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Generalized Mobility Theory
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A formal theory of mobility is presented that does not depend on the existence of a transport equation.
In particular the Hamiltonian describing the electron plus scattering system is not decomposed into an
unperturbed part plus a perturbation. Only the applied field is treated as small. Our result is shown to
reduce to the usual transport result when the scattering perturbation is weak, without assuming the existence
of a relaxation time. Further verification of the validity of our result is obtained by using it to demonstrate
a complex Nyquist theorem. Mathematical convergence factors introduced in previous theories are shown to
arise naturally here by allowing a weak interaction between the electron plus scattering systems and the
universe. The relation between a many-electron treatment and the one-electron treatment is demonstrated
for the case of Fermi as well as Boltzmann statistics.

l. INTRODUCTION exist, one can derive a formally correct expression for
the mobility by treating only the external held as small
as discussed by the authors of reference 1.

2. To indicate enough of the proof of the generalized
mobility expression to understand how irreversibility
results from a treatment that starts from the reversible
Liouville equation.

3. To give a proof, not (I believe) heretofore
presented, that the generalized mobility reduces to the
usual mobility in the weak-coupling limit —even in
case when a relaxation time does not exist.

4. To verify that our result is in agreement with the
Nyquist theorem.

'ANY authors' have recognized that the usual
- ~ transport theory for the mobility of electrons

may not be valid if the coupling between the electrons
and the lattice vibrations' is too strong. In the first
place, it will no longer be possible, precisely, to consider
the electrons and lattice as separately in equilibrium
when no fields are present. In the second place, the
Boltzmann transport equation may no longer be valid:
The usual transport equations deal with probabilities
of occupancy of certain states, and not with probability
amplitudes, or phases. In other words, after each
collision, the electron must lose all phase information
before having the next collision. ' This condition can
be obeyed only if the average time between collisions
is long compared to the "duration" (i.e., forgetting
time) of a single collision.

%hen the coupling is too strong for the above
conditions to be met (e.g. , if the time between collisions
becomes comparable to the reciprocal of the Debye
frequency) one has a complicated many-body problem
to solve. The purposes of the present remarks are the
following:

2. PERTURBED DENSITY MATRIX

In this section, and the two following, we shall, for
simplicity, adopt a one-electron viewpoint. The
generalization to a many-electron viewpoint is easy to
carry out formally, and is presented in Sec. 5. The
density matrix obeys an equation of the form

sc)p/c)1+[p, H+V(t)]+ (p —p )/ =0 (2.1)

where H is the Hamiltonian of the electron plus the
scattering system plus the interaction between the
two and V is the interaction with the external applied
field. (We have used units in which A=1.) The last
term represents the fact that the crystal is not isolated
but may interact weakly with the surroundings in
such a way that in the absence of a field the system
approaches the equilibrium density matrix:

1. To call attention to the fact that even though a
transport theory for the strong-coupling case does not

' R. Kubo, Can. J. Phys. 34, 1274 (1956); M. Lax, Phys. Rev.
100, 1808 (1955); H. Mori, J. Phys. Soc. Japan 11, 1029 (1956);
H. Naicano, Progr. Theoret. Phys. Japan 15, 77 (1956); R. P.
Feynman (private communication).

'The approach to be used in the remainder of this paper is
applicable to any scattering mechanism, e.g. , impurity scattering
(or even the motion of electrons in impurity bands), but we speak
of lattice vibrations as the scattering mechanism in order to have
a definite physical picture of the problem under discussion.

3L. Van Hove has demonstrated in detail, for the case
su%ciently weak coupling, how this phase information is los
and has in the limit of weak coupling established the validity
the usual (Pauli) transport equation; see Physica 21, 517 (1955
W. Kohn and J. Luttinger [Phys. Rev. 108, 590 (1957)j hav
made the same assumptions as Van Hove and have also demo
strated that validity of the Pauli transport equation in a simpl
straightforward manner by making legitimate approximations i
the density matrix equation. The loss of phase is therefore als
demonstrated by Kohn and Luttinger, although in a less dire
way than Van Hove's explicit examination of the solution to th
density matrix equation.

ps=Z ' exp( —PH)
or ps= [1+exp/(H —Es)] '= p~, (2.2)

of where P = 1/(k T) and Z = trace[exp( —PH) ]. The
second form applies when Fermi statistics is necessary
and Bp, the Fermi level, is chosen so that trace p~=X

e = the total number of electrons.
The use of a one-electron viewpoint is equivalent to

e
the assumption of an assembly of electrons that do
not interact directly, or indirectly, except through the
requirements of the Pauli principle. The fact that
correlations introduced by antisymmetry requirements

192i
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can be taken into account simply by using p~ as the
equilibrium density matrix in a one-electron description
is established in Sec. 6.

