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In a previous paper we have developed a theory of electrical transport phenomena for a simple quantum-
mechanical model. That treatment was based on an expansion in powers of the strength of the scattering
mechanism. In the present paper we consider the same model, but obtain the transport equation in powers of
the density of scatterers without restricting ourselves to weak scattering potentials. The expansion involves
scattering operators for single centers, pairs of centers, etc., in a manner in many ways analogous to the
virial expansion of equilibrium properties. The lowest order terms yield the usual Boltzmann equation. The
first correction, in density, to this equation is explicitly given. For the case of spherically symmetric scatterers

the solutions of these equations are also obtained.

I. INTRODUCTION

N a recent paper! we have given a theory of the trans-
port equation which describes electrical conductivity
for a simplified but physical model of a real substance.
The model is as follows. We have a closed system with
particles, say electrons, which can carry a current. These
electrons are treated as free and independent except for
their interaction with an external electric field, and
with a collection of fixed but randomly located im-
purities. By assuming that the interaction between the
electrons and impurity centers was weak, we were able
to show that to the lowest order in perturbation theory
the diagonal matrix elements® of the density matrix
satisfy the usual Boltzmann equation. (The off-diagonal
elements were expressed in terms of the diagonal ones.)
In higher orders it was found that the usual Boltzmann
equation was not valid, and the corrections were calcu-
lated up to A%, where X is some dimensionless measure of
the strength of the interaction of the impurities with the
electrons. As was already noted in I, however, all the
correction terms were at least of one order smaller in the
density of scattering centers than the “Boltzmann
terms,” so that in the low-density limit the usual
Boltzmann equation recovered its validity.

It is the first purpose of this paper to establish this
result independently of perturbation theory on the
potential. In doing this, we shall set up a general method
of approach which enables us to obtain (in principle at
least) the transport equation to any desired power of 7,
the density of scatterers. To illustrate the method in
detail, the first-order terms in # (which yield the usual
Boltzmann equation), and the second-order terms are
computed. The latter are already so complicated that it

* Part of this work was performed while the authors were
summer guests at the Bell Telephone Laboratories, Murray Hill,
New Jersey. Assistance by the Office of Naval Research is grate-
fully acknowledged.

1'W. Kohn and J. M. Luttinger, Phys. Rev. 108, 590 (1957). We
shall refer to this paper as I in what follows.

2 That is, diagonal in the representation of plane waves with
periodic boundary conditions.

is probably not feasible to push the method any
further.

It should be mentioned at this point what the basic
technique is. We have found that it is possible to arrange
the solution of the equation for the density matrix in
such a way that it involves first the effects of a single
scatterer, then of pairs, then triplets, etc., just as in a
virial expansion of equilibrium properties. It is then
seen that this is a density expansion. The mathematical
entities which enter the transport equation are just the
“scattering operators”® (on and off the energy shell) for
an electron on a single center, on a pair of fixed centers,
etc. These quantities are assumed known in principle,
though of course in practice it may be very difficult to
find them exactly, or even to find reasonable approxi-
mations to them.

In Sec. II, the general theory of the density expansion
is developed. In Sec. ITI, the “collision” terms (that is
the field-independent terms of the transport equation)
are calculated to the first and second order in the
density. In Sec. IV the “field” terms of the transport
equation (that is those terms proportional to the ex-
ternal electric field) are calculated to the zeroth- and
first-order in the density. In Sec. V the final transport
equation is given to an accuracy which enables us to go
one step beyond the lowest order in density. IFor spheri-
cally symmetric scattering centers, the solution is given.
Finally in Appendices A, B, and C some of the details
not included in the text are treated.

II. GENERAL METHOD

We first recall briefly some of the formulas from I.
Let the total density matrix for an ensemble of electrons
be pr. Further, let the electric field be turned on at a
rate

E. ()= Eles". (1)

3We give only a few of the many references in this field. B. A.
Lippman and J. Schwinger, Phys. Rev. 79, 469 (1950); J. M.
Jauch and F. Rohrlich, Theory of Photons and Electrons (Addison-
Wesley Press, Cambridge, 1955), Chap. 7; K. M. Watson, Phys.
Rev. 103, 489 (1956).
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Then we may write
pr=p+ fe*t, (2)

where p is the equilibrium density matrix and f is of the
first order in the electric field strength. The matrix f
(which we shall often also refer to as the density matrix)
satisfies the equation

(H,f)—isf=C. (3)

Here H is the total Hamiltonian in the absence of the
electric field, and C is the commutator

C=[p,H1], “4)
H]_: —eE,,Oxa. (5)
The Hamiltonian H may be written
H=H+H', (6)
where
Hl): PZ/Zm, (7)
H=3%, o(r—ry), ®)

©(7) being the interaction energy of an electron with an
impurity center located at the origin and the 7; the
locations of the V impurity centers (r and 7; are position
vectors). Finally, for completeness, we shall give the
equilibrium density matrix. Either the Maxwell-Boltz-
mann or the Fermi-Dirac function may be chosen. For
the sake of definiteness we shall think of the Maxwell-
Boltzmann distribution (as in I):

p=KeFH, ©)

K-1=Tr(¢#%), (10)

but everything goes through just as well for an arbitrary
distribution.

Now in I, (3) was solved as follows. It was written in

the plane-wave representation (with periodic boundary
conditions). The normalized eigenfunctions are

¥i=(1/v/Q)e™r, (1)

where Q@ is the volume of the container. The allowed %,
are given by

ko= 2m/L)ns, (12)

where
ne=0, £1, £2, 43, -+, =0,
and
Q=13
Further
Hypr=ewr, (13)
with
ek=k2/2m.

(Units are again chosen so that #=1.)

In this representation it was found that the diagonal
and off-diagonal elements of f behaved very differently.
The k, £ matrix element (25%%’) of (3) enabled us to
express friw(k5%k’) in terms of fx(=fir), and the
diagonal element gave rise to the transport equation for
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f&- The process was actually carried out in I as a series
in rising powers of A, i.e., by perturbation theory. We
shall now indicate another method which is valid for
arbitrarily strong potentials, but which requires an ex-
pansion in the density of impurities.

To do this, let us write f as follows

f=F+g, (14)

where F is the diagonal part of fand g is the off-diagonal
part. That is,

Frw= fibr, (15)
girr= frw (1—0kr). (16)

Substituting in (3) gives
[H,g]—1isg=[F,H |+isF+C, a7

since F commutes with H,. Taking matrix elements of
this equation, we get

(CH,g]—isQ) s =0, (k=)
(CH,g]) re=1sfitCh,
where Cy, is the diagonal element of C and
Qrir=([F,H )i+ Cri. (k=k')

In I, (18) was used to express g in terms of F and then
(19) became the transport equation.

