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Band Structure and Cohesive Energy of Potassium Chloride~)

L. P. HOWLANnf
Massachusetts Institute of Technology, Cambridge, Massachusetts

(Received August 8, 1957)

The band structure of crystalline KCl has been calculated in an LCAO (linear combination of atomic
orbitals) approximation. Interactions between free-ion Hartree-Fock functions are calculated directly from
molecular-type integrals without reducing exchange interactions to an exchange potential. The structure
of the filled bands of KCl is obtained by solving secular equations on a cubic mesh of points in k space. The
valence band is found to be quite narrow, about 1.5 ev wide, but the band-structure results do not explain
the observed x-ray emission data for KCl. The band structure is recalculated in less detail as a function of
interionic distance. Numerical quantities for the band-structure calculation are used also to calculate the
cohesive energy of KCl at its normal interionic distance by Lowdin s method. Inclusion of the second-
neighbor interactions here is found to raise LOwdin s equivalent of the repulsive energy from 18.9 kilo-
calories per mole to 26.2 kilocalories per mole and thus to raise the total cohesive energy above the experi-
mentally-determined value, in line with expectation.

1. INTRODUCTION the structure of the filled bands without resort to a
one-electron potential. The method is based directly
on the use of a single determinant of one-electron
functions, each of which is an LCAO (linear combi-
nation of atomic orbitals), and the interactions which
are used to determine the functions and their energies
are calculated directly from many-center integrals
between the atomic orbitals. ' Exchange sects are
included automatically.

The band-structure calculation is performed fairly
accurately for one value of the interionic distance (the
normal value), and then more approximately for several
other values. Numerical quantities determined for the
band calculation at the normal distance are used also
to redetermine the cohesive energy of KC1 by the
method of Lowdin, ' but in a more accurate approxi-
mation. Unless otherwise specified the work to follow
is in atomic units: atomic units (a.u. , or Bohr radii) for
length, rydbergs for energy, and e, the magnitude of
the electron charge, for charge.

A CCORDING to the results of x-ray measurements,
crystalline KC1 has a cubic lattice with K+ and

Cl ions occupying alternate lattice sites. The electronic
structure of the crystal is expected to be closely related
to that of the free ions. Both of these ions are iso-
electronic with neutral argon, and both have 'S, closed-
shell electronic wave functions in their ground states.
The KCl crystal is expected to have a ground-state
wave function which also is closed-shell, being a singlet
and having the full symmetry of the nuclei. This
closed-shell structure is expected because of the large
first excitation energy of about 7.65 ev which is ob-
served for KCI.

In view of these features a Hartree-Fock procedure
probably would give a reasonably good approximation
to the ground-state wave function and total energy of
the crystal. In addition, the array of the resulting
Hartree-Fock one-electron energy parameters probably
would give a fairly good representation of the structure
of the ulled energy bands of KCl. Since the Hartree-
Fock procedure for a crystal is too dificult to be
performed, however, an actual calculation of the band
structure must involve some further approximations.
In the existing calculations for such crystals" the
exact Hartree-Fock operator is replaced by just its
kinetic energy operator and a simple periodic potential.
Recent investigations have shown that calculated band
structure may depend quite critically on details of the
starting potential, however.

The present calculation also represents an approxi-
mation to the Hartree-Fock procedure, but it obtains
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2. LCAO APPROXIMATION FOR KC1

(a) Basis of the Approximation

In the present calculation the Hartree-Fock functions
for a KCl crystal are approximated by linear combi-
nations of all of the occupied free-ion Hartree-Fock
functions for K+ and Cl, ' centered on appropriate
crystal lattice sites. This is the LCAO approximation
mentioned above. It is expected to be fairly good for
the reasons to be discussed.

In the Grst place the largest overlap integral between

rt 3 This approximation might be called tight binding, except that
y, that name generally connotes the use of a one-electron potential.
of The name LCAO is used here because it implies the direct use of

one- and two-electron integrals between atomic functions, at
e- least in the usage of current molecular work.
e ' P. -O. Lowdin, thesis, Uppsala, 1948 (unpublished). See also,

P. -O. Lowdin, Adeatsccs ~Phssyssics, edited by N. F. Mott (Taylor
e and Francis, Ltd. , London, 1956), Vol. 5, p. 1.

~ For Cl see D. R. Hartree and W. Hartree, Proc. Roy. Soc.
(London) A156, 45 (1936); for K+ see D. R. Hartree and W.
Hartree, Proc. Roy. Soc. (London) A166, 450 (1938).
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any two of the free-ion Hartree-Pock functions which
are separated by a normal KC1 lattice distance is only
0.07, as compared to one for maximum overlap. By the
usual arguments, such small overlapping indicates
narrow bands of energy parameters, and it indicates
crystal Hartree-Fock functions which are nearly equal
to linear combinations of just degenerate free-ion
functions. These eBects have been discussed by Slater
and Shockley' in their analysis of the band structure
of NaCl. The most important deviations from this
simple result can be corrected by letting the crystal
Hartree-Fock functions be approximated by combi-
nations of all the occupied free-ion functions, as is done
here.

In the second place, with the proposed LCAO ap-
proximation for the crystal Hartree-Fock functions, the
resulting approximate Hartree-Fock determinant is just
equivalent to a determinant of the free-ion Hartree-
Fock functions themselves, according to a well-known
transformation theorem. ~ Lowdin has calculated the
cohesive energy of KCI (and other alkali halides) on
the basis of just such a determinant of free-ion Hartree-
Fock functions. The success of his calculation (and the
recalculation in Sec. 6), provides another measure of
justification for the equivalent determinant of approxi-
mate Hartree-Fock functions which is used here.

Additional justification for the LCAO approximation
is provided by the large erst excitation energy of KCl,
by the emission and absorption spectra of KCl, ' and
by the cellular band structure calculations for LiF'
and NaCl, ' since all of these indicate that the ulled
energy bands of KCl should be fairly narrow and hence
that the crystal functions should be made up largely of
just free-ion functions.

lt;(klr), where k is the usual wave vector (having E
discrete values), and where t', runs over all the occupied
bands. In the present LCAO approximation each of
these Bloch functions is to be written as a linear com-
bination of Bloch sums of the Hartree-Fock space
functions for the free-ions; thus each function is written

lb;(klr) =P c;(k)b (klr),

where b (k l r) is the following Bloch sum:

b (klr)=(f /E')P, & & e'~ gl '(r R,—) (2.-2)

In the latter equation u (r—R,) is a real, free-ion space
function of type m (specifying quantum numbers and
ion type) centered on lat tice site g at R, ; the superscript
(its) to the summation sign indicates that the sum is to
run over only those sites g on which a function of type
its can be located (all K+ or all Cl sites); and the factor
f is equal to i (the square root of minus one) if I is
odd on inversion and one if I is even on inversion, (it
is included so that the matrix elements between Bloch
sums will be real).

Let the Hamiltonian for the 2M-electron crystal be

(2-3)

where W is the Coulomb interaction energy of the static
nuclei, where F; is the one-electron operator for
electron j, giving its kinetic energy and its Coulomb
energy of interaction with the nuclei, where 6;,' is the
two-electron operator giving the Coulomb interaction
of electrons j and j', and where the prime on the second
sum means j' cannot equal j. On the basis of this
Hamiltonian, Hartree-Fock space-functions for the
crystal satisfy the following set of equations:

(b) Equations

The equations for one-electron functions and energies
in the LCAO approximation used here are obtained as
follows. Let the usual large region for periodic boundary
conditions contain N unit cells and 2M electrons, M of
each spin. The approximate wave function for the
crystal in its ground state then will be symbolized by
4(1,2, j, 2M), where j stands for the space and
spin coordinates of electron j. This function is taken
to be a single determinant made from 3E doubly-
occupied, orthonormal, one-electron space functions.
Because of crystal translation symmetry these one-
electron functions can all be taken to be Block functions

' J. C. Slater and W. Shockley, Phys. Rev. 50, 705 (1936).
'See for instance F. Seitz, The 3fodern Theory of Solids

{McGraw-Hill Book Company, Inc. , New York and London,
1940), p. 301.

s L. G. Parratt and E. L. Jossem, Phys. Rev. 97, 916 (1955).
See also the summary of earlier work in H. H. , Landolt and R.
Bornstein, Zahlenmerte Nnd Functionen (Springer-Verlag, Ger-
many, 1955), sixth edition, Vol. 1, Part 4, pp. 786 and 864. In
addition the author is indebted to Professor Jossem for communi-
cation of results from his as yet unpublished work on the Cl ICp
emission of all the alkali chlorides.

7tf, (k l rr)+2 Gtsg, (kl rt) p(2 l
2)dss

G»lb'(klrs) p(2I 1)d»= e'(k)0'(klrt), (2-4)

where e;(k) is the Hartree-Fock energy parameter for
the function lt;(k l r) and where p(2 l 1) is given by

As Lowdin has shown, when the functions lt in Eq.
(2-5) are constructed as LCAO of the type used here,
the quantity p(2

l
1) can be written out in a way which

does not involve the coefficients of the atomic functions.
Let the overlap integral between free-ion functions
I (r—R,) and u„(r—R, ) be symbolized by

A(mR, ltsR, )= ~N (r—R,)*g„(r—R, )dv; (2-6)

this integral can be thought of as one element in the
M&M matrix of all the overlap integrals. According
to Lowdin's result, then, Eq. (2-5) for p(2l1) can be
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written

~(211)=&;-&;"& '(~R.1~R')
XN„(r2—Rg)*u. (ri—Rg), (2-7)

where 6 '(mR, 1nR, .) is an element in the MXM
matrix which is the inverse of the overlap matrix. The
validity of Eq. (2-7) depends on the following facts:
first, the functions P are mutually orthonormal; second,
the functions I are linearly independent; and third, the
number of derived functions P is the same as the number
of starting functions u.

