
approximated by a constant contribution to the total
potential.

(c) Polarization die to the electron The pol.a—rization
of the crystal due to the interstitial proton is, of course,
expressed through the e/gr term in the potential. But
the electron polarizes the crystal as well. The problem
of the difference in potential experienced by an electron
on the two sides of a vacuum-dielectric interface has
no unique classical solution. If there is an actual cavity
wall, the diGerence due to the polarization potential is
infinite. As a matter of fact, the potential on each side
of the cavity becomes infinite, negatively on the vacuum
side and positively on the dielectric side. Actually we

know, however, that the potential does not behave in
this fashion. In the neighborhood of E the classical
potential breaks down in such a way that the potential
on either side of the cavity di6ers only by a finite
amount, k. This constant k is then the third contribu-
tion to the constant h in the potential V(r). This
contribution is illustrated in Fig. 2.

The whole question of the constant k is quite
'analogous to the problem of the potential experienced

by an electron near the surface of a metal. The classical
picture of mirror charges breaks down near the surface
and the potential on either side differs by a constant,
the "work function, " and not by an infinite amount.
When the work function is known, from calculation or
experiment, the potential is known everywhere except
in the immediate neighborhood of the surface, where it
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FIG. 2. Schematic representation of potential experienced by
the electron due to polarization of the crystal by the electron.
For the classical potential II: is arbitrary, since the vacuum and
dielectric regions cannot be joined continuously.

k = (e/R) (1—1/~). (3)

A change in the effective cavity radius R of 0.5co
corresponds to a change in k of 2 ev when R is of the
order of 2.5ao. In view of the foregoing discussion, these
numbers can serve as a rough estimate of the uncer-
tainty in the eGective cavity radius.

2. Core Potential for ZA1

When the impurity is not a simple hydrogen atom,
the potential near the impurity has to be modified.
Instead of the single positive charge, there is a nucleus
of Z positive charges surrounded by (Z—1) negative
charges. These make up the core. In vacuum, a fair
approximation of the core potential is given through
the Thomas-Fermi-Dirac statistical model. This model
can still be used here if one makes the assumption that
the core containing (Z—1) electrons does not extend
beyond the interstitial cavity and is in consequence
virtually undisturbed by the crystal. This assumption
will hold best for cases, where the (Z—1) electrons form
a closed shell. In general, one could always treat
electrons which form closed shells as unpertubed and
treat the remaining electrons by iterative methods. In

can be approximated by extrapolation. In the present
calculation the constant k takes the place of the work
function. If k were known, the potential would be
known everywhere, except in the region around E.
However, the uncertainties in k due to the three con-
tributions u, b, and c are all of similar magnitude, of
the order of electron volts. The calculation is therefore
performed by using the extrapolated potential (2) with
k as an undetermined parameter. The effective cavity
radius R is then a function of k. In practice, it is E
which will be used as the undetermined parameter. For
the potential (2), the relationship between k and R
is given by:

the present calculation it will simply be assumed that
the core is undisturbed, and it is to be understood that
this is a good approximation only for the cases where
Z electrons form a closed shell plus one, i.e., for column I
of the periodic table. The calculations will be confined
to this column. "

Adopting the formulation of Latter" which assures
proper asymptotic behavior of the core potential, the
potential for r &R is changed from —e/r+k to

where

and

V(r) = —(e/r)Zg(r)+k, r &R,

Zg (r) =Z p(r/y) when Zrp(r/y) )1

=1 when Zp(r/y) &1,

(4)

"The assumption of the undisturbed core is sensible only in
the case of interstitial impurities. In the case of substitutional
impurities several electrons, depending on the valence difference
between the crystal and the impurity, will be severely disturbed
by the bond structure of the crystal and the present potential
does not apply. Some remarks in connection with substitutional
donors and acceptors are found in Appendix I.

"R.Latter, Phys. Rev. 99, 510 (1955).