The interaction with the universe is needed to
prevent the crystal from heating up indefinitely, if an
electric field is applied over an infinite L,ime. It also
serves the purpose of damping out oscillatory transient. s
which would otherwise appear in p. For calculating
conductivity, one needs a solution accurate only to
first order in the electric field. To this order, no heating
effects occur. Also transients can be circumvented by
building up the field from t= —~ very slowly —by
assuming a time dependence of the form exp(nt) and
taking the limit as e—+0. Thus a derivation can be
based on the equation with no interactions with the
surroundings if handled with care (i.e., first let the
electric field E approach zero, and then let the process
become completely adiabatic).

We shall prefer, however, to retain the interaction
with the surroundings, as a more physically meaningful
viewpoint. The same solution is then obtained as in
the case of no interaction with the surroundings,
with the mathematical convergence factor exp (nt)
replaced by the physical convergence factor exp(t/r).

If the term in [p, V(t)] in (2.1) is regarded as known,
Eq. (2.1) can be solved exactly subject to the initial
condition p( —~)=po.

p(t) p +ie i/T e$ /Te/K(t' —t)

X[ ('),V(')] —' " "Ch'. (2.3)

If the external potential V is regarded as small, one
may solve (2.3) by interaction p= po+pi+p~+ '

where the term p~ is linear in the applied field, p2 is
quadratic, etc. For the purposes of calculating the ohmic
conductivity, only p& is needed and this is given precisely
by

sensitive to r (unless the latter is unusually short)
and we may write more simply

p e irdt—i e illltg—iKt[ V]e/Ktdhi
g

0)

0

(2 6)

with the understanding that co has a small negative
imaginary part which may be allowed to approach
zero after it has served its function of causing otherwise
oscillatory expressions to vanish ai the upper limit.

where
j=ne(v)A, =ne trace[vp],

v= [r,H]/i.

(3 1)

(3.2)

Note that the use of the unperturbed density matrix
po in (3.1) yields vanishing current.

If no magnetic fields are present, and if the interaction
between the electron and the scattering system does not
depend on the electron momentum, then p'/2nt will
be the only part of H that does not commute with r
and we can replace (3.2) by v= y/nt.

For the case of a uniform applied electric 6.eld, we
can write

V(t)= —eE(t) r, (3.3)

where E (t) = Eo exp(nut).
Substitution of the perturbed density matrix p& into

(3.1) leads to an expression for the current of the
usual ohmic form:

j=o E, (3.4)

3. THE CURRENT

When the Hamiltonian H is invariant against an
arbitrary displacement, we can show easily that the
current density j(r) becomes independent of r, i.e.,

uniform. It is therefore sufhcient for us to calculate
the volume average current density j. If there are n
noninteracting particles per cm' of charge e, the
current density j is given by

where we have introduced t"= t —t'. If we assume that
V (t) has a single frequency dependence, ol

»(t) =i~I e—&"/~e—~K&"[p,, V (t h")]e'K&"—dh" (2 4) where the dyadic e is given by

Q8 1 f'
o = — e '~' trace{y[po, e 'K're'K']}dt, (3.5)

m i~a

V(t) =e~'V

then (2.4) can be rewritten in the form
where

e= (ne'/nt) ~,

pi(t)e
—hut —i I e i'/e t/re —iKt[po—V]e/Ktdh (—2 5)

0

where the double prime has been dropped on the right-
hand side. We see therefore that pi exp( —i&et) is
independent of time, i.e., a steady state has been
reached at any finite time.