For purposes of obtaining a formal solution of (18)
valid for any strength potential it is convenient to
rewrite (18) again as an operator equation. To do this,
the following definitions prove useful:

(18)
(19)

O=[FH']+-C, (20)
where C’ is the nondiagonal part of C, i.e.,
Criw=Crir(1—08kr). (21)
Then, since F is diagonal,
Qrx=0. (22)

As it stands (18) is satisfied unless k=F%'. We now intro-
duce a matrix G which has the same off-diagonal
elements as g, but also suitable diagonal elements. That
is, we may write

g=G-T, (23)
T" being the diagonal part of G, '
T =Gridrw. (24)
Then (18) gives
([H,G-T]—is(G=T))sw=0Qrw, (kFE).
Or, since I' is diagonal,
([(HG]—isG—[H' T =Qrr, (k=E). (25)

The quantity I' is completely at our disposal, and we
choose it so that (25) is valid even if 2=#’. Thatis, I' is
determined by

([H", G rr—1isT=0,
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or

since the diagonal part of G or H cannot contribute to
the commutator. Since the choice (26) of T' makes (25)
valid for all £ and %/, we may write the operator
equation

A [HG]—isG— (H')IN)=0. (27)
Further, the “transport” Eq. (19) becomes, very simply

Asin I, fyis regular for small s, so we may drop s fr and
obtain for our final transport equation

iSP k= C}c. (29)

This shows that I'; must have, for small s, a 1/s singu-
larity if (29) is to be valid as s approaches zero. The
explicit calculations below will show this to be the case.

The problem has then been reduced to finding the
diagonal matrix element of the solution of the operator
Eq. (27).

Now the advantage of having an operator equation of
the form of (27) is that it allows for a simple formal
solution valid for all interaction strengths. This formal
solution will then be expanded in powers of the density.

We may write (27) as

[H,G]—isG=A, (30)

where

A=Q+[H'T]. (31)

If we regard A as known, Eq. (30) is satisfied by the
following expression

i 0
G=— f RH(E)AR-(E)dE. (32)
TV
In this expression
RE(E)=1/(E—H=1e), (33)
with
e=s/2 (34)

is the well-known resolvent or Greens function operator
for our problem. It is often convenient to define an
operator R(z) where z is a general complex variable by

R(z)=1/(z—H). (35)
Then )
R+(E)=R(E+1ie), R (E)=R(E—ie). (36)
From the Hermiticity of A it follows that
Ri(z)=R(s%), 37)

where the dagger means Hermitian conjugate. Therefore
(38)
Multiplying both sides of (35) by (2—H) on the left or

(R)t=R™.

LUTTINGER AND W. KOHN

on the right, we obtain at once the operator identities

1 1
R(z)=——+—H'R(3),

d (12) d(3) 1 (39)
R(2) =%+R(Z)H %,
where
d(z)=2z—H,. (40)

These identities will prove useful in what follows.

The expression (32) for G is most easily verified in the
representation which makes H diagonal. In this repre-
sentation

HYy= ey (41)
Using (41), (30) yields at once
Guw= AM‘-'/ (eu— €pr— is). (42)

On the other hand, (32) gives

i 1 1
Guur=— f dE Appr.
2rV_o E—e,tie E—ev—ie

Carrying out the indicated integration (by closing the
contour in the lower half of the E plane, for example),
we obtain (42) again, so that (32) is really the solution
of (30).

We note next that (27) is a linear equation for G.
That means that if Q consists of two parts,

0=00+0®,
G=GV+G®, T=TW4I®, (43)

T'® and T'® being the diagonal parts of G® and G®,
respectively. GO and G® satisfy

then

[H,GV]—isGO— (H,T0)=Q0,  (4)
[H,G®]—isG®— (H' T®)=0Q®, (45)
For our case we take
O=[F.H
ov=[PH'], o
oo =",
We shall consider G® first. Equation (32) gives
i 0
Go=— f RYU,HIRdE, @7
2 VJ_
where
U=F-TO, (48)

U is diagonal in the % representation.

We next introduce—exitus acta probat—in place of R
the scattering operator T'. In terms of T, (47) will simplify
considerably. The scattering operator is defined formally
as follows.

T(2)=d(3)R(2)d(z) —d(2),
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or
(49)
R(2)= ! ! ! T(2) !
@) dG)  d)

If H' were a localized scattering potential, the limit
T ki (ext1e), as e—0, would fully determine the scat-
tering.* For the present, however, we shall only need
some formal properties of 7'(z).

From (37), we have at once that
T1(z)=T(z%). (50)

Further, inserting (49) in (39), we obtain the identities

1 1
=H’(1—I—-—T), =(1+T—)H’.
d d

(The variable z or E will often not be written explicitly.)
Finally, it is convenient to introduce 7+(E) defined by

T+(E)=T(E=ie). (52)

(1)

Now inserting (49) in (47) and making use of (51), we
have

i e 1 1 1 1
Go=— | d& { U—T———T+—U
s

1, (59)

where we have also used the fact that U commutes with
d. Taking diagonal matrix elements of (53), we obtain

7 ® dE
rW=— ‘Uk(Tkk—_Tkk+)
o Aitd i
. TiwtTiw Uk
—2iey " T (54)
7 [dk,+ 2

Now T'xit(E) regarded as a function of the complex
variable E is regular in the upper half-plane’ the
singularities of T [from (49)] being the same as those
of R. (Those of R are found most easily in the repre-
sentation (41) where we have an explicit expression for
R.) Similarly Tz (E) is regular in the lower half of the
E plane. Therefore we have

“ Trx* ® Tri
f dE =0= f dE
—  ditdgt o A di
since in one case we can close the contour in the upper
half plane and enclose no singularities while in the other

we can close in the lower half plane. We can now rewrite
(54) as

: (55)

4See B. A. Lippman and J. Schwinger, reference 3.
5 See K. M. Watson, reference 3.
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1 ® 1 1
Fk(l)z—“f dE{ U/c[Tkk_[ - J
2 J_q ditdi~ didx

_ Tkk+{

1 1
ditd ditdt } ]
Tt T
[ t[2di*]? }

| Tkk+
' d,ﬁ]
Tot T U

Tri
v
dk_

f f_l;}fl
l. (56)

The final simplification comes from the identity

¢ ®
= f R*R-dE,
T Y

which is most easily seen by doing the integration in the
representation (41), or by using (32) for the special
A=1. Inserting (49) in (57) and taking the diagonal
element, we have

}. (58)

€ ® dE Tix Tkk+ Tkk'+Tk'Io_
1=- f {1+ "t

Y |dit]? dim At W [dpt[?
The first integral may be performed at once, giving 7/,
so that (58) becomes

€ © dJdE Tri
o= {
T J_y ldk+|2 di

(57)

TrewtT i
ldit]?