If all the two-center overlap integrals are small
compared to one, as they are for KCl, the overlap
matrix A difters only slightly from the unit matrix. In
this case the inverse overlap matrix just de6ned also is
very nearly equal to the unit matrix. In view of this
the following definitions are useful:

6 „=8 „+S, (6 ') =5 +P „, (2-8)

where 8 „is the Kronecker delta, and where for brevity
each index ns or e temporarily is taken to designate site
as well as quantum numbers for the free-ion functions
I (this shorter notation will be used interchangably
with the original notation through the rest of this
paper). These definitions will be used in Sec. 3.

Substitution of Eq. (2-7) into Eq. (2-4) gives the
following set of Hartree-Fock-like equations for one-
electron functions and their energies:

~i&, (k1ri)

+Q, (& ') 2) Giga;(k1r, )N„(2)*e„(2)dv,

—
)"Gi2N (1)N.(2)*p;(k1r2)dv~

= e;(k)g, (k(r,), (2-9)

Q PH (k) —e;(k)A„(k)7c,(k) =0, (2-10)

where H (k) and 6 „(k) are matrix elements of
energy and overlap, respectively, between the Bloch
sums b (k1r) and b (k1r). Letting M, (k) stand for
either of these matrix elements, either element is given
by

cosk. R,'
IM(~R, 1N),

p sink R,
M„„(k)=g,& &

(2-11)

where a short notation for free-ion functions is used
again. Solving Eqs. (2-9) above for general functions
f would be a possible first stage in a self-consistent
Hartree-Fock procedure which could lead finally to the
exact Hartree-Fock functions and their energy parame-
ters. In the present calculation, however, the functions
f are assumed to be given by the LCAO approximation
of Eq. (2-1). Equation (2-9) then yields the following
sets of equations for the unknown coeKcients, one set
for each value of the wave vector k:

where p is the parity (plus or minus one) of the
function I„, and where M(inR11) is an element of
energy or overlap, as is appropriate, between a function
u„and another function u which is on a site at R
relative to the site of N„as an origin (for brevity the
location vector of the origin site is not written in M).
An element of overlap between free-ion functions is
given by Eq. (2-6), and an element of energy is given
by the following equation:

H(mR1e) = N„(ri—R)* Fi

Gi2N (ri —R)*p(211)e„(r2)dvidv, , (2-12)

where p(211) is the approximate quantity in Eq. (2-7).
This energy element is built up from one- and two-
electron, one-, two-, three-, and four-center integrals
of the same type as are encountered in complicated
molecular problems.

In the foregoing discussion, Eqs. (2-10) for the ap-
proximate one-electron functions and their energies are
obtained by making substitutions in the Hartree-Fock
equations. Equations (2-10) cannot be obtained directly
by the variation procedure as the Hartree-Fock
equations are obtained, however, because the deter-
minant %(1,2, ~ 2M) is invariant under all variations
of the coeflicients c„;(k) which leave the functions
P;(k1r) in the determinant mutually orthonormal.
Despite this, Eqs. (2-10) do have a meaning. The
functions and energies determined by these equations
are just those for which Koopmans' theorem' can be
applied to predict the total wave functions and energies
of the crystal with one electron missing. Stated in other
words, Eqs. (2-10) can be obtained by a variation
principle applied in the case of the crystal minus one
electron; for this it should be assumed that the total
wave function is either a single determinant made up
from linear combinations of free-ion functions or' a
configuration series in the basis of the free-ion func-
tions. "The functions and energies determined by Kqs.
(2-10) therefore have the same important significance
with respect to the band structure of KCl as the true
Hartree-Fock functions and energies do, although in a
lower approximation, and in this sense they approxi-
mate Hartree-Fock functions and eriergies.

The problem now is reduced to calculation of the
elements of energy and overlap of which Eqs. (2-10)
are made up. The reader who is not interested in the
details of this work may proceed directly to Sec. 4.

~ T. Koopmans, Physica I, 104 (1933).
ln this connection a theorem due to Meckler on performing

configuration interactions in equivalent bases is useful; see A.
Meckler, J. Chem. Phys. 21, 1750 (1953).
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3. MATRIX ELEMENTS OF ENERGY AND OVERLAP

(a) Nature of the Energy Elements

First let us analyze an element of energy between
free-ion functions as given in Eq. (2-12). In atomic
units (with Rydbergs for energy) the one- and two-
electron operators appearing in this equation are

Fz= —Vz2 —P, 2Z,/rz, and Gz2= 2/rzi, (3-1)

where V'~' is the Laplacian operating on the coordinates
of electron 1, Z, is the nuclear charge of the ion at site
g (nineteen for K+ and seventeen for Cl ), rz, is the
distance of electron 1 from site g, and r~~ is the distance
between electrons 1 and 2.

An analysis of the energy element is facilitated by a
consideration of the crystal charge density. In the
present approximation the electronic part of this
charge density is just equal to —2p(2

~
2); let us sym-

bolize this charge density by p(2). On the basis of Eq.
(2-7) for p(2

~
1) and Eq. (2-8) for 6 ' the charge density

p(2) can be split into two parts as follows:

p(2) =Qg pg(2)+p, (2). (3-2)

In this equation p, (2) is the spherical electron charge
density of a free-ion at site g, given by

p, (2) = —2+v(on site g)N„(2)*Nv(2), (3-3)

and p, (2) is what will be called the overlap charge
density, given by

Each term in this expression should individually bear
the indices (mR, ~n), but for brevity the indices are
written only once for all. The individual terms are
defined as follows:

KE(mRg~e) = I *(rz—R,)$—Vz2jN„(rz)dvz, (3-6)

C(mR, ~n) =P, 0, , I *(rz R,—) —(2Z, ./rz;)

p, (2) (2/r»)dvn N„(rz)dvz, (3-7)

where the origin is designated as site 0;

EX(mR, ie) = —P,

X zz *(rz—R,)p, (2
~
1) (2/rz2)N„(r~)dvzdv2, (3-8)

where p, (2~1) is what will be called the exchange
function of the ion at site g', defined by

for Fz, G», p(2~2) and p(2~1) in that equation, the
energy element can be written as a sum of terms which
are convenient for calculation, as follows:

H(mRg
~
n) = L(KE+C+EX)+(CPI+CCC

+OVC+CEX+OVE) 7(mR,
~
rz). (3-5)

p-(2) = —2&v, a &aviv(2)*No(2) (3-4)
p, (2

~
1)= P„(on site g')u„(2)*N„(1); (3-9)

On a particular, site g, the free-ion electron charge
density p, (2) and the nuclear charge Z, together give a
net charge of s„which is plus one for K+ and minus
one for Cl . Since the sum of s, over the two ions in a
single unit cell is zero, the sum of nuclear charges and
free-ion charge distributions throughout the crystal
gives a net charge of zero. As will be described later,
the overlap charge density p„(2) is neutral also; hence
the complete crystal is neutral, as it should be.

The overlap charge density describes a shifting of
electron charge from the density predicted by a simple
superposition of free-ion charge densities. This shift
decreases the electron charge density in regions of
maximum overlap between pairs of free-ions, and it
compensates by forcing an increase in the electronic
charge in the region of a nucleus. This redistribution
of charge arises from orthonormalizing the one-electron
functions, and it can be described as an effect of the
exclusion principle. In the present approximation it is
essentially this redistribution of charge which provides
the repulsion between ions in the crystal (see Sec. 6)
and which causes the crystal energy bands to rise as
the interionic distance decreases below its normal
value (see Sec. 5).

let us now return to the analysis of the general
energy element given in Eq. (2-12). After substitution

CPI(mR,
~

zz) = I *(r,—R,)

XL
—P, wo, ,2s, /rz;]zz„(rz)dvz, (3-10)

CCC(mRg~l)=pg ~o, g N„*(rz—Rg)

)&L—2Z '(g'~ rz, )/rz, jl„(rz)dvz, (3-11)

where Zv'(g'
~
r) is the effective-nuclear-charge-for-

potential minus s, for an ion of the type at site g' (it
is a function which approaches zero rapidly with in-
creasing r), and where rz, is

~
rz —R, ~:

OVC(mR, ~zv) = I I *(rz—R,) — (2/rz2)

y p. (2)dv, zz„(rz)dvz; (3-12)

CEX(mR, ~e) = —g, .~o, I *(rz R,)—
&(p ~ (2

~
1) (2/rzz)e„(r2)dvzdv2, (3-13)
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TABLE I. Parameters B and 5 specifying the analytic radial functions P„&(r) 'for the final free-ion Hartree-Fock functions. Each
function P ~(r) is of the form

Par(r)= Z IZrBp''p„i(bp'', r)1 where p„(br)=Cps"+'/(2N)!g&r"e sr.
n' n—l

The function in curly brackets is a nodeless part of the function P„&(r). All the nodeless parts of each function are given in the table.
Each nodeless part is symbolized as follows: +B&"'(b&"')+BR'(bs"')+~ ~ .