The factor exp( —t/r) is just a convergence factor
which arises because the crystal is not isolated but
interacts with the universe. The result for p~ is not

i~ Ch —exp( —i&oh) traCe{y(t)[po, r]} (3.6)
0

represents a dyadic relaxation time and

y(t) =exp(iHt) y exp( iHt)— (3.7)

is the Heisenberg operator for the momentum.
It is sometimes convenient for purposes of interpreta-

tion to rewrite (3.6) in the form

~= —i exp( —icot) trace{[r,y(t)]po}dt. (3.8)
"0
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e 00

(3 9) (vlpil v&= ——E(t) .
~

e 'dt 'l
I (vie 'H'I v'&dv'l

o0

~=1 exp( —itet)dt= I/io),

If, for example, no scattering occurs, then p(t)=p, Equation (4.1) yields for this matrix element
[r,p]=il, and

where the small imaginary part in co assures convergence
of the integral and I is the unit dyadic. Thus we
obtain the conductivity of a free-electron gas:

tr =ne'/(iso)). (3.10)

Since the conductivity 0- always appears in conjunction
with a dielectric constant e in the combination
o+i(&ue/4~), (3.10) is equivalent to the usual result,

A» = —4m ne'/neo', (3.11)

for the contribution to the dielectric constant of the
free-electron gas.

If scattering occurs that is describable in some
approximation by a viscous energy-independent
damping:

Bpo
X v v dv v e'~' v. 44

Bv

H= Ho+3,Hi, Ho p'/2m——. (4.5)

This limit must be taken with care since the expression
exp[(Hp+XHi)t] contains At and t is integrated over an
infinite domain. However, t does not occur in po so
that it is permissible to let X—+0 in po(H) =po(Ho+XHi);
therefore po po(HO) and Bpo/Bv are diagonal in the
v representation. Thus Eq. (4.4) can be rewritten in
the form

So far, the equations are rigorous. We now wish to
obtain the limiting behavior of the above expression
as the coupling strength X goes to zero, where

then
p(t) p exp( —t/r),

Irl (1+ nor) .

e 00

(v l pi l v) = ——E(t) exp( —i~t)dt
m 0

e l" Bpo
p E(t) e tttte tH t etH tdt

m ~, av
(4.1)

where Bpo/Bv is defined by the equation

app/a v =——im[r, pp]. (4.2)

If we work in a representation in which v=p, /'m is
diagonal, the current (3.1) is given by

j =neJ vd'v(vl p, l v), (4.3)

so that only the diagonal matrix element of p& is needed.

4 W. Pauli's original derivation in Festschrift Zum 60 Geburtstage
A. Sommerfeld (S.Hirzel, Leipzig, 1928) simply made the random-
phase assumption before the start of each collision.

4. PROOF OF EQUIVALENCE OF THE USUAL TRANS-
PORT THEORY RESULT IN THE CASE OF

WEAK COUPLING

The reduction from a density matrix equation to a
transport equation requires the destruction of the phase
information contained in the oG-diagonal elements of
the density matrix. '' Our reduction of p [Eq. (3.6)]
to the usual transport results requires two steps: (1)
weak coupling; (2) the elimination of phase coherence
in Eq. (3.6). In order not to duplicate previous work,
we shall make the approximation of weak coupling
and try to express our results in such a form that the
conclusions of Van Hove concerning phase destruction
can be applied directly.

Equation (2.6) with the insertion V = —eE (t) r
can be rewritten in the form

f
X

J
W(vtv, t)dv'Bpo(v )/Bv, (4.6)

where

W(v, v', t) =
l (v l exp( —iHt)

l
v') l' (4 &)

(1) W vanishes for t(t',
(2) W=tI(v —v') for t=t'+0,
(3) BW/Bt+KW=O for t~t',

(4.10)

i.e., 8' is the probability at a later time t of an electron

has the significance of the probability of finding the
electron at v at time t if it was with certainty at v' at
time zero.

Instead of trying to reduce (4.6) completely to the
classical form, we shall bring the usual transport theory
into a form directly comparable to (4.6). For this
purpose, the classical transpor t equation can be
written in the form

8f/Bt+ [eE(t)/m] Bf/8 v+Kf =. 0, (4.8)

where K is a linear oper'ator and K f is an abbreviated
way of writing the collision terms.