Tkk+
| 4

1 T
dit K’

}. (59)

(This result is very closely related to the well-known
optical theorem of ordinary scattering theory, and will be
investigated further in Appendix C.) Multiplying (59)
by U} and subtracting from (56), we obtain our final
result for I';@, i.e.,

e r” Trew™Trr
o= - AE————(Up—Uy),
T ord A2 det]?
or

T O=>" 4 Jix (U —Up)

=2k Jkk’l:(fk/_fk)_‘(Fk’(l)_rk(l))], (60)
where
kk’_—
[df’[ |dut]?

Equation (60) is not an explicit expression for I';®.
In fact, if we replace the summation over %’ by an
integration, (60) becomes an integral equation for I'; V.
However, if we want a density expansion this fact gives
us little trouble. Since we anticipate that in the dilute
limit the usual Boltzmann equation is valid, we may
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conclude [via (29)] that Jjz will have as its lowest
order term something linear in # (this will be verified
below). Therefore Eq. (60) may be made the basis of a
systematic iteration procedure in which first I',® is
ignored on the right-hand side of (60). That is, assume
we have somehow gotten a density expansion for Js,

Tiew=T O+ T @+, (62)

where Jyr® is proportional to n, Jxw® to #?% etc.
Further put
isT W = A, O4 4, @4 - - (63)

where once again 4 ;® is proportional to n, 4;® to 7%
etc.

Substituting (62) and (63) in (60), we obtain on
equating terms of the same order in #:

A0 =3 TV (frr— fr), (64)
<
AP =23 Tk @ (frr— fi)
k/
1
——Tuw @ (AP —4,D) ¢,  (65)

2ie

etc.

All that is required is the expansion (62) of Jgy. It
may be pointed out that (65) seems to imply that 4 ;®
gets singular as s or e—0. This is only apparent however;
we shall see in the detailed calculations given below that
the first term of (65) also has a singularity which just
compensates this.

We come finally to the crucial part of our entire
analysis, the density expansion (62). This is obtained by
means of what we shall call the virial expansion of the
scattering operator 7'. The derivation of this expansion
is given in Appendix A. The result may be stated as
follows

1 1
T=Z Ql+-— Z/ le+— Z/ len+ Tty
1 21 im 3l imn

where I, m, n, - -
centers. The prime on the summation means @/l the

are indices labeling the IV scattering

Jew®=
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indices are unequal. The Q’s are given by

Q=T (67)
le= Tim— (Ql+Qm)=Tlm— Tl—Tm, (68)
len: Tlm'n_ (le+an+in+Ql+Qm+Qn)
=Tlmn_Tl'm—Tmn_' Tnl+Tl+ T’m+ Tn7 (69)
etc.

The Ty, T1m, etc. are the scattering operators if only
the center at 7; is present, if only those at 7;, 7., are
present, etc., respectively. (See Appendix A for the
formal definitions.)

The expression (60) is an identity. We have however
arranged things so that the first term refers to properties
of a single center, the next to those of any fwo centers,
etc. As in the theory of equilibrium properties this type
of arrangement gives rise to a density expansion.

We now must substitute (66) in (61). If we do this
and again collect those terms which refer to a single
center, those which refer to two centers, etc., the result
is—after some algebra—again quite simple. Let us put

Trwt T —Z Xl"l" Z Xim

lmn
Then we find
Xo= T (T)er=| (T (71)
= (T e (Tow ) i — (X1 Xm)
~I(Tz D 2= | (T aw 2= [ (T w2, (72)
len= I (Tlmn Ick’l2
- (le+an+an+Xl+Xm+Xn)1 (73)

and so forth.
As we shall see, the decomposition (70) gives rise in
fact to a density expansion. Anticipating this we may

(66)  write
Z |(T e |?
kk’a)—— 7
! f g Pl ™
2= (T e |2—= | (T e |2
2= (T e |2= [ (T) l]’ 75)

etc. The evaluation of these expressions up to and
including J @ will be carried out in Sec. III, and by
means of them I';® will be obtained to the second
order in 7.

To complete the discussion of the left-hand side of the
transport Eq. (29), we need I';®. From (45), (46), and
(32) we have

i 0
r=— [ BRAC- OO )R D (10
TV _

1€ fw Zlm[l (Tlm+ K’

|det|*|dut]?

The second term in the integrand may be treated by the
identical procedures that led from (47) to (61), so that

€ 0
ist(2)=——f dE(RT*C'R ) 1x
T Y_0o
_Z]kk,(r‘k,m)_pk(z)). (77)
k(
Again, let us put

isT @ =B, 0+B@+ - - -, (78)
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B;® being linear in the density, B;® quadratic, etc.
Then, just as in the discussion following (60), since J 1
starts with terms linear in #, to the lowest order in 7 the
last term of (77) may be ignored. This can be made,
exactly as before, part of a systematic expansion in
powers of n. Therefore it only remains to obtain a
density expansion for the first term on the right-hand
side of (77).
Let us write, using (49),

f AE(RC'R) s

—00

=f°° iE 1 [Z(Tkk'+(c/)kk' IL(C/)k’kT’C’k—)
Idk+l2|_ I dlc'+ dk’_

(€) ke
+Z Tkk’ )kk

K dptd

T e~ ], (79)

since (C') we=0.

We now make once again a ‘“‘virial”’ expansion for the
integrand. This is done by using (66) and noting from
Appendix B [Eq. (B7)] that we may write

1
C’=Zl (C')m"r; Zz:, C)tmt- -

Inserting these in (79) and collecting together terms
which refer to only a single center, those which refer to
two distinct centers, etc., we obtain a series of the form

e % 1
_S f ERCR) = Vb~ T Vit -, (80)
TV _ 1 I m
where
e r* dE
et
o |dit|?
T (CDrr (CHrwL'T)wrn
(e ey
’ dpt ap~
(Tl+)kk’(Cll)k’k”(Tl—)k"k]' (81)
P dptd—

The higher order terms are not difficult to write down,
but they are very unwieldly. For our purposes, the
leading term (81) will be sufficient. As we shall see, the
decomposition (80) gives rise to a density expansion, so
that

ByW=+43,Y

(1>_N__~f

(82)

ltkk'J’(E) |2
|dit]? ]d;ﬁl?
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To summarize the results of this section we may say
that the left-hand side of the “transport equation” (29)
can be expanded in powers of the density

isTp=A 04 A,@4 - -+ B W+ B @4 .. (83)
Ax® and 4;® being obtained from (64) and (65), B;®
from (82).