Z p(r j/y) Zrp(r/y)+ (9/8m') &[(Zr/ao) y (r/p) $&;

also y =0.8853ae/Z&, and q (r/y) is the universal
Thomas-Fermi function.

For r)R the potential is still —e/~r. From the
continuity of V (r) at r =R, the constant k can be given
as a function of the effective cavity radius R:

u = (e/R) LZg(R) —1/.3 (5)

The discontinuity in the derivative of the potential
(4) when first Zg(r/p) attains unity, implies in effect
at this radius a pileup of charge, which, of course, is
fictitious. This is a common feature of the Thomas-
Fermi-Dirae potential. In the present calculation the
potential is changed to e/~r a—t r=R If Zp(R/. 7) is
greater than unity, i.e., if the core radius is larger than
the cavity radius, all the remaining core charge is
concentrated at the cavity radius. In practice, this
represents a bigger fictitious concentration than occurs
in the vacuum Thomas-Fermi-Dirac case. Nevertheless,
for cases of present interest, R= 2.5ae, no more than 5%
of the core charge fails to be contained in the cavity
and thus is concentrated on the cavity wall. This effect
is not sufficiently large to change the validity of the
calculations. It may be considered as a contribution to
the effective cavity radius. This point will be discussed
in the last section of the paper.

The impurity potential for all space is now given by
the following expression, using (4) and (5):

eV(r) = —(e'/r)Zg(r)+ (e'/R) fZg (R) 1/~j, —
r(E

eV(r) = —(e'/zr), r)R. (6)

The potential V(r) is depicted for several cases of Z
and R ln Flg. 3.
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3. Wave Function

(a) Interior regiors, r&R.—In the cavity region,
r&R, the Schrodinger equation to be satisfied by the
impurity wave function is

[(its/2')h e—V(r)+E;lil;(r) =0, r &R. (7)

Here V(r) is the potential as defined by (6). The
crystal potential is already absorbed in the constant
term k. The wave function must fulfill the usual
boundary conditions of an atomic orbital at the origin.
Since V(r) has spherical symmetry, f;(r) will be ex-
panded in spherical harmonics.

(b) Exterior regions, r&R.—In the exterior region,
r& R, the periodic crystal potential U(r) must be added
to the impurity potential V(r), so that the Schrodinger
equation becomes

[(Ii'/2m)d —eV(r) —U(r)+E;]P, (r) =0, r&R. (g)

In this region V(r) represents a very shallow well,
and the e6'ective mass formalism applies. By letting

8''/0') n = (F'/F) ~

Defining a function p„~(r):

(12)

scalar effective mass no* is chosen by an energy criterion.
The complete tensor equation has been solved variation-
tionally under the "hydrogenic" assumption that es/~—r
is the potential all the way to the origin. "We choose
nz* such that the energy for the scalar "hydrogenic"
equation is identical to the tensor "hydrogenic" result
of Lampert. s This gives, for Ge, (m*/m) =0.17; and for
Si, (mrs*/sn) =0.31.

At the effective cavity radius, R, the interior wave
function f; must be matched to the exterior f., which
gives

(il"/0') a= (0"'/0.)~ (11)

In the present calculation the contribution of the
Bloch function to the logarithmic derivative at r=R
has been neglected. The effect of this approximation is
discussed in Appendix II. The matching conditions
are now

f.(r) =F(r)N(r), p.~(r)V p(8, p) =f(r), r&R
=F(r), r&R,

(13)

where N(r) is the Bloch function at the bottom of the
conduction band, "one obtains

[(ks/2m*)d, —eV(r)+E,jF(r) =0 r&R. (10)

The crystal potential has been eliminated by intro-
ducing the eGective mass no~. This is a good approxi-
mation as long as the envelope function F(r) is slowly

varying compared to a typical lattice spacing. Although
the effective mass is actually a tensor, obtainable by
cyclotron resonance experiments, a scalar effective mass
is used in (10) because the tensor mass would make the
equations nonseparable. The numerical value of the
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FIG. 3. Impurity potential V(Z,E). Yo clarify the notation:
V(29,2), for example, is the impurity potential for Cu, Z=29,
with an effective cavity radius. R =2.0ao.