nl

Cl 3p

Cl 3s

K+ 3s

K+ 2s

none

+0.136317(11.9700)

none

Sl =2

+0.0009162(22.314)+0.109634(8.4'758)
+0.211019(4.2435)—0.036350(11.9700)—0.474747 (5.28481)

+0.0326356(13.4132)+0.432421(5.80137)

none

+0.0012533(41.049)
+0.396536(14.9166)
+0.464074(20.9557)
+0.541205(16.5026)

+0.0514901(15.2448)+0.583429 (8.11418)
+0.400579 (5.54331)—0 956261(7.36055)—0.1690558(5.27633)

none

+0.132348(14.9166) —0.656603 (5.77856)

71I =3

—0.434233 (2.9859)—0.554674 (1.6658)—0.221689(0.92436)
+0.2033042 (4.17031)+0.724822 (2.50768)

+0.2892075 (1.51175)—0.1959866(5.80137)—0.658190(2.93199)—0.397249(1.84562)
+0.237170(5.77856)+0.681630(3.31/94)

+0.417020(2.26585)
none

none

none

and, finally,

OVE(mR, I I)=— I *(rt—R,)

The terms KE, C, and KX as defined above involve
only contributions from site g and the origin; they are
atomic or diatomic terms depending on whether R, is
or is not zero. The remaining terms CPI, CCC, OVC,
CEX, and OVE, all depend on the presence of the atom
or atom-pair in the crystal. The mnemonic significance
of the initials used for all these terms is as follows: in
the order in which they appear in Eq. (3-5), they stand
for kinetic energy, Coulomb, exchange, crystal point
ion, crystal Coulomb correction, overlap Coulomb,
crystal exchange, and overlap exchange.

For the particular case of a one-center energy element,
H(m0001e), the terms KE, C, and EX add up to just
the free-ion Hartree-Fock energy, e, if ns equals e and
to zero if nz does not equal n. Another simple contri-
bution to the energy element can be extracted from the
term CPI. The potential function in square brackets
in Eq. (3-10) for CPI is just the Madelung potential,
the potential due to all the ions in the crystal considered
as point ions, excluding the origin ion. For KCl an
expansion of this potential about the origin ion in
spherical harmonics contains a spherical term and
spherical harmonics of order four and higher. Since the
free-ion functions I and N„are built from spherical
harmonics only of order zero and one, the spherical
term in the Madelung potential provides the entire
contribution to CPI(m0001e). Inside a sphere of radius
u, where a is the interionic distance, this spherical term

Xp..(211)(2/r12)~. (r2)nstdz2 (3-14)

where p, (211) is what will be called the overlap ex-
change function, de6ned by

is just equal to the Madelung energy, sp2rr/8 rydbergs,
where o, is the Madelung constant" and so ls the net
charge of the origin ion (plus or minus one). Term
CPI(m0001n) then can be set equal to (zs2n/u) 8 „plus
a correction term, B,CPI(m000

I I), which is the integral
of the diGerence between the actual spherical part of
the Madelung potential and zp2rr/8 outside a sphere of
radius u (it is zero if the function I is zero outside that
sphere). With these results a one-center energy element
from Eq. (3-5) may be rewritten as

H(m0001s) = fe +zs2rz/858 „+LDCPI+CCC
+OVC+CEX+OVE5(m0001e). (3-16)

(b) Calculation of Preliminary Quantities

Most of the actual calculations of the present work
were performed on the Whirlwind digital computer
with programs which had already been developed for
other molecular and crystal problems. The techniques
employed here were dictated largely by the nature of
the programs available.

First the necessary Hartree-Fock functions for K+
and Cl were obtained in analytic form by fitting the
tabulated Hartree-Hartree radial functions with a
series of Slater orbitals. "The parameters for the final
functions are given in Table I. The Hartree-Fock free-
ion energy elements for these analytic functions then
were calculated on Whirlwind using the same techniques
which were to be used throughout the calculation of
matrix elements (described below). The resulting energy

"See, for instance, C. Kittel, Introduction to Solid State I'hysics
(John Wiley and Sons, Inc. , New York, 1956), second edition,
p. 72.

"A fit by Lowdin was used for the Cl 3p function, and new
fits were used for the functions Cl 3s, K+ 3p, K+ 2p, K+ 3s,
K+ 2s, and K+ 1s. Interpolated numerical tables were used for
the other Cl functions. The fitted functions for each ion were
adjusted slightly to make them mutually orthonormal (and
orthogonal to the numerical inner functions in the case of Cl ).
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TAnrx II. Free-ion Hartree-Fock-type energy elements H(m&l&m& (e&l&m&) between the analytic functions of Table L The original
Hartree-Fock values for all the diagonal energy elements are given in the rows labeled HF. All energies are in rydbergs.

221lI ) Ngl2. 3si3s 3st2s 2s)2s 3s[ls 2sI is Ss)is 3P )3P 3~l2& 2P[2P

K+ analytic:
K+ HF:
Cl analytic:
Cl HF

—3.9281 +0.014144—3.930—1.4744—1.454

—29.427—29.44

—20.47

+0.0077 +0.1426 —267.505—267.55

—209.1

—2.3417—2.341—0.3060—0.2971

—0.0064 —23.4/6—23.49

—15.39

TABLE III. The independent, nonzero elements of overlap,
A(mR)e), and of inverse overlap, A '(mR~e), in the second-
neighbor, outer-function approximation for KCl. The interionic
distance, c, is 5.9007 a.u. The code for the function index is as
follows: z, x, y, and s stand for Cl 3', 3px, 3py, and 3s, and s,
x, y, and s stand for K+ 3ps, 3px, 3py, and 3s. The vector R is
given by its components measured in units of a. The values of
S(mR~e) and P(mR~e) can be obtained from the values below
by use of Eqs. (2-8).

R ~-I(mR [ ~)

elements are presented in Table II, and the diagonal
elements in the table are'used as the values of e in
Eq. (3-16).

The most important of the integrals required for the
crystal calculation were evaluated by the well-known
expansion method of Barnett and Coulson, "as adapted
by. Corbato„, for Whirlwind. " In Corbato's adaptation
the radial expansion functions are generated in nu-
merical form given the input atomic functions in
analytic form; radial integrations then are done by
Simpson's rule. The particular integrals calculated here
are discussed below.

Using the expansion technique and the analytic
functions of Table I overlap integrals between the free-
ion functions were calculated. The normal interionic
distance of KC1 was taken to be 3.122 angstroms, or
5.9007 a.u."Overlap integrals were calculated for all
possible pairs of functions out to quite large separations.
From the results, the overlap integral between a par-

ticular pair of functions, both on the z axis, was found
to vary exponentially with separation distance down
to the nearest distance at which the pair of functions
occurs in the normal lattice and to somewhat smaller
distances. This dependence is the basis for the calcu-
lation of band structure as a function of interionic
distance in Sec. 5. The final values of the independent,
nonzero overlap integrals which actually are used in
the present calculation are listed in Table III.

On the basis of the overlap calculations and of energy
element estimates, the inner free-ion functions (func-
tions with principal quantum numbers of one and two)
of both I+ and Cl were assumed not to overlap any
other functions in the crystal. The assumption is quite
good for the inner Cl functions but only fair for the
inner K+ functions. In this approximation Eqs. (2-10)
need only be solved with m and e running over the
eight indices of the outer free-ion functions (Cl 3ps,
3', 3py, and 3s, and K+ 3p», 3px, 3py, and 3s); this
will be called the outer-function approximation. Fur-
thermore, the only elements of overlap and energy
between these outer functions which are taken as non-
zero are the following: all the one-center elements; the
two-center elements between a Cl and a K+ function
which are first neighbors (to be called CIK elements);
and the two-center elements between two Cl functions
which are second neighbors (to be called ClCl elements).
This will be called the second-neighbor approximation.
The overlap elements listed in Table III are the inde-
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zz
ss
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xx
zs
ss
Zs
ss

zz
ZX

sz

ss

1.000 000
1.000 000

1.000 000
1.000 000

0.017 939—0.070 841—0.025 275
0.061 050
0.012 060

—0.019 168
0.030 576—0.014 354
0.011 408
0.002 578

1.029 038
1.008 997

1.012 478
1.020 /94

—0.014 702
0.071 761
0.024 855—0.055 014—0.008 875

0.016 963—0.025 635
0.012 697—0.009 126—0.001 500

pendent, nonzero elements which are required in the
outer-function and second-neighbor approximations.

The inverse-overlap elements (6 ') „Pand hence
the elements I' which come into Eqs. (3-12) and
(3-14)j are calculated from the overlap integrals in
Table III. As can be proved by group theory, each
inverse-overlap element (6 ') „has all the symmetry
properties of an integral of the crystal potential between
the two free-ion functions I and u„. Furthermore, as
Lowdin has shown, ' each element (A ') „can be ex-
pressed as a power series in the elements S „which are
defined by the first of Eqs. (2-8). On the basis of esti-
mates made with this series, each element (6 ') „can
be considered negligible if the corresponding overlap

"M. P. Barnett and C. A. Coulson, Trans. Roy. Soc. (London)
A243, 221 (1951).