To bring (4.8) into a form analogous to (4.6), we
must regard the electric field as a perturbation and
solve to first order in the electric 6eld. Thus we may
write f= f0+fi+, where fo is independent of the
field and fi is linear in the field. Equation (4.8) can be
rewritten in the form

~fi/~t+Kfi=y= [eE(t)/m] ~fo/»— (4.9)

To solve Eq. (4.9), we introduce Green's function
W(v, v', t t') that has the following —properties:
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t

fi(v, t) = I dv' I dt' W(v, v', t —t')P(v', t'), (4.12)

where the upper limit t arises because 8' vanishes for
t') t. If we insert t"= t t', m—ake use of E(t) = exp(ia&t)

&&K(0), and later drop the double prime (4.12) becomes

e t'(3fo(v')
fi(v, t) = ——E(t) ' dv' i W(v, v', t)

m av'

&(exp( —i(ot)dt. (4.13)

Equation (4.13) is identical with (4.6) if we identify
ps with fs [which has already been done in replacing
po(H) by ps(He) j and if we identify the W's appearing
in the two equations.

It is clear from their definitions that the two Ws
have the same physical meaning. The work of Van Hove
demonstrates that the W defined by (4.7) obeys the
classical transport equation (4.10) in the weak coupling
limit so that the two quantities are. indeed identical.
(In fact an elementary proof based on Weisskopf-
Wigner perturbation theory will be presented in a
future publication. )

5. NYQUIST NOISE

The classical expression~ for the noise power G(v)dv
in the frequency interval dv associated with a fluctuating
function I(t) is given by

(5.1)

where the factor 2 arises because of the convention
that the total dissipated "power" is given by

1 T 00

lim —~ Is(t)dt=
~~ G(v)dv,

p-+Do TQ 0 0

(5.2)

so that G(v) includes the contribution from frequencies
v and —v. For a bibliography of early work, including
derivations of (5.1), the reader is referred to Rice'
and Wiener. ' A recent illuminating derivation of (5.1)
based on an analysis of the measurement process has
been given by Ekstein and Rostoker. '

' S. O. Rice, Bell System Tech. J. 23, 282 (1944); 24, 46 (1945).
'N. Wiener, -Acta Math. 55, 117 (1930); J. Math. Phys. 5,

99 (1926).' H. Ekstein and N. Rostoker, Phys. Rev. 100, 1023 (1955).

having the velocity v if it started with velocity v'

at the earlier time t'. The necessary jump in 8" from
t=t' —0 to t'+0 can be incorporated automatically
by stating that S" obeys

BW/ctt+KW =b (v v') 8—(t—t').

The solution to (4.9) can then be written in the form

where ar=2vrv. The mean value of the operator G„(v)
must be taken with respect to a quantum-mechanical
state 1t, or more properly an average should be taken
over an ensemble of states:

G(v) = trace[G.,(v)ps], (5.4)

when ps is the equilibrium density matrix Z 'exp( —PH).
The operator I(t) is the Heisenberg operator

I(t) =exp(iHt)I exp( —iHt). (5.5)

Equation (5.3) may be generalized to include correlation
spectra between components of the current by replacing
I(t) by I„(t) and I(t') by I,(t'), where r and s take any
of the values x, y, s. The off-diagonal elements of G„,(v)
can be complex since an "out-of-phase" contribution to
the correlation is possible. The invariance of traces
against unitary transformation, and in particular a
negative time displacement of amount t', permits G„.(v)
to be rewritten in the form

Xtrace(LI„(t)I, (0)+I,(0)I„(t)(pe). (5.6)

If the trace (5.6) is written in the energy representa-
tion, and the summation indices m, n are interchanged
in the second term, Eq. (5.6) becomes

G-(v) =2~2;"(p-+p-)&(~—(&-—&-))
(5 7)

where p =Z 'exp( —PE„). (Degeneracy is permitted
among the states e. For simplicity of notation we do
not introduce other quantum numbers. )

The x component of the current, I, is given by

I,=L, 'g, e,v;,=j,L„L„ (5.8)

where L, is the length of the specimen between
electrodes, j, is the x component of the volume average
current density Lsee Eq. (5.11)j, and L„L, is the
cross-sectional area of the electrodes. Equation (5.7)
for G„(v) is then identical to Ekstein and Rostoker's
Eq. (15).