"Strictly speaking P, = (1/gÃ)Z; &~ F'(r)N'(r) in the case of
Ge and Si, because there are several equivalent minima, but,
because of the high degree of symmetry of the interstitial cavity,
the ground state is represented by (9).

the Schrodinger equation to be solved is

[()s'/2m) eV (r) (fP/2—m) 1(1+1—)/r'+E;) p„~(r) =0,
r&R

[(l't'/2m*) —e V (r) —(li'/2m*) l (l+ 1)/r'+ E;$p„t (r) =0,
r&R (14)

where V(r) is given by (6) and p„&(r) satisfies the
usual boundary conditions of radial atomic orbitals.
Thus p„~(r) has (e—l—1) nodes.

III. CALCULATION AND RESULTS

. 1. Numerical Procedure

The solutions of the eigenvalue problem (14) were
obtained by numerical integration on an IBM 704
computer. A subroutine by Edelman" was used as the
basis of the program. The integration proceeds basically
by a Milne method. The increments of the independent
variable are adjusted by a precision criterion. The
eigenvalue E; corresponding to the (e—l—1) node
solution of p„t(r) is narrowed down to a preassigned
number of significant figures. Beside the wave function
and eigenvalue, the expectation value of the radius and
the square of the radius were also computed.

The computations were carried out for both Ge and
Si as the host crystal. For Ge the eGective mass ratio
(m*/sos) was taken as 0.17 and the dielectric constant
~ as 15.8. For Si, (sos*/m)=0. 31 and «=12.0. The
eGective cavity radius R was varied from 1 to 3 ao
units. (The actual interstitial cavity radius is usually

"F. Edelman, "A subroutine for the solution of systems of
first order ordinary differential equations on the '704' calculator, "
presented at IBM 704 computer seminar, Endicott, New York,
August, 1957.
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two curves indicates the location of eR'ective cavity
radius. The impurity is Cu; the host crystal Ge.

The most striking feature of these results is the
sudden change of the ionization energy and expectation
value of the radius once a critical eGective cavity
radius, R, is reached. When R becomes sufIjciently large,
the wave function rapidly changes from "hydrogenic"
to vacuum behavior. In the critical region the rate of
change of E;with R is as high as 10 ev/ao and the rate of
change of (r) with E as high as 300. The mathematical
reason for this rapid change is best understood in
connection with Figs. 8 and 3. Both wave functions in
Fig. 8 are 4s functions and therefore have thr'ee nodes.
In the interior region, r&E, the potential is so large,
that the wave functions are virtually una6ected by the
energy eigenvalue. When the function for R=2.0cp
reaches the cavity wall, it has noded three times, but
its logarithmic derivative is still positive. It can there-
fore match into a "hydrogenic" 1s function, which is an
appropriate solution for r& R. The resulting energy and
expectation value are E,= —0.01 ev and (r) =100uo, the
usual "hydrogenic" result. On the other hand, the wave
function for R= 2.Sap has a somewhat deeper well in
the region r &R as can be seen from Fig. 3. This causes
a larger second derivative of the wave function. The
cavity wall is also reached at a larger radius. The two
e6ects combine to make the logarithmic derivative of

Fze. 4. Ionization energies of impurities in Ge.

considered to be about 2ao.) The impurity wave func-
tions calculated were H(1s), Li(2s), Na(3s), Cu(4s),
Ag(5s), and Au(6s).
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2. Resu1ts

The results of the computation are contained in
Figs. 4—8. Figures 4 and 5 show the ionization energy E;
as a function of the effective cavity radius, R, for several
interstitial impurities. The marked points in the 6gure
are computed energies. The host crystals are Ge and
Si, respectively. In each figure E;=—(m*/tn) (1/"') and
E;= —x~(m*/m) (1/a') have been indicated for reference.
These are the e= 1 and e= 2 levels of the "hydrogenic"
model. The radius (&3/8)a, where a is the lattice con-
stant, has also been marked for reference in Figs. 4
through 8. This radius corresponds to half a nearest-
neighbor distance in the crystal.