'4 F. J. Corbatb, thesis, Massachusetts Institute of Technology,
1956 (unpublished).

'~ This value of the interionic distance is appropriate to KCl at
about —180 degrees centigrade, as the original purpose of the
KCl work was an investigation of the VI color-center absorption,
which is observed at that temperature.

integral 6 „ is negligible; thus the second-neighbor,
outer-function approximation can be extended to
elements of inverse-overlap. The list of independent,
nonzero inverse-overlaps to be determined therefore
corresponds exactly to the list of overlaps in Table III,
and there are fourteen such elements. The working
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TABLE IV. The independent, nonzero elements oi energy H(mR ( I) and all the terms contributing to those elements for Kcl in the
outer-function, second-neighbor approximation. The interionic distance, the code for the function index, and the notation for R are
the same as in Table III. All energies are in rydbergs.

(a) One-center elements H(m000( m):
mm &sts+Zp2e/8

zz —0.8983
ss —2.0667
ss —1.7494
ss —3.3358

(b) Two-center ClK elements H(m001 ( n):
mn KE C EX

B,CPI

0.0013
0.0000
0.0000
0.0000

CPI

CCC

—0.0139—0.0027—0.0161—0.0137

CCC

Ovc

0.0662
0.0806
0.0217
0.0247

OVC

CEX

—0.0347—0.0086—0.0184
—. 0.0238

CEX

OVE

0.0028—0.0087
0.0081
0.0155

OVE

H

—0.8766&0.002—2.0061&0.002—1.7540&0.002—3.3331+0.002

H

xx —0.0027
zs 0.0017
ss 0.0135
zs —0.0120
ss —0.0100

—0.0147
0.0608
0.0172—0.0999—0.0144

—0.0274
0.1241
0.0523—0.1404—0.0317

0.0026—0.0029—0.0008
0.0106
0.0013

0.0000
0.0000
0.0000
0.0000
0.0000

—0.0005—0.0011—0.0008—0.0010—0.0001

0.0000
0.0000
0.0000
0.0000
0.0000

0.0077—0.0307—0.0142
0.0278
0.0104

—0.0351+0.002
0.1518+0.0025
0.0672+0.002—0.2149+0.0025—0.0445&0.002

(c) Two-center C1C1 elements H(m101 ) n):

zz 0.00013 —0.01259
zx —0.00128 0.01953
yy —0.00115 0.00694
sz 0.00359 —0.00503
ss —0.00196 0.00139

0.02368—0.03526—0.01158
0.02478—0.00570

0.01788—0.02882—0.00852
0.01232—0.00224

0.00044—0.00411—0.00068
0.00054—0.00116

—0.0005
0.0005
0.0003—0.0008
0.0001

0.00210—0.00624—0.00208
0.00149—0.00049

—0.00635
0.00964
0.00349—0.00506
0.00220

0.0248&0.0012—0.0460+0.0012—0.0133&0.0015
0.0319&0.001—0.0079+0.001

values of these fourteen elements were obtained here by
setting up and solving on Whirlwind a set of fourteen
simultaneous equations. These equations were obtained
in a straightforward way from the basic equation ch A '
equals I.ts The calculation was repeated with larger
sets of equations in order to test the assumptions about
negligible elements. The best set of the fourteen desired
inverse-overlap elements are listed in Table III.

The atomic and diatomic integrals besides overlap
which were evaluated accurately for the crystal calcu-
lation are the following: the one- and two-center kinetic
energy and nuclear attraction integrals, the one-center,
two-electron integrals, and the two-center, hybrid and
exchange integrals. Only integrals involving outer
functions were calculated, and the expansion method
was used throughout. The values of the 6nal integrals
and of other integrals to be described below are omitted
from the present paper, but they are available upon
request. " Due to a combination of factors involving
convergence, integration mesh, and the number of
exponentials in the analytic functions of Table I, it is
not feasible to obtain adequate two-center Coulomb
integrals directly by the expansion method. Coulomb

integrals which are adequate for many purposes were

obtained by neglecting the mutual penetration of the
interacting charge distributions, however. '~ In this

approximation the desired Coulomb integral is replaced

by the Coulomb interactions of the multipoles for the

"This follows a procedure suggested by S. O. Lundquist and
P. O. Froman, Arkiv Fysik 2, 431 (1950).

"A complete table of the one-, two-, and three-center integrals
calculated here has been deposited as Document No. 5492 with
the ADI Auxiliary Publications Project, Photoduplication Service,
Library of Congress, Washington 25, D. C. A copy may be secured
by citing the Document number and by remitting $2.50 for
photoprints or $1.75 for 35-mm micro61m. Advance payment is
required. Make checks or money order payable to: Chief, Photo-
duplication Service, Library of Congress.

two charge distributions. The errors in the approximate
integrals thus obtained were compensated when neces-
sary by methods to be described in Sec. 3(c) Dn the
discussion of CCC(m000 j rm) g.

Certain three-center integrals also were obtained by
the expansion method. These were the integrals of a
spherical potential V(r) on the origin against a function
u at R, and a function u„at R, In the integrals which
were calculated V (r) is 2/r, 2Z„'(K+

~
r)/r, or

2Z„'(Cl ~r)/r Lsee Sec. 3(a)$. These integrals were
calculated by expanding each of the free-ion functions
about the origin in spherical harmonics with its own
location vector as the s axis for its own expansion and

by rotating the spherical harmonics of one expanded
function to the coordinate system of the other. The
coef6cients for rotation of the spherical harmonics were
generated on Whirlwind" on the basis of formulas due
to Wigner. ' In6nite series result for each three-center
integral in this method, and the convergence of these
series often is quite poor, especially for integrals of the
extensive potential 2/r. Final values for the integrals
were obtained by extensive extrapolation. '

(c) Calculation of Energy Elements

The general formula for a one-center energy element
is given in Eq. (3-16). In the outer-function approxi-
mation the only such elements which must be calculated
are diagonal. The terms contributing to these elements
are discussed below, and the Anal values of the elements
with their uncertainties and the values of the contrib-
uting terms are listed in Table IV(a). The uncertainties
arise mostly from integration errors and from neglecting
the eGects of inner free-ion functions.

' E. P. Wigner, Gruppentheorie und ihre Anmendung cuf die
Quentenmechanik (Friedrich Vieweg und Sohn, Berlin, 1931),
p. 182, p. 232.
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From Eq. (3-16) the principal contribution to the
one-center energy element H(m000~m) is e„+s02n/u.
The energy parameters e are given in Table II, and
the Madelung constant for KCl is 1.747558." The
remaining terms contributing to H(m000~m) are all
overlap-dependent and small; they are discussed
individually below.

The term ACPI(F000 ~m) is appreciable only if the
function I is signihcantly large in regions outside a
sphere of radius a, the first-neighbor lattice distance.
Because of this the contribution is only appreciable
when I is a Cl 3p function; in this case the correction
term is essentially just 2Z~'(Cl

~
a)/a.

The term CCC(m000~m) is given by Eq. (3-11).
For calculation the right side of this equation can be
rewritten as P, (g'WO)CC (g'), where CC (g') is a
two-center Coulomb correction term whose definition
should be clear on comparison to Eq. (3-11).The terms
CC (g) were calculated by a modilcation of the usual
expansion method for Coulomb integrals. In this
modi6cation a Cl ion always is taken as the displaced
ion, because of its size. The charge density on the
displaced Cl ion is then written out analytically using
the parameters of Table I, but only those parts of the
resultant expression are retained which penetrate
significantly into the origin charge density. The quan-
tity CC„„(g) then is taken to be the difference between
the interactions of the origin density and the partial
displaced density when the latter is treated exactly and
when it is treated as a nonpenetrating, displaced multi-
pole. These two interactions are calculated easily and
fairly accurately by the expansion method.

The term OVC(F000
~
m) is given by Eq. (3-12). As

examination of Eq. (3-4) for the overlap density p, (2)
shows, a part of OVC can be obtained from the accurate
one- and two-center two-electron integrals and the
quantities P,~ in Table III.These contributions account
for the eGects of part of the overlap charge density.
The remainder of the overlap charge density can be
replaced by an appropriate array of point charges, and
its contributions may be calculated approximately, as
described below.

The complete overlap charge density in Eq. (3-4)
consists of negative charge in spherical distributions on
crystal lattice sites (different charges for K+ and Cl
sites), and positive charge in two-center overlap dis-
tributions between the sites. The net overlap charge in
a spherical distribution on site g is —2P „(on site g)P»,
which will be symbolized by q, (g), while the net overlap
charge in the overlap distribution between sites g and
g' is —4+„(on g)P, (on g')P, ~h„„which will be
symbolized by q, (g,g'). lt can be shown that the charge
q. (g) must equal ——,'P, (g'Wg) q,„(g,g'), and the
neutrality of the overlap charge density follows from
this. When the approximate values of P and 6 from
Table III are used, however, the left and right sides of
this equality dier by about one percent. To avoid
de.culties, then, the working value of each charge

q, (g) is taken to be the value calculated from the
charges q, (g,g'). These values for q, (g) turn out to be
—0.190 and —0.116 electron charges for g a Cl and a
K+ site, respectively. In the point charge approximation
for the overlap charge density that density is replaced
by the charge q, (g) on each lattice site g and the charge

q, (g,g') on a line between each pair of sites g and g'.
The exact location for each charge g.,(g,g') is deter-
mined by calculating the center of gravity of the two-
center overlap charge distribution between sites g and

For the calculation of OVC(F000~ m), then, part of
the overlap density is included accurately, and the
remainder is approximated by the point-charge array
just described. To obtain the contribution to OVC
arising from the point charge remainder, the primary
density —I *(1)N (1) is treated as a negative point
charge at the origin, and the charges in the point-
charge array are grouped to give an infinite NaCl-like
array and an array of high-order, neutral multipole
distributions. The desired contribution is evaluated
easily in this approximation. As shown by the results
in Table IV, OVC(F000~ m) is generally the largest of
the overlap-dependent contributions to a one-center
energy element.