The A4 terms in (29) are linear in the distribution
function f%, and we shall refer to them as the “collision”
terms. The B terms and the commutator C are linear in
the electric field, and we shall call them the “field”
terms. The transport equation then has the form

Ll =eE"M o1, (84)

where £,F is some linear operator acting on the diagonal
elements of f, and M .y is some function of £. From all
that has gone before, we know that

£k=n(£k<0)+£k(1)_|_...), (85)
MakzMak(0)+Mak(D+Mak(2)+' ) (86)

the superscript indicating to which power of # the term
is proportional. It therefore follows that, if we expand F
in #, its first term is O(1/#) and we may write

F=(1/n)(FO+FO4...). (87)

Substituting (85), (86), and (87) in (84) and equating
equal powers of 7, we obtain

LxOFO=eE M .,
LOFO4 £, OFO = O1f @

(88)

(89)
etc.

Equation (88) is the lowest order transport equation.
It requires a knowledge of the collision terms to the first
order in %, and the field terms to the zeroth order. As we
shall see in Sec. V, this is the ordinary Boltzmann equa-
tion. Equation (89) enables us to calculate the first
correction to F©, It requires knowledge of the collision
terms to 72 and of the field terms to #. The main labor of
this paper lies in the calculation of the relevant quanti-
ties entering into (89).

III. CALCULATION OF THE COLLISION TERMS

To obtain the collision terms to O(#?), we need J jx®
and J;®, as given by (74) and (75), from which 4,®
and 4;® may be calculated from (64) and (65). Be-
cause of the presence of the 1/e in (65), knowledge of
J 1@ is required up to and including terms linear in e.
We begin with J®. By Eq. (C4) of Appendix C

(T7F) o = g7 =Dy H) (90)

where #t is the scattering operator for a single scatterer
located at the origin. Equation (74) then becomes

bt (Bt w (E)

2
[ _
7 Jw (E—eptic)(E—eptie)(E—er—ie)(E—ep—ie)

(V1)
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We can evaluate the integral in (91) most easily by
contour integration. The integrand has, in the complex
E plane, the following singularities (Appendix C):
simple poles at E=e;-1e, erd=7¢, exie; branch cuts
starting at 4-ie and extending to + o parallel to the
real axis. Now since we are integrating along the real
axis, the value of the integrand is not changed if we
move the branch cuts in any way which does not make

. them cross the real axis. This is convenient to do because

the poles of the integrand now no longer lie on the branch
cuts. The situation is given in Fig. 1, where the branch
lines have been rotated to the imaginary axis. By de-
forming the path of integration, we may now write

IR RTES ¥

The integral around the branch cut (ys) is the most
difficult to evaluate. However, the integrand on v4 is
perfectly regular (e, and e are fixed and assumed not
zero) as e—0 so that the result is independent of e.
However, J;® contains an extra factor of € [from
(91)7, so that the error in neglecting 4 is O(e€?). To the
order (in #) which we are considering, we only need
Jew® to O(e), so that it is permissible to drop the 4
integral. Evaluating the i, v, and +v; integrals by
residues we have

(92)

J k@ =2ieN Zb:](/’elb)|2](k'lb)]2

Ltkk’(ék'“L)tk'k(ﬁk'“iS)
T

x(x—1s)
tkkl (ek'+)tk'k(€/€/ _is)
| 93
x(x+1s) }, (%)

where (%|b) is the Fourier transform of the bound state
function ¢ associated with a single center [see Ap-
pendix C, (C20), (C23)7]. Further, *=wsr = ex— €, and

b (ext) = 1iI[I)1tkk'(€k+'i"1)~ (94)
7—0%

The form (93) which arises out of the contour integra-
tion is unsymmetric, and it is convenient for later
purposes to transform it somewhat.

Writing

tkk'(€k+)ik1k(€k—is)

= lim {pp (extietin—1i€)ti x(ex—1ie—1€)
70"

=t (en)tr i (€x)

|t t(E)|?
— te[———] +0(&), (95)
aE E=¢p

M. LUTTINGER AND W. KOHN

Eq. (93) becomes

Jkk,<1>=2iezv‘>:_|<kib)i2\<k'tb)|2

Nt (e [* Itkk'+(6k')[2}

x(x—1s) x(x415)
—1 [[altkk'+(E) 12/3E]E=ek
x(x—1s)
[0 trwt(E)|2/0E]E=cs
+ ]. (96)
x(x41s)
Writing
! = ¥ 17 s
x—is 2+ ts?
Eq. (96) becomes
]kk,(1)=iN{s ;[ (k!b) lzl (k'lb) 12
e e ) 9
1 [Itkk’+(fk)‘2"’ [tent(err)|?
15
x2+s2L x
‘[6 I tkkl+(E) 12/6E]ek+[a [ tkk'+(E> 12/6E]skl] ]
2 .
97)
E-PLANE
Eprie &+le £ +iE
@ NS &
Ya
Aly

F1c. 1. Contours for the evaluation of (91). The heavy dots
represent poles and the heavy lines branch cuts.
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In (97) we have again dropped a term of the order of s2.
In the limit of s—0, we have

s/ (x?4-s*) =md(x). (98)

We can take this limit for the last two terms of (97)
since they are already of the order of s. Doing this, and
noticing that

|trrt(er) |2— [ trat (er) |2

€kr—ek x

) o

we see that the entire square bracket in (97) cancels,
leaving us with

)
Tew®W=iN{is | (&[0)|*| (F'[B)[*+——
b

x?
X (|trwt(er) |24 | tuet(err) |2t =iNorrr.  (100)

Since ¢ is proportional to 1/@ and (%) to 1/4/Q, the
dependence of J;x® on the size of the system goes as
n/Q. If the summation in (64) is replaced by an integra-
tion we have another factor of Q/(27)3, so that J;®
gives rise to an integral operator which is proportional
to n. This checks the assumption made in discussing

1€
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(84). The leading term of J;;® is obtained by letting
s—0 and is, by (98),

Jkk/(l) =1:N21r5(wkk') I tkk'+(€k) ]2+0(S>

where wyy is just the exact transition probability per
unit time for the scattering of an electron in state &’ to
the state & by a single scattering center.*

Incidently it should be mentioned that this result can
be obtained much more simply by noting that

e 1
Hm(m )=ME—%)
O\ 7 |d+]?

Inserting this in the integral (91) gives (101) at once.
The more elaborate derivation given is necessary to
obtain the O(s) terms.