The complex Nyquist theorem can be written in the
form

G„,(v) = 2kTLV„, (ar)+ I',„(—a&) jf-,'Par coth( —,'Pcs)], (5.9)
r= x,y,s; s= x,y,s,

where the last factor is the quantum mechanical
correction, and the admittance Y(~) at the frequency &o

For quantum mechanical systems, I(t) is to be
regarded as an operator. and the expression (5.1)
must be made Hermitian, i.e.,

P2~ PQ~

G.,(v) = lim —
~ P(t)I(t')+I(t')I(t) j

—
2

XexpL —ice(t —t') jdtdt', (5.3)
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is related to the conductivity tr(ot) by

F;,(ot) = (V/L„L,) tr„, (or), (5.10)

where V is the volume of the specimen.
Callen and Welton' and Ekstein and Rostoker have

given derivations of the real part of (5.9) in which the
admittance is obtained by a calculation of the power
dissipation. (Such a calculation yields Reo. but not Imo.)
As a check on our work, we shall take our expression
(3.5) for the conductivity and verify the Nyquist
relation.

Our expression (3.5) for tr is based on a one electron
treatment. However our entire treatment applies
formally also to the many-body case if we simply
regard H as a many-electron Hamiltonian and use the
Boltzmann form ptt= (1/Z) exp( —PH) for the equili-
brium many-electron density matrix. Two minor
changes in detail takes place: the interaction with the
field —er E is replaced by—Petr; E and the volume
average current density is calculated from

j= (P,e,v;)/V,

instead of tMv. Thus Eq. (3.5) is replaced by

(5.11)

If we introduce the variables Q, (s=x,y,s), with Q,
defined by

Q.= (L.) 'ZeI*,
such that Q,=I„ the conductivity, can be written
more compactly as

o„,=L„L,(Vi) ' Ck exp( —iota)

«race(I (t)G o,Q )). (5 13)

In the energy representation, Q, =I, implies that

(tt'
I Q. ~

n& = i(tt'
I
I,

~
tt&/(E„—E„), (5.14)

so that Eq. (5.13) becomes

L,L, t"
tile t/re ttttget(E~ E~—)t- —

Js nn'

X (tsII, I
tt'&(tt'II.

I tt&(p —p )/(E.—E.'), (5.15)

where we have reinserted the convergence factor
exp( —t/r) associated with the interaction with the
"universe" as discussed in Sec. 2. Taking the limit as
1/r 4, we find that—
—,'LV„(ot)+ F'„(—ot)$=m P "o(ot E„+E„)—

n, n'

X(elI.le'&(e'II le&(~- —~-)/(E- —E-) (5 16)

' H. B. Callen and T. R. Welton, Phys. Rev. 83, 34 (1951).

tr= (Vi) ' dt exp( —itot)

Xtrace(pe;v, (t)Qs, pe, r;]). (5.12)

If we note that

p„+p„. exp(Pot)+1(E„E—„)= (~)
exp (Pot) —1

(5.17)

is independent of the summation indices e,~' when one
replaces E„—E„by co because of the delta function,
the Nyquist theorem (5.9) follows immediately.

It is to be noted that in the above derivation the
Hamiltonian H may contain interactions between the
electrons. Also Fermi statistics may be obeyed. Correla-
tions introduced by statistics and by interactions
undoubtedly aGect the noise, but they affect the
conductivity in precisely the same way, preserving the
validity of the Nyquist theorem. *

0. MANY-BODY TO ONE-BODY REDUCTION

If the Hamiltonian H can be split into a set of terms

H=QII;, (6.1)

Vote added in proof. —The equations of this section remain
valid in the presence of a magnetic field. However time-reversal
symmetry implies that the Hamiltonian is invariant under the
operation E of taking the complex conjugate and reversing the
vector potential A:

EII(A)E =II*( A) = II(A). —(5.18)
Thus the states ~e) ~e(A)) can be chosen to be invariant
under E. But J,(A), which is proportional to —i~ —eA, reverses
sign under E (i.e., velocity is odd under time reversal). It follows
then that

(e( A) ~I.(—A—) ~e'( —A))= —(e'(A) ~I, (A) ~e(A)), (5.19)

and from Eq. (5.16) we obtain the Onsager relations,

V,,{~,A) = V,.(~, —A). (5.20)

The combination

p'„, (co,A)+ y', „(—tt, A) = F„(co,A)+ p'„(—co, —A)

is real when A= 0 so that there is no out-of-phase noise except in
the presence of a magnetic field.

such that H, depends only on electron j, the motions
of the electrons are uncorrelated except through
statistics.