The term CEX(m000~m) given by Eq. (3-13) is
obtained easily from the accurate two-center exchange
integ rais.

The term OVE(F000
~
m) given by Eq. (3-14) is the

exchange interaction of the primary exchange function
with the overlap exchange function p. (2~1). As ex-
amination of Eq. (3-15) for the overlap exchange
function shows, a part of OVE(F000

~
m) is obtainable

from the accurate one- and two-center two-electron
integrals and the quantities P,„ in Table III. The
remainder of the overlap exchange function provides
only small contributions to the over-all term
OVE(m000~nz). These are included by approximating
the more important many-center integrals as Coulomb
interactions between appropriate point charges. This
is the last of the terms contributing to a one-center
energy element.

The general formula for a two-center energy element
B(mR

~
e) is given in Eq. (3-5). The terms contributing

to such an element are discussed below, and the final
values of the elements with their uncertainties and the
values of the contributing terms are listed in Table
IV, (b) and (c).

The terms KE(mR~e), C(mR~e), and EX(mR~e)
as given in Eqs. (3-6), (3-7), and (3-8) all are obtained
easily from the standard two-center molecular integrals
discussed in Sec. 3 (b). As shown by the values listed in
Tables IV, (b) and (c), the term EXisthemostimpor-
tant of all the terms contributing to each two-center
energy element, and its sign determines the sign of the
element (the seemingly large contributions C and CPI
in the ClC1 elements necessarily tend to cancel one
another, as will be shown).
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The term CPI(mR~N) given by Eq. (3-10) is calcu-
lated differently depending on whether the pair ns, e
designates a Cll or a ClCl element. In the ClK case
the potential energy due to the primary chlorine as a
point ion is added and subtracted to the potential in
the square brackets in Eq. (3-10). The term CPI then
is given by the Coulomb interaction of the primary
density with the KCl crystal as a crystal of point ions,
excluding the primary K+ ion, minus its interaction
with the primary chlorine as a point ion. The latter
interaction is calculated easily from the accurate, two-
center nuclear-attraction integrals. The former is
calculated by expanding both the Madelung potential
and the primary Cl function about the K+ site as an
origin and evaluating the lead terms in the resultant
infinite series. As shown by actual calculation of several
terms in this series, the term (2a/a)h(mR~e) which
arises from the spherical term in the expansion of the
Madelung potential is the only significant contribution
to CPI from this infinite series.

In the case in which the pair m, n designates a ClCl
element, the above method for calculating CPI(mR

~
I)

is not expected to be good due to poor convergence of
the infinite series. For this case the contributions of the
two nearest K+ ions to CPI are calculated explicitly by
use of the accurate three-center integrals involving the
potential 2/r, and the contributions due to all further
ions are found to be negligible. The net charges of the
two potassiums which are included neutralize the net
charges of the two primary chlorines, and, as a result,
the term CPI(mR

~
n) tends to cancel an important part

of the corresponding term C (mR
~ e), as was anticipated.

The term CCC (fNR
~
n) given by Eq. (3-11) is entirely

negligible in ClK elements, and in C1Cl elements its
only significant contributions are from the two nearest
K+ ions. The latter contributions are calculated by use
of the accurate three-center integrals of the neutralized
nuclear charge for potential of a potassium ion Lsee
Sec. 3(b) g.

The term OVC(mR~n) given by Eq. (3-12) is the
Coulomb interaction of the primary charge density
with the overlap charge density p, (2). As with the
corresponding contribution to one-center energy ele-
ments, a part of this term is given by combinations of
standard two-center integrals and the quantities I',„
in Table III. The remainder of the term is calculated
approximately by considering the primary charge
density —I *I to be a point charge of magnitude
-h(nsR~N) located at its own center of gravity and

by finding the interaction of this point charge with the
remainder of the overlap density as an array of point
charges. As shown by the results in Table IV, the terms
OVC are all small, but the smallness results from the
cancellation of the two-center contributions against the
remainder contributions.

The term CEX(mR~ e) given by Eq. (3-13) is entirely
negligible in C1K elements, and it is small in ClCl

TABLE V. List of k points. The va1ues of k are given by the
components k„k„,and k„and each component is given in units
of w/4u.

k-point

1
2
3

5
6
7
8
9

10
11
12

0,0,0
0,0,1
0,0,2
0,0,3
0,0,4
0,1)1
0,1,2
0,1,3
0,1,4
0,2,2
0,2,3
0,2,4

k point,

13
14
15
16
17
18
19
20
21
22
23
24
25

0,3,3
i,i, i
1,1,2
1 1 3
1,1,4
1)2)2
1,2,3
2 2 2
1/2, 1/2, 1/2
3/2, 3/2, 3/2
1,5/2, 3/2
0,6/5, 6/5
0,7/5, 7/5

k point

26
27
28
29
30
31
32
33
34
35
36
37

0,8/5, 8/5
0,9/5, 9/5
0,11/5, 11/5
0,12/5, 12/5
0,13/5, 13/5
0,14/5, 14/5
0,8/5, 10/5
0,7/5, 11/5
0,4/5, 14/5
1/5, 9/5, 9/5
2/5, 9/5, 9/5
1,9/5, 9/5

elements. Its values were obtained by approximating
many-center integrals as interactions between ap-
propriate point charges.

The term OVE(mR~e) given by Eq. (3-14) can be
broken into two parts, one which is easily calculable
from the accurate two-center integrals, and another
which is small and can be estimated by the use of
approximate two-electron integrals. This is the last of
the terms contributing to a two-center energy element.

4. BAND STRUCTURE AT THE NORMAL
INTERIONIC DISTANCE

(a) Calculation and Results

In the present calculation the electronic structure of
KC1 is determined by solving the set of eight simul-
taneous equations (2-10) in the outer-function, second-
neighbor approximation. The set of equations is solved
for representative values of the wave vector k lying in
the central Srillouin zone of KCl. This Brillouin zone
is the well-known Wigner-Seitz truncated octahedron;
it is illustrated in Fig. 1(a). The coordinates of k space
in this figure are given as $, if, and f, equal to ak„uk„,
and uk, respectively, where e is the interionic distance;
the alternative coordinates $i, P2, and g~ in the figure
will be used later. An independent segment of the zone
is illustrated in Fig. 1(b). Its volume is one forty-eighth
that of the entire zone, forty-eight being the number of
operations of the cubic point group.

The representative wave vectors chosen for use in
the present calculation are the twenty which define

points on a cubic mesh of interval s./4 in the inde-

pendent segment of the central Brillouin zone, plus
certain others which are required for particular details.
The first twenty k points are illustrated in Fig. 1(b),
and all the points are listed in Table V. None of the
first twenty points is general.

Equations (2-10) have been solved on Whirlwind for
all the wave vectors listed in Table V, and the solutions
in complete form (energies and coefficients) are avail-
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vr, 0,0

=ak

g = ok, , (00I)
lI

q=aky

0,77', 0

.5 9
Fio. 1. (a) Brillouin

zone for KCl. The in-
scribed cube in dotted
lines and the axes (1)$2,
and P3 are described in
the text (b.) An inde-
pendent segment of the
Brillouin zone (in heavy
lines) and k points in
that segment on a cubic
mesh of interval s/4.

q The k points are num-
bered in sequence along
the dotted lines which
are parallel to the f axis.

(a) (b)

able upon request. "In general these solutions bear out
the expectations expressed in Secs. 1 and 2. Each final
one-electron function is made up predominantly of a
linear combination of some particular set of degenerate
free-ion functions, and each band of one-electron
energies is narrow compared to the energy diGerences
between the bands. The energy parameter results are
summarized in fairly complete form in Figs. 2 "and 3
and are discussed in some detail below.

In Fig. 2 the seven highest energy parameters for
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FIG. 2. Band structure of KC1 at the normal interionic distance
(5.900l a.u.). The values s(h) plotted vertically for each k point
are the highest seven roots of the eighth-order secular equations.
The k points are identified in Fig. 1(b) and in Table V. The
degeneracy of each root is given unless it is one.

'9A complete table of one-electron energies and functions for
KCl at the k points- listed and at the normal interionic distance
can be obtained from the Library of Congress by the procedure
which is outlined in footnote 17. This table is in the same docu-
ment as the table of integrals described there.

each wave vector are plotted on a vertical energy scale,
and the vertical scales for the diferent wave vectors
are arranged close together across the page to allow
easy comparison. By the choice of indexing the k points,
they run in short sequences along lines in k space
parallel to the k, axis. Energy curves are drawn through
these sequences in the figure.