From (101) and (64), we have

A O=iNY wip (frr— fr)-
kl

(102)

(103)

In order to calculate 4 ;@ we need J x-®. By (65) we
need it only up to the zeroth order in e. (There will be
terms in 1/e which of course we must retain.) Jzx@ is
given by (75). Unlike (74), (75) depends on the positions
of the scatterers. However, just as in I, it can be shown
that for a sufficiently large volume (75) may be replaced
by its ensemble average, i.e., its average over all possible
positions of the scatterers. Thus, we may put

E’[(I (T ki D= (T e | D= [T 1 [2]

Jup®=—
T Vo

dE

where the symbol ( ) indicates the ensemble average.
[See I, Eq. (37).]

The detailed justification of (104) is quite straight-
forward. Making use of the results of Appendix C [[(C4)
and the multiple scattering expansion (C12)], we see
that each term of (104) gives rise to a term in (75) of
exactly the same form as the terms of I, Appendix B,
Eq. (B1), for which we have already justified the use of
the ensemble average.

Since the ensemble average for any pair Im is the
same, we may write

ie2 ©
]kk/(z)zN(NT‘l)— f dE

T Y

X(l (Tt ere |D—= (T ki D= (T 1 |2
|dit|?]dt|?

It is difficult to go much further without some
knowledge of the two-center scattering operator T 1,,7(E).
The reason for this is that in order to do the integral
(105) we need to know the nature of the functional
dependence of the integrand on E, after the ensemble
averaging. This is best obtained by again making use of

. (105)

, (104)
|det|*dwt]?

the multiple scattering expansion® (C12), which gives

[(Tomt)pre 12— [ (T i 2= [ (T e |2

(T ew (T i) ey (To ) krk
ari~

= [(Tz+)kk'(Tm_) k’k+§

—.L(Tl+ ek (T ) k1 (T kerke
dry™
N (T D) erer (T 1w (Ti7) ks
f
drrt
' (T ) ekt (T o) b1’ (Tos™) e 1 }
}
dryt
(T k1 (T ™) k18! (T ) 6702 (T ) o2k
dreitdrs

+(le)]+kar. (106)

+ =

k1, k2

6 In the neighborhood of a bound state (where ¢ has a simple
pole) the multiple scattering series will certainly be invalid since
higher and higher powers of ¢ enter. However, just as in the dis-
cussion of Jz/®, we see that the bound states of T, and ¢ only
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Here we have written the first few terms down explicitly,
and have indicated the remainder by Ly . The meaning
of this decomposition is the following: the terms Ly
have an ensemble average which is a smooth function of
E, and which tend to a well-defined limit as e—0.7

We would like to emphasize the fact that the calcula-
tion of the ensemble average of Ly requires only a
knowledge of the usual scattering operators, that is,
T im, T1, T in the limit of infinite volume. To see this,
we imagine Ly expressed in terms of the (finite volume)
scattering operators by (106). It may then be verified
from the explicit expansion of 7', that in this expression
one may pass to the limit of infinite volume without
affecting the ensemble average of Lyw. Substituting
(106) in (105), we obtain

T @ =N (Lo O 4T oo+ T i O

L @+ T @+ 10 ®), (107)
where
I f <LW(E)> (108)
! |det |2 dut |2
Io.,m f e P (109)
kk’ =
ldk+| 1dk'+[2dk
I0® f Nttt (110)
e M
‘ et Pldutdi
[t [ 2] tgrri |2
<3>——— f (111)
"" it |2 dut |2 dit |

Since {(Liw(E)) is a smooth function of E, the

technique described in connection with (102) enables us.

to evaluate it at once. We have
I @ = (218 (o) (L (€x))) 5 (112)

This gives rise to a term in 4;® which is just of the form
of 4;® with N being replaced by N?/2 (the number of
pairs) and Zwa(wkkr) Itkk'+(€k) ‘2 by ZWé(wkk/)(kar(Ek».
For this reason we shall refer to the contribution from
(112) as the “true” two particle scattering contribution.

Tt is easy to see from the explicit expression for (Lyx)
that it is proportional to 1/Q%. It therefore gives a
contribution to £; which is proportional to #2. Similarly,
it is seen at once that the other terms in (107) also give
a contribution which is proportional to 2.

The integrals (109) and (110) cannot be evaluated so
simply because of the extra factor of 1/d;~, which be-
comes very large at E= ¢ They are best evaluated by

give rise to a term proportional to €. Since we only need Jx® to
the zeroth power of ¢, the bound states contribute nothing to our
result. In the evaluation of the integrals we may therefore use the
multiple scattering expansion, but treat ¢ as if there were no bound
states.

7 The other terms correspond to the part of the scattering from
two centers which does not drop off sufficiently rapidly with the
distance between centers for the ensemble average to exist in the
limit e—0.
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using the same contour integration techniques as were
used in evaluating Jw@®. For I this gives at once

o [a(ek) 'Lm(Ek')]-!—O(s), (113)
alx—is  (x+is)?
where
a(E) =t (ENtwr(E—is)t(E—is).  (114)
Writing (113) as
I (1)_1:[ 1 + is ]
e el ais (w+is)? ale)
s [a(ek')—a(ek)
15
(x—{—is)Zl. x ] (113)

to the order in s we need, the last term of (115) vanishes.
This may be seen as follows:

1 s 2s3 245
s = - . (116)
(x+1s)> 22+s (2+s52)?  (2+s2)?
However,
lim =7d(x), (117)
§—0 x2+52
lim———T5(2) (118)
im =—6(x),
0 (x2452)2 2
2xs
lim = —76'(x), (119)

s—0 (x2+32)2

and [a(er) —a(er)]/x remains finite as x—0, so that

lim[s ]——>1r5 (x)—7d(x)=0. (120)
0| (wt-is)?
Therefore
7 1 s
R0 = (=t Jate)
x\x—is (x+is)?
.(x2+3s2+2isx)
=i —————— )a(esx
(x2+s2)2
224352
=7ra(6k)6’(x)+ia(ek)(x2+52)2, (121)

using (119). From (117) and (118) we see that for small
s the last term of (121) behaves like 1/s.

Using now the same type of symmetrization as that of
(95), and a little algebra, we obtain

O[S (E—ew) [ tr ™ (E) i (E)]
oE E=cp
a2 43s
(902 s%)?

Trn® =1r[

[tkkf"'(ek)iZtkk—(ek), (122)
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and
O[8(E—ex) | trw™ (E) |%p v (E)]
[kk,(2)=,,-[ }
oE E=epr
x2-4-3s?
+7 |tkkl+(ek')|2tk/k'—(€kl). (123)

(2% +5%)?