Figures 6 and 7 show (r), the expectation value of
the radius as a function of R computed with the wave
functions of the same impurities. The "hydrogenic"
m=1 and n= 2 expectation values, (r)= 23"(m/m, *)ao and
(r)=6m(m/m*)ao, are indicated for reference. Figure 8
shows Lrp„'(r)$' as a function of r for two effective
cavity radii, R=2.0up and E.=2.Sap. There is no physical
significance to the cube root of the wave function. It is
chosen merely for convenience of plotting. The func-
tions in Fig. 8 are not normalized, but rather have the
same initial slope. The vertical mark on each of the
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FIG. 5. Ionization energies of impurities in Si.
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the wave function negative at r=E. The interior wave
function can no longer match into a "hydrogenic"
function but must decay exponentially. The energy
eigenvalue and radius are therefore more characteristic
of the vacuum behavior of Cu. They are E;=—3 ev
and (r)=4as.

Another, more physical, reason for the sudden shrink-
ing of the wave function is the fact that in the region
of the critical radius, the potential V(r) for the interior
region alone becomes binding for the wave function in
question, as shown by the change in logarithmic deriva-
tive when R changes from 2.0ao to 2.5uo in the case
depicted in Fig. 8. The interior potential is very steep,
and once it is binding it causes a rapid change in the
ionization energy.

3. Discussion

IOO—

0
O

m
m =03'

5 K
~r~ net Z (m~/m)

SILf CON

As we have seen, the computation results in numerical
values of the ionization energy E; and the expectation
value (r) for several group I impurities, interstitial in
Ge and Si. The crystal is characterized by a scalar
effective mass m* and a dielectric constant ~. The
Unpurity core is described by a Fermi-Thomas-Dirac
potential qr (r/7)

In order to evaluate the results, 8 must be specified.
It is clear from the discussion in II, Sec. 1, that R is
not a function of the impurity, but rather of the host
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FIG. 7. Expectation values of the radius for impurities in Si.

crystal, as long as the impurity core is smaller than the
interstitial cavity and is virtually undisturbed by the
crystal. This assumption is consistent with the assump-
tions which go into the derivation of the potential (6).
As was pointed out in that discussion, the assumption of
the undisturbed core is almost satisfied. We therefore
conclude that E is almost, but not quite, independent
of the impurity and a function of the host crystal alone.
An estimate of the magnitude of E. can be obtained
through comparison with experimental observations of
energy levels, if possible, in the critical region where
the rate of change of E; with E is large. This means a
deep level. Such donor levels, however, are very rare,
as is to be expected in the region of large derivative.
The only level which may meet this criterion is the Au
level in Ge and Si. This level is at 0.05 ev above the
valence band" "in Ge and at 0.33 ev above the valence
band" "in Si. It is not certain that the observed donor
level is due to interstitial Au. The discussion in
Appendix I, however, makes it quite plausible that Au
would give rise to three acceptor levels in the gap when
it is substitutional and to one donor level, when it is

I

6
2.5 3.0I.5 2.0

R IN ooUNITS
I.O0.5

FIG. 6. Expectation values of the radius for impurities in Ge.
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"W. C. Dunlap, Jr., Phys Rev. 9. 7, 614 (1955)."%. C. Dunlap, Jr., Phys. Rev. 98, 1535(A) (1955); 100,
1629 (1955).' F. J. Morin and J. P. Maita, Phys. Rev. 90, 337 (1953).