The order of the energy bands of KCl in Fig. 2 is just
that predicted by the order of the free-ion, Hartree-
Fock energy parameters plus or minus the Madelung
energy. The filled band of highest energy, the valence
band, is Cl 3p. From data in the figure this band has
a total width of 0.112 rydberg or 1.52 ev. Proceeding
downward in one-electron energies, the next bands are
K+3p, with a width of 0.029 rydberg or 0.39 ev and
about 0.8 rydberg below the bottom of the valence
band; Cl 3s, with a width of 0.033 rydberg or 0.45 ev
and about 0.23 rydberg below the bottom of the K+ 3p
band; and K+ 3s (which is omitted from the figure),
with a width of less than 0.001 rydberg and about l.3
rydbergs below the bottom of the Cl Bs band.

In the outer-function approximation the energy
bands corresponding to inner free-ion functions have
no width at all, and they are given by the appropriate
free-ion Hartree-Fock energies plus or minus the
Madelung energy. To the scale of Fig. 2 this result
almost certainly is valid for the inner-function Cl
bands, and from the narrowness of the K+ 3s band, it
probably is correct for the inner-function I+ bands
as well.

Let us go on to consider the details of the valence
band. In Fig. 2 the minimum of this band in the
independent segment of the Brillouin zone is seen to be
a nondegenerate energy at the zone boundary in the
L1,1,1$ direction (k point 20). It is quite distinct in
that all the other energies on the cubic mesh of k points
are appreciably higher than it. The minimum is illus-
trated further in Fig. 3(b).

The maximum of the valence band. in the independent
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FIG. 3. Sand structure of
Kcl at the normal inter-
ionic distance (5.9007 a.u.)
along three directions in k
space. The solid curve is
obtained by the eighth-
order equations, and the
dashed curve is obtained by
the third order equations.
The degeneracy of an
energy curve is given unless
it is one.
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segment appears to be a nondegenerate level at k point
10, inside the Brillouin zone and along the L0,1,1)
direction. This maximum is not distinct, however, since
the maximum energies for points 18 and 20 are only
slightly below it. Inclusion in the calculation of inter-
actions between free-ion functions on more distant
neighbors might result in a shift of the calculated
maximum from point 10 to one of these other two
points. The maximum energies at these three points
are distinctly higher than the energies at the other
points on the cubic mesh, however, and a more accurate
calculation probably could not shift the band maximum
to one of these other points. From Table V or Fig. 1(b),
the points 10, 18, and 20 in question are seen to lie
along a straight line parallel to the k, axis; this line,
when extended, connects the centers of two adjacent
hexagonal faces of the Brillouin zone, and point 10 is
its midpoint. Taken together the twelve lines like this
are edges of a cube inscribed in the truncated octahedron
which is the Brillouin zone; this cube is indicated by
dotted lines in Fig. 1(a).

Even if a band maximum actually occurs for a wave
vector in the L0,1,1) direction, however, there is no
reason of symmetry why it should be exactly at point
10. To obtain detailed information about the location
of the band maximum, Eqs. (2-10) were solved at
k-points 24 through 37 (see Table V) near point 10.
Some of the resulting energies are included in the curve
of Fig. 3(c). As shown by the results, the maximum
band energy still occurs along the L0,1,1) direction,
but at $3 Ldefined in Fig. 1(a)) equals 0.631 m, rather
than exactly at t3 equals 0.707m, which is point 10. The
actual value of the maximum band energy then is
—0.7862 rydberg, rather than —0.7870 rydberg, as
obtained at point 10.

In view of the results above, a surface of constant
energy for an energy somewhat below the Cl 3p band
maximum is a tubular framework almost describing
the inscribed cube of Fig. 1(a), but having the tubes
bent slightly toward the origin while their joints are

fixed at the cube corners. For a higher energy this
surface of constant energy breaks into twelve ellipsoids,
each centered on one of the equivalent maxima. For
the ellipsoid centered in the L0,1,1) direction the prin-
cipal axes are parallel to the $~, (2, and $3 axes (direc-
tions 11,0,0), L0,1,1), and 10,1,1), respectively), which
are shown in Fig. 1(a). The corresponding components
of the diagonalized effective mass tensor were found to
be 10.0, 0.93, and 2.0 electron masses, respectively.

The results discussed above all are based on solutions
of Eqs. (2-10) in the outer-function, second-neighbor
approximation. In this approximation the equations
are of order eight because the eight Bloch sums built
from the eight diferent types of outer free-ion functions
are allowed to mix to form each one-electron function
P;(klr). As shown by the results obtained, however,
the functions f;(klr) which have energies in the Cl 3p
band are built up predominantly of Cl 3p free-ion
functions with only small admixtures of the other types
of functions. To separate the effects of these small
admixtures, a third-order secular equation also has
been solved for each of the wave vectors 1 through 23
in Table V. The third-order equation is obtained by
allowing only Cl 3p Bloch sums to mix, but using the
same matrix elements between them as were used before
(these would be changed only slightly if ClK contri-
butions were neglected fully). Energies in the Cl 3p
band obtained by solving this third-order secular
equation are plotted in Figs. 3(a), (b), and (c) along
with those obtained by solving the eighth-order equation.
The principal feature to note is that the band width
predicted by the third-order equations is too large by a
factor of about two.

The uncertainty in the final results obtained by
solving the eighth-order equations is diKcult to esti-
mate. The significant uncertainties in a particular
energy parameter arise from the following sources:
omission of interactions with inner free-ion functions,
omission of interactions between second-neighbor K+
functions and interactions between all functions
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separated by more than the second-neighbor distance,
and uncertainties in the values of the energy elements
which are actually included in the calculation. In view
of the estimated errors arising from these causes and
in view of the nature of the equations to be solved, the
uncertainty in a particular energy parameter probably
is about &0.015 rydberg. The absolute errors of energy
parameters in different regions of reciprocal space are
not independent, however, and a more accurate calcu-
lation based on the same model probably would give
an energy band only slightly diferent though somewhat
displaced from the band obtained here.

(b) Discussion of Results

The theoretical work most comparable to that
presented here is Shockley's cellular calculation for the
Cl 3p band of NaCl. ' Shockley obtains a Cl 3p band-
width of about 4 ev for NaCl, while the present calcu-
lation gives about 1.5 ev for KCl. The narrower band
of the present calculation is somewhat more in line with
expectation, since narrow bands are observed in the
appropriate x-ray emission spectra of the alkali-
halides. '

The difference between the band widths probably
has several causes. In the first place Shockley's best
results are obtained with the Cl —Na+ matching
conditions either neglected or included only approxi-
mately. In the present work the third-order equations
in which only Cl 3p Bloch sums are allowed to mix
involve an analogous omission of Cl —K+ interactions
(except as they are built into the ClCl energy elements),
and these solutions give a band width of 2.9 ev (see
Fig. 3), almost twice the anal calculated band width.

By implication, then, Shockley's relatively wide band
might be largely a result of inadequate treatment of
the Cl —Na+ matching conditions. As a second cause
of the difference in band widths, the KCl calculation
is based on Hartree-Fock functions for Cl while
Shockley's calculation is based on potentials obtained
from the more extensive Hartree functions. A part of
the di8erence between the calculated band widths for
the two crystals may well be real, of course, since
interactions between the second-neighbor Cl functions
are relatively more important in NaCl than in KC1,
but this probably cannot account for the entire
difference.

Except for scale and the absolute values of energies,
the Shockley NaCl valence band and the new KC1
valence band are quite similar. Since Shockley did not
calculate energy curves for the L0,1,1) direction in

reciprocal space, however, it is not possible to compare
the locations of the predicted band maxima. In view

of the fact that for KCl an energy maximum occurs in

the L0,1,1) direction away from k equals zero even in

the third-order solutions, it is quite possible that in an
extended Shockley-calculation for NaCl the same thing

would occur.

Another theoretical study which is somewhat com-
parable to the present work is the cellular calculation
for LiF by Ewing and Seitz. ' The valence band of LiF
is F 2p rather than Cl 3p, and exchange effects were
neglected in this calculation. In spite of these facts,
however, the final curves of the valence band energies
of LiF in the L1,0,0), the $1,1,1), and the L1,1,0)
directions bear many resemblances to the corresponding
curves for KC1 in Fig. 3 and to Shockley's L1,0,07 and
L1,1,1) curves for NaC1. In the L1,1,0) curve for LiF
in particular the upper branch of the band rises as k
increases from zero, as the corresponding KC1 branch
does. This result tends to support the suggestion made
above that the NaCl band maximum also might occur
in the L1,1,0) direction. Instead of going through a
maximum inside the zone as the upper KCl branch
does, however, the LiF branch goes to a maximum at
the zone boundary. In addition, the LiF band has a
width of about 0.4 rydberg or 5.5 ev.

The principal experimental work to which the present
results can be compared is the study of the x-ray
emission spectrum of KCl made by Parratt and
Jossem. ' This emission spectrum was observed in
ranges around the Ep emissions of the free ions K+ and
Cl, and similar results were found in the two regions.
Theoretically some part of the spectrum observed in
the Cl Ep region should arise from band-to-band
transitions of the crystal-minus-one-electron in which
a hole in the Cl 1s band jumps to the Cl 3p band.
From the experimental results this spectrum consists
of a high, narrow peak called P&, at the low-energy end
of a lower, broader band called P,. There is some reason
to believe that the P~ peak by itself represents the band-
to-band transitions. " This peak has a width at half
maximum of 1.20 ev, and it also is quite smooth, at
least on its low-energy side.