Finally, we may treat I ® in a similar fashion. The
contour integration gives at once

& L xz(x—1s) (z-+15)
B(ew) B(exr)
T ; - T ) (124)
yx(y—is) (x+is)  zy(z—is) (y+is)
where
X=€r— €xry V=€ — €y (125)
z=epr—er, x+y+2=0,
and

B(E)Etkk” (E+)tknk(E—’L.S)tk"k’ (E+)tklk/l(E—'iS). (126)
Writing

Tiw®=s e)—
%2'{6( )[xz(x—is) (z+1s)

1 1
Tyac(y—is) (x+1s) I 2y(z—1s) (y+is)]
DB(er)—B(en] | Blew)—Bler) |
l yx(y—1s) (x+1s) I zy(z—1s) (y+1s) ’

x2+y2+z2+652
S
1 (a5 (s ()

Liw®=

1
wwﬁmﬂmwwuawnﬁ@w()
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and making repeated use of the type of analysis which
follows (115), we obtain

924224652
Iip®=31s
e
B(er) —B(ex)
(x+1s)? .

B(ex)

2m5(y) (128)

When we use (117), (118), and (119), this becomes

7 m—Zl IS e
YT e @)
B (E
+%mm@$ﬂ3]
OF l1E=e;
178 (er) —B(ex)
_zra@op(;)——~—;;———\, (129)

where P(1/x) is the Cauchy principle value of 1/x.
Using again the same sort of symmetrization as in
(95), and noting that

a+92+ 22652 dn’
s =—-3(y)8(x)+0(1), (130)
@+ P+ (@ +s) s
(127)
we find at once
2
[tirrt(en) |2 bt (en) | 2— | tenrt (enr) |2 G it (enr) |2 (131)

We now must put all these expressions together to
compute 4;®. From (64) and (65)

A =3 Kiw (for—fr), (132)
kl
where .
K =T ep@4+— 2 AT ki O T 1o
7:3 P
F T e O e D =T e O T oy 0}, (133)

From (100) and (107) this may be written as

Kkk:=iN2‘I VCE Y LR fVh
F Ly @A L e @* L@

1
+— Z(a'kkla'kku—l—g'kk:a‘kzku—akkno‘k// k/) . (134)
s kll

X

We next have to show that the apparent 1/s singu-
larity in K cancels out, and then calculate the limit of
the remainder as s—0. We shall first rewrite Jpe®
+ I ®*, Put

179 (E) = Ak(E) +iry (E) ,

Then X
— € , 2
Ikk’(l)“l"lkk'(l)*:Zr[a(a(E er)Au(E) It"k (E)l )}
aE E=c¢)
x?4-3s?
_2(x2+s2)2|tkk:+(ek)|2rk(ek). (135)
Noticing that
2?4352 2 A2— g2 2 1
= - = +P’(~), (136)
(@+sD)? a’+st (45D 2Pts x
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where
1 xz_Sz
x §s—0 (x2+s2)2

9
= lim—[Real part
20 9x

1
, (137
(x-[—is)] (127)
we may write

x243s?
(a2+-52)2

[tk (ex) |2

1
(xH—ﬁ)VMﬁL(ek)l P (;)ltkkl+(6k)|

1
=;2:;;[| Lot (en) |2 | Lerrt (enr) | 2]

1
F——L et (ex) |2— [terT(er) ]
12+ s?

1
+P'(—) [tk (er) |2

x

=%—Zb:|(k|b)]2l # )2

+P(1) [tret () = | drat (en) |2

X x

+P’(1) |t (e |2 (138)

X

In deriving (138) we have made use of (100). From
the optical theorem (C33), we have

dAL(E)
dE

2rk(€k)=z akku—l-s[ ] N (C33)
1144 E=¢}

so that we may write
x%4-3s?
(22522

2

[ £kt (ex) | 2raler)

1
=—3 orworr+ 2w (x) Itkk'+(€k) |2
5w

], sl

1\ [ lkh'+(€k) |2— I tkk'+(5k’) |2
+2(;) :

—);I(klb)l“’l(k’lb)P]- (139)
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Substituting (139) in (135), we have

1
DO +I O = —= 3" oppopr+2rAg(er)
s B

[6[6(E—ekf) ikk'+(E)[2]]
X
oL E=¢k

il Qurarso()

[tent (ex) |2— | tawt (enr) |2

X

—;l(klb)l"’l(k'lb)lz]- (140)

Similarly

1
Ikk'(2)+Ikk’(2)= _- Z akk:akrku-l-27rAk:(ekr)
N

k!t

y [6[6 (E— fk)alEtkk'+(E) I2JJE=W

—Zrk’(ek’)[‘P,(i> | tert(enr) IZ—P(-:;)

[tiart(er) |2— [trrt(er) |2

X

—gi(klb)l”l(k’lb)lz]. (141)

If all these results are substituted in (134) we find
indeed that the 1/s terms drop out and—after very
considerable algebra—we are left with the following
result:

Kkk’ =iN2{Ikk’(0)+ @kk’(1)+ @kk’(z)_l_ @kk’(3)}7 (142)
where
1
QprV=1
w | (x—1s) (y+is) (z+1s)
1

- (x+1s) (y—1s) (3—1s)

X trwt(er) |2 terwt(en)|?, (143)
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@Ick’(2)=2{ [tert(er) |2
1
X[TAk(Ek)al(x)_rk(fk)Pl(— ) ]+ [tret(ex)]?
X

x[—wmek')a'(x)—mek/)P'(f)]}, (144)

X
Ak(ek)—irk(ek)

€ €pr—1S
( s)°

:3{ it () |2[_ ]+[tkk'+(€k) |2

[ Ak:(ek:)—irkr(ek/)
X —
(ekr— ek—is)2

G ® == (wouwr [ (#'[8) = | &[8)|2]] (#'|3)

]—c.c. }, (145)

+wiew[ | (k" [0)|2— | (% |6)|2]] (k] 5) |2}. (146)

The first three terms in (142) also appeared in I,
where they were computed to the fourth order in \. The
last term, which refers to bound states, did not appear
at all in the perturbation theoretic calculations of I.

Again, as in I, Qr® may be roughly interpreted via
(145) as being due to a shift in the unperturbed energy
of a state k by an amount NA.(ex) and a natural lifetime
for this state of Y_x wips.