For the case of classical Boltzmann statistics, r, and
r; are truly uncorrelated. In Eq. (5.12) only the terms
i= j contribute, and they all contribute equally
resulting in a factor N. When N/V is replaced by the
density e, Eq. (5.12) reduces to the one-body formula
(3 6).

For the case of Fermi-Dirac statistics the motions of
the electrons are correlated even when the Hamiltonian
as in (6.1) contains no interactions. It is not clear,
then, that the conductivity can be calculated as in
Secs. 2 and 3 by one-body methods making only the
modification of replacing the initial density matrix by

»=~'= {1+exp'(Hi—E~)l) ', (6.2)

where H& is the one-body Hamiltonian.
We shall therefore verify that our one-body result is

a consequence of the many-body conductivity formula
(5.12). For the purposes of the proof it is most con-
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venient to work in a second-quantized notation. The and
Hamiltonian (6.1) is then replaced by

H=Z pDp=p'p~apta~,

&mlrlk)[f(p-) —f("))= &ml [p,r) Ik), (6.13)

(6.3) where p~ is defined by (6.2). Thus

where the e~ are the eigenvalues associated with the
one-body Hamiltonian II& and a&, a, t and the usual
Fermi destruction and creation operators. In this
respresentation we may write

ep ~00

o = exp( —ipit) dt
mVi" p

X P &k[y(t) [m)&m[[p, r][k), (6.14)

where

Pr, =g,, ,(llr Ik)aita&,

P~y;(t) =P„,„&n~ y~m)a„t(t)a„(t),
pQO

(6.4) o = exp( —ip~t) trace( y(t) [p~,r]},
mVi" p

a (t) =a„exp(—ip t), a„t(t) = a„t exp(ip„t) (.6.5)

In the second-quantized notation the total number of
particles is not fixed and one must use a grand canonical
ensemble:

V ' tracep~=e. (6.15)

where the trace is now over one-body states, and the
Fermi energy is chosen sc that

where
pp =exp[ —PH+ pÃ], (66) Equation (6.14) is identical to our one-body result

(3.5).
(6.7)

O'. SUMMARY
or, for the noninteracting case:

pp= exp[—PZp(pi Ep)aitai],

when EF=p/P=the Fermi energy is chosen so as to
yield the desired density for (W)/U.

The conductivity (5.12), with the help of (6.4) and
(6.5), can now be written:

g2 00

0r(pp) = ~ dt exp( —ip~t) traCe{ y(t) [pp,r]}, (7.1)
mik V~ p

We have demonstrated that an assembly of E
(6.8) noninteracting electrons in a volume V will have the

conductivity

8 1
a=——P &n)y~m)&eir~k)~ Vj tlnm

where

y (t) = exp (iHt/ft) y exp (—iHt/ft),

Xtrace(a„ta [pp, aitai]}

X exp( —ip~t)dt exp[i(p„—p )t)
~'0

and H is the Hamiltonian describing one electron plus
the scattering system plus the interaction between

(6 9) the two. For Boltzmann statistics,

pp= p~=E exp( —PH)/trace[exp( —PH)]; (7.2)

(p) =
exp[8(p —Ei;)]+1

(6.11)

The creation and destruction operators have now
all disappeared and we must perform sums over states

~ k) that are eigenstates of the one-body Hamiltonian
Hi into which H is decomposed by (6.1). The notation
can now be simplified by writing

(n~ y~m) exp[i(p„—p„)t]
= (n

~
exp(iHit) y exp( —iHit)

~
m)

= (n
~ y (t)

~
m), (6.12)

The trace can readily be evaluated in the representa-
tion in which the X~= a~tal, are all diagonal:

trace(a„ta [pp, aita„]}=b„i8 i[f(p ) f(pi, )], (6—.10)

where

and for Fermi statistics,

pp= p = (exp[&(H —E~))+1} (7 3)

where our formulas are mom both written with the
convention trace po=E for comparison.

For the many-body case [see (5.12)] one simply
takes (7.1) and replaces y(t) by P,y, (t) and r by Pr, .
II is now interperted to be the many-body Hamiltonian
(possibly including interactions between electrons).
The complex Nyquist theorem is verified for this general
many-body case including interactions and a mag-
netic field.

The conductivity (7.1) is shown in Sec. 4 to reduce
to the usual transport result for the case of weak
coupling without assuming the existence of a relaxation
time.