YVith energies and functions determined by the
present type of calculation, a theoretical spectrum for
the Cl Ep band-to-band emissions can be determined.
This has been done here by interpolating to obtain
valence-band energy parameters on a mesh half the
size of that described earlier and by simply counting
energies in subdivisions of the band to get a rough
density-of-states curve. The latter curve would have
roughly the same form as the desired Cl Ep emission
spectrum if the eGects of natural line-broadening and
of the experimental apparatus were negligible, since
the transition probability is fairly constant through
k space, and since the Cl 1s band is Qat. This theo-
retical density-of-states curve exhibits a dip near the
middle of its 1.5-ev energy range, but, on the the basis
of values given by Parratt and Jossem, ' natural broad-
ening and the experimental spectral window would
smooth out this dip almost completely in the actual
emission spectrum. The form of the theoretical density-
of-states curve is not inconsistent with the form of

~ L. G. Parratt (private communication).
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Pro. 4. Structure of
the valence band of KCl
as a function of the in-
terionic distance a. Each
curve represents a par-
ticular energy at a par-
ticular k point as a func-
tion of u. Values of the

'

band width at intervals
of 0.5 a.u. are given
below the curves. The
individual curves are
numbered 1 through 8
iri order of decreasing
energy at 7.0 a.u. The
k point for which a par-
ticular curve occurs and
the degeneracy of a par-
ticular curve may be
found from the table
included in the 6gure.
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the observed P~ peak, therefore. When corrected for
natural broadening, however, the theoretical curve
predicts an emission spectrum with a width at half-
maximum of about 1.32 ev, and this is appreciably
larger than the true width of 0.78 ev obtained by
Parratt and Jossem for the P~ peak after correction for
their spectral window.

The experimental K+ Ep emission spectrum of
Parratt and Jossem is more readily explained by the
present theoretical results than is the Cl Ep spectrum
discussed above. In view of the diKculties in explaining
the latter, however, the K+Ep agreements may be
fortuitous, and they will not be discussed here.

5. BAND STRUCTURE AS A FUNCTION OF
INTERIONIC DISTANCE

(a) Description of the Calculation

To provide some information about density-de-
pendent eGects in KCl as well as about band structure
in general, the band structure of KCl was recalculated
as a function of the interionic distance. For this the
matrix elements of energy and overlap between free-ion
functions (those in Tables III and IU) were taken to
vary in simple analytic ways as functions of the
distance.

On the basis of the observations mentioned in Sec.
3 (b), the two-center overlap integrals all were taken to

vary exponentially with distance. The exponential
factor for a given integral was obtained by fitting one
exponential to the curve of each overlap as a function
of distance. The two-center energy elements each were
taken to vary as an exponential divided by the inter-
ionic distance, and the exponential factors were chosen
to be the same as those for the corresponding overlap
integrals. The overlap-dependent contributions to each
of the one-center energy elements )the second set of
brackets in Eq. (3-16)j were taken to vary together
as an exponential divided by the interionic distance,
and the exponential factors were derived from those
for the overlap integrals. All of the elements were made
to equal the accurate elements at the normal interionic
distance of 5.9007 a.u. The elements obtained by use
of these analytic approximations probably are rea-
sonable for interionic distances greater than about 5
a.u. The second-neighbor, outer-function approximation
may not be very reasonable for distances less than 5.5
a.u. , however.

(b) Results and Discussion

With the approximate elements discussed above the
band structure of KCl was calculated for interionic
distances from 4.5 to 7.0 a.u. at intervals of 0.5 a.u.
The eighth-order equation (2-10) was solved only at %-

points 1, 5, 10, and 20 (see Table U), since it was judged
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FIG. 5. The upper four ulled bands of KCl as a function of the
interionic distance a. The values of the free-ion Hartree-Fock
energy parameters are given at the right of the figure; the bands
approach these parameters in the limit as the interionic distance
approaches infinity.

by Fig. 2 that the results for these points would charac-
terize the dependence of band structure on distance
fairly well.

The properties of interest in the results are most
easily found by comparing the solutions of the secular
equations for a given k point as a function of interionic
distance. The functions and energies for large distances
are easily identified with free-ion functions and energies.
By matching the coefficients for one-electron functions
from one value of the interionic distance to the next
smaller value, it is possible to follow a particular energy
as a function of distance. Smooth curves are obtained
for the variation of each energy.

Figure 4 shows the superposed curves of all the
calculated energy parameters in the Cl 3p band. The
envelopes of these curves are approximate curves of the
upper and lower limits of the Cl 3p band. For interionic
distances greater than normal in the figure the band
maximum is at point 10 (or near it), the minimum is at
point 20, and the energies obtained are rather uniformly
distributed throughout the band. As the distance de-
creases from infinity, however, the energies all decrease,
pass through minima in the neighborhood of the normal
distance, and then increase rapidly. During this vari-
ation, the energy for k-point 1 (k equals zero) shifts
from a value near the band maximum for large dis-
tances to become the band minimum for distances less
than 5.0 a.u. Although the results for a distance of 4.5
a.u. are not reliable, the trends indicate that the band
minimum at k point 1 becomes deeper and the density
of states in its vicinity decreases as the distance de-
creases below 5.0 a.u. In addition, as the interionic
distance decreases through the neighborhood of 5.0 a.u. ,

an energy at k point 5 takes over the role of band
maximum from the energy at k point 10. Because of
the shifting of energies relative to one another in the
band, the width of the Cl 3p band does not vary
smoothly with decreasing interionic distance; the
band widths for various interionic distances are given
in the figure.

The upper and lower bounds of all the bands as
functions of interionic distance have been obtained,
and they are plotted in Fig. 5. This plot shows many
similarities to the plot of the NaCl energy bands which
was constructed by Slater and Shockley. ' The reasons
for the behavior of the bands in Fig. 5 may be under-
stood by consideration of the analytic forms of the
elements of energy and overlap. As the interionic
distance a decreases from 7.0 to 4.5 a.u. the two-center
elements all increase essentially exponentially, and this
increase is responsible for the observed broadening of
the bands. At the same time each Cl band first falls
because of the negative Madelung energy in the Cl
one-center energy elements, and then it rises rapidly
as the positive, exponentially-increasing, overlap-
dependent contributions to the one-center elements
come to overweigh the Madelung energy. The K+ 3p
band first rises due to the positive Madelung energy in
the K+ one-center energy elements and then rises much
more rapidly as the positive overlap-dependent con-
tributions become predominant. The K+ 3s band
probably should behave in the same general way as
the K+ 3p band, but due to calculation inaccuracies the
small overlap-dependent contributions to its normal
one-center energy element come out to be negative;
the magnitudes of these contributions are less than
their uncertainties, however.

The rapid rise of the three upper bands in Fig. 5 at
small distances outweighs the band broadening. This is
because the overlap-dependent contributions to the
one-center energy elements vary roughly as the square
of the largest overlaps while the two-center elements,
which cause broadening, vary only as the overlaps
themselves. Orthogonality requirements probably ac-
count for the particularly rapid rise of the Cl 3p band.

{i. COHESIVE ENERGY OF THE NORMAL CRYSTAL

(a) Equations

The calculation of cohesive energy in the present
section is performed both for its own interest and also
to provide checks on the quantities used in the electronic
structure work of the preceding sections. It is modeled
after the comprehensive cohesive energy calculations
of Lowdin. 4 The cohesive energy is defined as the energy
of the crystal at O'K relative to the energy of the
infinitely-separated, static, free ions, K+ and Cl . The
fact that the interionic distance which is used here is
not quite correct for O'K will introduce only a negligible
error in the total calculated cohesive energy.

On the basis of the definitions in Sec. 2 and Lowdin's
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rABLE VI. The quantum-mechanical cohesive energy of KC1 in various approximations as obtained rvith a determinant of free-ion
Hartree-Fock functions. Energies are in kilocalories per mole and are obtained for an interionic distance of 5.9007 a.u.

Approximation

(2) 1st-neighb. , out-fn, Lowdin
(B) 1st-neighb. , out-fn, Howland
(C) 2nd-neighb. , out-fn, Howland
(D) Exact

EMad

—185.8—185.8—185.8—185.8

—16.5
1702—20.4

—48.6—49.5—60.0

&ov

84.0 18.9
(89.3) (22.6)
106.6 26.2

26.2 to ~28.2

—166.9

Eeo)

—159.6—159.6 to ~—157.6

(6-7)
where the three terms on the right are

where

work the cohesive energy of KCl in the LCAO approxi- plicitly. This is desirable both for ease of calculation
mation is given by and to provide checks on the energy elements. The

E E +E +E (6 1)
S energy then is given by

Es=Z, P Q
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Q „=2H „—OVC „—OVE „. (6-8)

This equation for the S energy is not very satisfactory
for calculational purposes, however. A product P Q „
in the equation is negative if the functions m and e are
on the same site (in which case m equals n) and positive
if they are on diferent sites; the hnal S energy is an
undesirable difference between large numbers. A better
equation is obtained by the following considerations.