IV. CALCULATION OF THE FIELD TERMS
The field terms eE,°M 1, of (84) may be written
eEa"M,,,k=Ck— (Bk(1)+Bk(2)+' . ) (147)

from (29) and (83). We only want (147) to the first
order in #, so that all we need is

eanMak(O) = Ck(o),
eEM oV =C;,® —B,W,

(148)
(149)

The commutator C is investigated in detail in Ap-
pendix B. From (B30) we have

Cr®=ieE 200" (ex) /Oy (B30)

so that

M o ® =730 (er) /O . (150)

The expression for C® is given by (B31). Before we
make use of this, however, it is necessary to evaluate
B;®. By means of (81), (82), (B35), and (C4), we have
at once

e ™ dE Lei T Pek®  Pr e ™
B;W=— NieE - f { [ + ]
T _mldk+|2 g dk,+ di—
ISy SOV
——————}, (151)
KK dk’+dk”—

1903
where
3(k|b) a(b| &)
Pre= T #le)| — 1)+ 411 ]
b E)k,, aka,
a 91
|t |pue, s
ok, Ok,
_ 1 © tkk'_(E) tkkr+(E)
2 Vg didr~ ditdpt

The integral in (151) may be evaluated by contour
integrationasinall previous cases. After some simplifica-
tions this yields

tewt () Prr®  Prwe®tiri(er)
B; W= —NieE,? Z +
™

x+1s x—1is
bt (e) Pror k%t i (er)
KR (x+1s) (z+1s)

FEIGIOP T 6l0Pawep)]. (159

Therefore, by (B31), we have

90" (ex)

da

d| (k|b)|2 0Dy
4+ 0°(e) +
[} ok, 0kq

bt (en) Py Prwti i (ex)
+X ' }
kl

Mak“):iN{é

1

x+is x—1s
bt (ex) Prr k%t i (ex)
B R (x+1s) (z+1s)

FEIEDI 3 GRPet1D)|. (155

Putting (152) in (155) we find—after some work—that
the p%(e») terms cancel out completely. This is to be
expected since if only the single-center bound states
were occupied there could be no conductivity. We then
have

9p°(ex) Dy
Ok ke

M o™ =iN{6

20" (ew)
ks
ikkf+(€k)Pk’ka Pkk'atk'k-(ek)
Y |
x+1s

—L 2| (k[0) 7] (0] #)

g x—1s
_ s towt () Pt i (er) }’ (156)
Bk (x+1s) (z+1s)
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wheré
~ g 9.
Pkk’a= l—+"_"‘j|Dkk’
Ok, Ok

This expression is easily seen to be proportional to the
density 7.

It does not seem possible to go appreciably further
with (156), without a more detailed knowledge of the
single-center scattering operator .

V. THE TRANSPORT EQUATION

We now collect the results of the previous sections in
order to obtain the transport equation in the lowest
order in the density, and the first correction to it. From
(85) and (87) the lowest order equation is

1
AV =eE M . (157)
n

Making use of (103) and (150), (157) becomes

fo°(es) (158)

S Qwi (@ — F®)=eE,?
kl

a

This is just the usual Boltzmann equation in our
notation, and we have therefore proved that in the limit
of low density it is valid.

The next order is given by (86). Making use of (132),
this becomes

1
i Qwin (fw®— [x®)+= T Kue(fo@— 1)
k' n K

=eE Mo W, (159)
If we think of f,©@ as given [obtained by solving (158)]
then the second term on the left-hand side of (159) may
be regarded as an inhomogeneity. Therefore (159) as an
equation for f;® is exactly of the same form as (158) for
%@, with a somewhat different inhomogeneity.

In general these equations are integral equations, and
nothing can be done until more is known about the
kernel wyr. If, however, the scattering centers have
spherically symmetric potentials, then, as is well known
for (158), the equations may be solved at once. This is
because in this case wz- is invariant under simultaneous
rotations of £ and &’ and M .1, being a vector, must be
of the form kqu(|2]). Therefore f5©® must have the form

F1O=eEaa®(|E]). (160)

The fact that wi, contains a §(wzi) then enables one to
take a(|%]|) outside the summation and solve for it at
once, giving

2 (e 1
2O () =t

e . (161)
Q  Oex ZI:'LUkk'[(k'kl)"‘kZ:I
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The identical process may be carried out for f;® since

it involves the same kernel wy . Therefore for the case

of spherically symmetric scattering centers the solution

of the transport equation can be obtained explicitly.
Writing

Fe®P=eE k.a® (| k]), (162)
we obtain at once
a®(|&])
b = (k- K0 )~ Fa[#])]
_ e . (163)

7Q Z wkk:(k-k'—kz)
ki

Here M oY and Ky are defined in (156) and (142),
respectively.
The order of magnitude of the #? correction, for a

simple case, has been mentioned at the end of Sec. ITI
of I.

APPENDIX A. EXPANSION OF SCATTERING
OPERATOR

The scattering operator T' satisfies the operator
equation

1 1
T=H’(1+(—iT)= (; m)+(§ <m);T. (A1)

Now define a sequence of operators Ty, Ty, - -+ which
satisfy
: 1
T,= (pz(l-l-;Tz), (A2)
1
Tin=(ort ¢m)(1+t—irlm), (A3)

1
Tlm'n= (¢l+ <Pm+ ‘Pn) (1+ngmn), etC., (A4)

where I m>£n, etc. T'; is the scattering operator if only
one scatterer were present and located at 7;, Ty, is the
scattering operator if scatterers were present only at 7,
and 7, etc.

Now we shall try to solve (A1) in terms of the
operators defined by (A2), (A3), and (A4). To do this
let us write for T the following expression :

1 1
T=Z Ql+""‘ Z, le+'— Z, len+ Tty (AS)
l 2! m 3! tmn

where Q,; depends only on the position of the I/th scat-
terer, Q1 on the ! and m scatterers, etc. The prime on
the summation means that #one of the indices are to be
taken equal (in the second term I=mm, in the third
I=m=mn, etc). Further, Qim. is assumed completely
symmetric in all the indices since any nonsymmetric
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part would vanish under the summation. If we substi-
tute (AS) into (A1), we get equations for the Q’s. That
is,

Z Ql+ Z, le'l—_ Z len+

!l imn

— 1 1 !
—Zl ¢z+(Zp: %);(Zl Ql'f‘a‘l/_; sz+"')- (A6)

Equating terms in (A6) which refer to one center, then
those which refer to two distinct centers, etc., we obtain

(0 ¢z—¢%oz)=o, (A7)

It 1 171 1
ooz (sgomtomn) -0 00

etc.
Comparing (A7) and (A2), we see that (A7) is
identically satisfied if we choose

Q=T (A9)

In (A8), if we symmetrize the second term we see that
(A8) is satisfied when

1 1 1
Qim= ¢m(}Ql+ qongm-i' (o1t ¢m}:iQ m-  (A10)

Comparing (A10) with (A3) and (A2), we see at once
that

le=Tlm_ (Ql_{_Qm):Tlm-Tl_—Tm‘ (All)
Similarly '
Ql'mn Tlmn (Q lm+an+in+Ql+Qm+Qn)
- Tlmn Tlm mn nl+ Tl+Tm+T (A].Z)

It is very easy to continue this process and establish
expressions analogous to (A12) for arbitrarily many
centers, but for our purposes the two terms (9) and (11)
will suffice.