~ Morin, Maita, Schulman, and Hannay, Phys. Rev. 96, 833
(1954).
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Fro. 8. 4s wave functions (rt =4, l =0) of Cu in Ge, for R= 2.0ae
and R=2.5ao. The vertical mark on each tvave function corre-
sponds to the effective cavity radius R. The wave functions
are not normalized, but rather correspond to the condition
L&(rp t)l«3 o=&lv

interstitiaI. If the donor level in Si and Ge is due to
interstitial Au, then the correct level is obtained if
R=2.6ap. In any case R) 2.4ap in both Ge and Si,
because Cu has no donor level in the gap although it is
known at times to occupy interstitial positions in the
lattice.

The results are tabulated in Table I. The 6rst two
columns give the impurity element and the main
quantum number n. Columns 3 and 5 give the ionization
energy —E; and the expectation value of the radius
(r), insofar as such numbers can be taken literally, t
where R has been so chosen as to give the observed Au
donor level. As has been pointed out, R is not expected
to be entirely independent of the impurity. If we assume
a spread of 0.4ap in R, which corresponds to a spread of
1.6 ev in k, from (4) and (5), then the corresponding
spread in E; and (r) is given in columns 4 and 6. From
the Cu evidence, the range 2.4ap(R&2. 88p is reason-
able, whether the Au level is due to the impurity in an
interstitial position or not.

A not very sensitive check with experiment is the
observation that, in the whole range of possible R
values, Li and Na are certainly "hydrogenic, "while H

TABLE I. Tabulation of results. The ionization energy and
expectation value of the radius are given for the effective cavity
radius 2.6ao as well as for the range 2.4ao&R &2.6afi.

R =2.6a0 2.4a0 &R &2.8a0 R =2.6a0 2.4a0 &R &2.8ao
Host ImPurity m —Bs (ev) -Bs (ev) (r)/a0 (r)/ao

Ge H 2.7
Ge Li 138
Ge Cu 34
Ge Ag 95
Ge Au 7

4.3—$.4
0.0090-0.0094

1.8-5.4
0.0094-0.60
0.013-2.8

2.8-2.6
140-135
4.7-2.9
130—7.8
110-4.7

Si
si
Si
Si

Na 3 0.030~ ' 0.028-0.032
Cu 4 5.0 ' 'g.'@::,:--:-:: ', 1.3-$.0
Ag 5 0.16 "i"::: '0.030-0.70
Au 6 0.72 0.056-2.2

$4
3.2

20
7.6

$7-49
3.8-2.8
52-5.8
40-4.3

t Note added Ar, proof The results can.—certainly not be taken
literally when —E; becomes comparable to the forbidden energy
gap. A localized state, such as is described here, cannot exist in
the valence band.

is not, in accordance with the results of Reiss." Cu
exhibits vacuum behavior, while Ag and Au are in the
critical region.

The ionization energy calculated for R=o.sup, for
the arbitrarily chosen case of the Ag Ss level in Ge, is of
special interest (see Fig. 4). It corresponds to an
excited (ts=2) "hydrogenic" level. The explanation is
that the cavity here is so small that not all the nodes
can be accommodated in it. In that case the last node
may lie outside the cavity. The inside wave function
then matches into a 2s "hydrogenic" function, which in
the spirit of the "hydrogenic" model represents an
excited state. Of course, the level is not excited in the
ordinary sense since it really represents the ground
state of the system. None of the impurities computed
here exhibits such "excited" levels in the reasonable
range of R, but the possibility that more complex
impurities may have an "excited" ground state cannot
be ruled out.
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APPENDIX I. SUBSTITUTIONAL DONORS
Am ACCEPTORS

The removal of a germanium or silicon atom from
the crystal interrupts the tetrahedral four-bond struc-
ture. When an impurity is placed in the vacancy, this
structure tends to re-establish itself. This means that
all the electrons of the impurity which are loosely
bound, i.e., the valence electrons, will be seriously
distorted from their vacuum distribution. It is possible
to sketch the potential under the assumption that the
tetrahedral bond structure is completely re-established.
The potential will consist of a virtually undisturbed
closed shell core potential to which has to be added a
potential originating from the charge distribution of the
bond electrons. If the net charge of nucleus, core, and
bond electrons is positive, then this potential is to be
thought of as acting on the remaining impurity elec-
trons. If the net charge is negative, this is to be inter-
preted to mean that the impurity has borrowed electrons
from other bonding sites. In that case, the missing
bonds can be treated as positively charged particles
(holes) on which the potential acts. Schematically the
interior potential can be written as follows:

V,= V,+Vs+i', r(R, .
Here V, is the potential due to the nucleus and inner
core electrons. V~ is the potential due to the bond elec-
trons. Let us say there are q, electrons making up the
closed shells. There are q~ electron charges arising from
the bond electrons (four in the case of the tetrahedral
bond structure). R, is the substitutional effective cavity
radius not equal to the interstitial cavity radius. k' is an
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additive constant diGerent from k in the interstitial
case. As in the interstitial case, V, may be assumed to
be virtually undisturbed and can be described by an
appropriate Fermi-Thomas potential. On the other
hand, Vg depends on a detailed knowledge of the charge
density of bond electrons in the undisturbed crystal and
is therefore the least well-known part of V~.

The exterior potential represents the Coulomb poten-
tial of the unscreened charge to which has to be added
the crystal potential:

V,= e(—Z q,—qs—)/~r+ U(r), r)R,.
Here Z is the atomic number of the impurity. The total
charge giving rise to V, is e(Z —q,—q&)=eQ. If Q is
positive, the potential acts on the Q remaining elec-
trons, which make up the neutral impurity atom. There
will therefore be Q donor states.

If Q is negative, then the neutral impurity atom has
attracted

~ Q ~

electrons from other bond sites and the
potential will be felt by

~ Q~ disrupted bonds or holes.
The states arising from holes moving in V are acceptor
states, and there will be ~Q~ such states. Since the
potential is felt by a positively charged particle, the
core part, which is attractive in the donor case, will be
repulsive in the acceptor case. Electron and hole poten-
tials are shown in Fig. 9.

From this simple picture one can then conclude that
column V elements, substitutional in a crystal with the
tetrahedral bond structure, will give rise to a single
donor level because for column V we have (Z—q.) =5
and for the tetrahedral bond structure, q~=4. This
gives Q= 1. Similarly column III elements will produce
a single acceptor level. This, of course, is in accordance
with well known facts. For the transition metals the 3d
shell is filling up, but is more tightly bound than the
4s' electrons, which are therefore the valence electrons.
For these, as well as Zn and Ca, Q= —2, which produces
two acceptor states.

Cu and Au, with a Q of —3, are expected to give rise
to three acceptor states. These are observed" when
these elements are substitutional in Ge. In the case of
Au an additional donor level 0.05 ev above the valence
band is observed. This donor level could be due to
interstitial or substitutional Au. If it is due to inter-
stitial Au, it is a donor level in the usual sense. If it is
due to substitutional Au, however, it represents the
state of a bond electron, since the three acceptor states
prove that the single Au valence electron takes part in
the bond structure of Ge. This is not a donor state in
the usual sense of the word, in which donor and ac-
ceptor states are states of nonbonding electrons and
holes. Since the bond structure is certainly strained in
the neighborhood of the impurity, this concept of a
bond-donor is not inconsistent, but the Au donor
state, if it is due to substitutional Au, is unique in this
respect.

This Appendix is not meant to give a good potential
for the calculation of impurity states due to substi-
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I

I

I
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FIG. 9. Schematic representation of substitutional donor and
acceptor potential. The donor potential, Vq, is drawn as the
potential felt by an electron. The acceptor potential V, is drawn
as felt by a hole.

tutional impurities, but is only meant to stress some of
the ingredients which would go into such a potential
and to point out the difference between the substi-
tutional and the interstitial cases.

APPENDIX II. DISCUSSION OF MATCHING
CONDITION

Equation (12) expresses the fact that the inside wave
function f; is matched to the envelope function F(r)
and not to the total exterior wave function P, . In order
to get a better understanding of the error involved,
we write

P,(r, iV) =N(r, ——iw)F(r).