(6-3) From the definitions of P„and S„ in terms of (6 ')„
and 6„,it can be proved easily that

Pa~= —Sa~—Q„,'$P„AS„+-S „P„~j. (6-9)Es=Z 2 (ong)Q„P„„(2(Rime)
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In these equations (P

~
me) is the integral of the oper-

ator P& between functions u„and I„, and (G~me~ pq)
is given by

T~a= 2Q~a —P„(on g and g') t S~„Q„a
+Q,S„.j.

(G
~
rltrs

~ Pq) = N„(1)*go(1)GtsN„(2)*

Xu, (2)deldns. (6-5)
Equation (6-10) for the S energy is satisfactory because
each contribution I'„T „ is positive. The differences
which occur in Eq. (6-7) have been transferred into the
quantity T „,as shown by Eq. (6-12), and in this form
they can be taken in such a way as to avoid difFiculty.

As described above, then, all of the quantities in-
volved in Eq. (6-1) for the cohesive energy can be
calculated simply from quantities which were deter-
mined in the course of the work on band structure.
This has been done here only within the outer-function,
second-neighbor approximation which was used for the
band calculation.

The three energy terms above are called the "electro-
static energy, " the "exchange energy, " and the "S-
energy, "respectively.

The electrostatic energy given by Eq. (6-2) represents
the total Coulomb energy of interaction of all the free-
ions in the lattice (electrons plus nuclei). It can be
split up as follows:

(6-6)Eeletat EMad+ Ecorrr

where EM,& is the Madelung energy, which is equal to
2n/a pe—r unit cell, and where E.„,is Lowdin's cor-

rection energy, which can be obtained from the effective
charges for potential of the K+ and Cl ions and from
the Coulomb correction terms CC (g), which were
discussed in Sec. 3(c). The exchange energy given by
Eq. (6-4) can be obtained as a sum of two-center
exchange integrals, which were discussed in Sec. 3(b).

The S energy given by Eq. (6-4) can be rewritten to
contain the energy elements II „of Eq. (2-12) ex-

(b) Results and Discussion

The results of the calculation described above are
presented in Table VI. In addition to the quantities
already defined, a quantity E, , the overlap energy,
also is included in the table. This energy is the sum of
the three overlap-dependent terms, E„„,E. ,h, and
Ez, it is listed because it corresponds quite closely to
the repulsive energy of the Born-Madelung type of

On substitution of this expression for each one-center

(6 4) element P„ in Eq. (6-7), the S energy becomes

(ong)P (ong')P T „, (6-10)
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calculations. "The notation in the 6rst column of the
table indicates the approximation in which the results
are obtained.

From the results of the present outer-function,
second-neighbor calculation in row C of the table, the
Madelung energy is seen to be the predominant term
in the cohesive energy. The correction and exchange
energies are both negative also, but the S energy is
positive and of such a magnitude that the total overlap
energy is positive. It is this positive overlap energy
which keeps the ionic lattice from collapsing under the
inQuence of the ionic attractions. The overlap energy
is positive because the S energy is large and positive,
and the S energy arises from the existence of the overlap
charge density, which in turn is an e6'ect of the exclusion
principle.

The cohesive energy and its individual components
have been calculated again in a lower approximation
by omitting the second-neighbor, C1Cl contributions to
E„,E, ,h, and E8 almost completely. The values thus
obtained are shown in row B of Table VI. The values of
the correction and exchange energies thus obtained are
exactly the values appropriate to a first-neighbor,
outer-function calculation of the cohesive energy, as
the notation in the first column of the table indicates.
The value of the S energy thus obtained contains some
dependence on the second-neighbor, C1C1 overlapping,
however, since the ClK elements of inverse-overlap and
energy of Tables III and IV were used without cor-
rection. The values of both the S-energy and the overlap
energy in row B therefore are given in parentheses.

Lowdin's results4 for the cohesive energy of KC1 are
given in row A of Table VI; the values shown are
obtained by interpolating Lowdin's published values
to the interionic distance 5.9007 a.u. As is indicated in
the first column of the table, Lowdin's results are
obtained in the first-neighbor, outer-function approxi-
mation. The new values of the correction energy and
the exchange energy in row B of the table are seen to
agree fairly well with Lowdin's corresponding values
in row A. The observed differences of two and four
percent are reasonably explained by the slightly diferent
functions used in the two calculations. The value of the
S energy in row B does not agree very well with
Lowdin's value, but the diBerence in the values is
compatible with the sign and probable size of the ClCl
contributions to the value in row B. The agreement
with Lowdin's results is taken as providing a rough
check on some of the numerical quantities used in the
band-structure calculations of the preceding sections.

On comparison of the second-neighbor results in row
C of Table VI with Lowdin's first-neighbor results in
row A, the ClCl interactions are seen to provide an
appreciable contribution to E, and E &. They provide
about 7.3 kilocalories per mole as compared to the 18.9

"M. L. Huggins, J. Chem. Phys. 5, 143 (i937). See also the
discussion in M. Born and K. Huang, Dynamical Theory of Crystal
Lattices (Clarendon Press, Oxford, 1954), p. 19.

kilo calories per mole which the C1K interactions
provide.

In an exact calculation of E„h, interactions between
more distant neighbors in the lattice and interactions
which involve inner free-ion functions would have to
be included also. Such interactions would raise the
overlap and cohesive energies to even higher values
than those given in row C of Table VI, but probably
by not more than about 2 kilocalories per mole. The
values of the overlap and cohesive energies in an exact
calculation on Lowdin's model therefore should lie in
the ranges indicated in row D of Table VI. These ranges
are included in the table to emphasize that the accurate
cohesive energy as predicted by Lowdin's model (the
single determinant of free-ion functions in the crystal)
must be even higher than the value obtained in the
present calculation. It should be added that there is a
calculational uncertainty of about one kilocalorie per
mole in the values in row C of the table and that this
uncertainty carries over to the range values indicated
in row D.

The experimental value of the cohesive energy of
KCl is given by Huggins" ' as —167.8&2 kilocalories
per mole. Since the exact value of Lowdin's quantity
E„b is between —159.6 and —157.6 kilocalories per
mole, Lowdin's model appears to give a cohesive energy
which is between 8.2 and 10.2 kilocalories per mole too
high. The source of this error can be seen by consider-
ation of the problem of calculating the cohesive energy
of an alkali halide in a general quantum-mechanical
way, as shown below.

In principle the cohesive energy of an alkali halide
should be calculated by performing complete con-
figuration interactions for both normal crystal and
separated free ions (with static nuclei), by subtracting
the total energy of the free-ions from that of the crystal,
and by adding the zero-point energy for lattice vibra-
tions to the result. In practice the configuration inter-
action for the crystal is too difficult to be performed.
The required difference between the configuration-
interaction energies can be approximated, however. It
can be considered as equal to the Hartree-Fock energy
of the crystal minus the Hartree-Fock energy of the free
ions plus a correction which is defined by the equality.
This correction is just the contribution to the cohesive
energy which arises from correlations of the motions
of electrons in the two systems.

This correlation contribution is essentially just the
energy due to the correlation of electrons which are on
diferent ions in the crystal; thus it should be about
equal to the van der Waals energy of interaction for
ions in the crystal. On the basis of these remarks the
complete cohesive energy of KCl should be given
approximately by the following equation:

~=~&Br+& aw+Kp, (6-12)
"New values of —471~3 and —166.4~3 kilocalories per mole

ha, ve been obtained by Morris, but these essentially substantiate
Huggins' value. See D. F. C. Morris, Acta Cryst. 9, 197 (1956).
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where U is the total cohesive energy, AEHF is the
diG'erence between the Hartree-Fock energies of the
crystal and the free ions, E q~ is the van der Waals
energy for ions in the crystal, and E„is the zero-point
energy of the crystal.

Lowdin's quantity E„h can be looked on as an
approximation to the difference in Hartree-Fock
energies, ASHY, in Eq. (6-12).If the van der Waals and
zero-point energies in this equation then are taken to
be —6.2 and 0.9 kilocalorie per mole, respectively, "the
total cohesive energy U as predicted by Zq. (6-12) is
found to be between —164.9 and —166.9 kilocalories
per mole. This result is only between 2.9 and 4,9 kilo-
calories per mole above the experimental value. This
final discrepancy should be just equal to the error in
the energy of Lowdin's single determinant of free-ion
functions as an approximation to the true Hartree-Pock
energy of the crystal. Lowdin's determinant therefore
seems to have an energy which is between 2.9 and 4.9
kilocalories per mole higher than the true Hartree-Fock
energy. The sign of this error is consistent with the
de6nition of the Hartree-Pock energy, " and its mag-
nitude is seen to be small. The results therefore provide
a certain amount of justification for the LCAO approxi-
mation which has been used in the preceding sections.

"On the basis of Lowdin's original results for E„h, the sign of
the corresponding error is not consistent with the definition of the
Hartree-Fock energy.

It would not be too dificult to repeat the present
cohesive energy calculation at other interionic distances,
using the approximations of Sec. 5, but this has not
been done. The results of such a calculation probably
would predict very nearly the same equilibrium inter-
ionic distance for KC1 which Lowdin found by his
first-neighbor calculation, however. This is because the
second-neighbor ClCl contributions to the correction,
exchange, and 5 energies are all in about the same pro-
portion to the corresponding first-neighbor ClK con-
tributions and because, by an accident, the dependence
on interionic distance of the largest ClCl overlap
integral is almost the same as that of the largest ClK
overlap integral.
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