Expanding in the momentum operator, this leads to

A(r) =~o(r)F(r)+ut(r)»(r)+ ",
where the Bloch function near the bottom of the band
is given by

W(k, r) =e'"'Lup(r)+ik u (r)+
The matching conditions arising from P, (r) depend
critically on the Bloch functions. For the case of
substitutional impurities, the conditions have been
investigated by Brooks and Fletcher. ""By matching
at the Wigner-Seitz sphere, they were able to relate the
Bloch function to the eGective mass. For simple bands
this usually leads to new matching conditions which
would not produce very signi6cant changes in the
results which were computed, using (12).

However, the matching conditions are obviously a
function of E as can be seen from the expression for f,.

"H. Brooks and N. Fletcher (unpublished).
~ N. Fletcher, thesis, Harvard University, Cambridge, Massa-

chusetts, 1955 (unpublished).



PETER E. KAUS

.OI

m =3Im+

O.I

ld
I.O

VALENCE 8

IP I

0 0.5 I.O I.5 2.0
R IN ao UNITS

2.5
t

3.0 3.5

To put reasonable limits on the error, therefore, involves
a detailed analysis of the crysta1 wave function near
the edge of the conduction band. Fortunately, however,
it is possible to set upper and lower bounds, which are
adequate for our present purpose, without any involved
calculations. The main point to realize is that the
radius at which the matching should occur is, within
broad 1imits, quite arbitrary. It is true that somewhere
in the region of the impurity the effective-mass be-
havior does not apply, but the transition from effective
to real mass at exactly the same radius at which the
inside and the outside potential meet was only a con-
venience in the computation. The ionization energy is
not nearly as sensitive to the radius at which m changes

FIG. 10. Upper and lower limits of ionization energy. The curve
marked —E;(m) is the ionization energy when the real mass is
used throughout; the curve marked —E;(m"), when the eifective
mass is used throughout. The dashed curve is the ionization
energy, when interior and exterior solutions are matched at E.
The impurity is H, the host crystal is Si.

to m*, as it is to the radius at which the dielectric
becomes effective. This is because the effective mass
appears linearly and the dielectric constant quadrati-
cally in the energy. It would therefore have been
equally justified, keeping the potential the same, to
change from interior to exterior function at a diferent
radius as, for instance, at the surface nearest to R along
which the logarithmic derivative of the Bloch function
is small. If that surface lies totally outside the sphere of
radius R, then the correct ionization energy is certainly
lower than the one obtained by matching at R since
the crystal potential has now been neglected between R
and the matching radius. If the surface lies totally
inside R, the correct ionization energy is higher. Abso-
lute lower and upper limits are therefore given by
matching, respectively, at infinity or at the origin, that
is solving the Schrodinger equation with m or m*.

The Schrodinger equation with the potential (6) has
been solved for the case of hydrogen, using ns and m*,
respectively, as the mass terms. The resulting ionization
energies are shown in Fig. 10.It is seen that even though
the ionization energy at any particular R can be oG by
a factor of five, the qualitative behavior of the solution
is unaltered in the steep region, the uncertainty in R
nowhere being more than 0.4ao.

A more careful investigation could probably make the
limits narrower. I't seems almost obvious that since N(r)
is a crystal periodic function, it would be sufficient to
take as the limiting matching radii the cavity radius R
plus or minus a fraction of the lattice constant, depend-
ing on the harmonic nature of N(r). Also, depending on
the harmonic nature of u(r) the correct curve will
either cut the computed curve repeatedly or, if the
logarithmic derivative of e(r) is a slowly varying func-
tion of x, the correct curve may, stay on one side of the
computed curve throughout the critical region. Since
N(r) does not depend on the impurity, the effect would

then be that all the curves of ionization energy and
expectation value of the radius would be pushed to the
right or left.