APPENDIX B. EXPANSION OF THE COMMUTATOR

We obtain in this appendix an expression for the

quantity
C=—cE[p,%a] (B1)

analogous to the ‘“virial” expansion used for the other
quantities of interest. From Eq.-(9) we see that we must
expand ¢ #H. This is done most conveniently through
the identity

e Bz

1
e PH= dz =— | dzR(2)e 7,
Y

2w

(B2)
z—H 2

where v is the contour shown in Fig. 2, and ¢, is the
smallest eigenvalue of H.

1905
Z-PLANE
v
/ + ©
Y U
N—o__
+ <
Fi6. 2. Contour v for Eq. (B2).
Upon using (49), (B2) becomes
1
BH=—-..f ‘_.-_ 4 ()__] —Bz
2 d(z) d(z) d(3)
oo f 1T()1 = (B3)
=g 04— 7T (3)——e 7, B3
i d(z) d(z)

on evaluating the contour integral for the first term.
Making use of (66), we now have

1
P=P0=Z Pl+; 2' le+"'; (B4)
l I im
where
pozKe_ﬂHoy (BS)
K 11
pr=-— dZ‘Tl—'e_ﬁz,
27t Yy d d
Pim="" (Bé)

dZ—(Tlm—Tl— m) € ﬂz
2t d

etc. The expansion (B4) is not quite a density expansion
since the quantity K itself as determined by (10)
should also be expanded in powers of the density.
Substituting (B4) in (B1) we obtain

1
C=CotX cl+52'cm+~ - (B7)
l I Im
where
C0= eEaOI:p();xa:l) (B8)
Ci= ean[p z,'xa], (BQ)

etc. Therefore C has also been developed in a virial-like
expansion.
In the k representation, C is given by

Ckk' = iBan

(B10)

Pkk’s

Ok, Ok,

[see I, Eq. (A19)].
Important for the discussion of I'y® is the fact that
since po is diagonal in the k-representation so is Cy, and
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therefore
: 1
=2 Cz’+; 2 Con . (B11)
l 1 im
The diagonal elements of C are given by
. 3Pkk
Cr=1eE," = (B12)

[see I, Eq. (A22)].

We shall push the evaluation of these formulas one
step beyond the lowest order, since this is all we need
for the purposes of this paper. Let us write to this order

K=K,1+Ns), (B13)
where K, is determined by
Kqtl=tr(eFH) =3} e F, (B14)
Further, let us define
po(Ho) = K e BHo, (BIS)
Then
po=(1+N0)p’,
and
porer= (14 N8)p° (ex)dxn'- (B16)
Therefore, to the order in question,
prrr=(14N8)p"(ex)drs
1 2 (T ww
I f dz 0°(z). (B17)
2w Y, didr
The constant & is determined by
> pre=1. (B18)

Now we have (see Appendix C for properties of the

scattering matrix)
(Tl) = e—i(k—kl) '”tkk’,

(B19)

where ¢ is the scattering operator for a single center
located at the origin. Therefore (B17) may be written

prir= (14 N8)p®(ex)0rr+SkrDrrr, (B20)
with
Spw=Y e itk x (B21)
179%
Dyp=—rm | dz 0°(2). (B22)
Tl vV y K K
The quantity 6 is given by (B18) as

0=—>_1 Dir. (B23)

Since ¢ is proportional to 1/Q, Dis is proportional
to 1/Q2 and therefore § is proportional to 1/Q, giving a
correction proportional to the density of impurities, as
anticipated.

From Appendix C we know that tx(2) is a regular
function of 2 except for isolated simple poles on the
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negative real axis (corresponding to possible bound
states), and a branch cut along the positive real axis.
Call ¢+ the value of ¢ at a distance e above the positive
real axis, and ¢ its value at e below. Further let the
residue of ¢ at a bound state e,(<0) be 7(®. Then,
deforming v so that it encircles the poles at €, and is
within e (e—0 eventually) of the real axis above and
below, we obtain

\ fkk'(b) 1
Diw=2_ p"(ex) '
b

T
(eb— ek) (eb—ek') 21ri

© 1790 (E) lkkl+(E)
X f dEp°(E)
0 dydy~  ditdpt

). (B24)

The first term can be simplified by noting that

v = (er—ex) (eo—ew) (k] 0) (B]F),  (B25)

where

(k15)= f evadr= (0| B, (B26)

¥, being the normalized bound state wave function.
Therefore

Dkk'=Xb: p*(ex) (] (8] )

1 @ 179 (E) lkkr+(E)
+— [ ampm) - ]
2wt Yo didy~ ditdpt

=34 p%(es) (%|5) (B| ¥)+D .

Not much more can be done with the integral Dy
without further knowledge of the scattering operator ¢.
For the diagonal elements of pxi/, we have

prr=(1+N8)p"(ex)+NDyy
=p"(ex) +Nop®(ex) + NDpx. (B28)

The second and third terms are proportional to #, the
first is independent of #. Therefore

(B27)

Cr=1eE0pr/0ke=C1O4C @, (B29)
Cr@=1eE 200 (€r)/0ka, (B30)
9p"(ex)
Ck(l) = Nieanﬁ
Ok,
+3 0 )(9] (k[b) ]2+3Dkk] (B31)
p(ep)—— .
70 ke Ok
The off-diagonal elements are given by
‘ prr =St Dirr,  (RFEE) (B32)
so that
d 9
Crr=1eESkr (——|— )DW, (B#K) (B33)
Ok, Ok,
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since Skx is a function of £—£’ alone. Using (B27), we
have finally

Criw=ieE 31 e i F=FInP e (B34)
where
d(k|b) (| k)
Pupe=Y po(eb)[_—(b|k’)+(klb) ]
b Gka aka

9 0\ _
+ (—+_—)Dkk’- (B35)
Ok, Ok

APPENDIX C. PROPERTIES OF THE
SCATTERING OPERATORS

We begin by discussing the scattering operator 7', for
a single scatterer located at 7;. From Appendix A, Eq.
(A2) we have

1
le (,ol(l—f——Tz). (Cl)
d
Taking matrix elements, and remembering that
(@) ki e kI, (C2)

(where ¢ is the matrix element of the potential for a
scatterer at the origin), we have

(T)) =€ "1 4

1
+2° Qrrr——e  ETEDTUT ) .

(C3)
K’ dk"
This is satisfied by the ansatz
(T) k=€ *F i, (C4)

where ¢ is independent of 7;. Substituting (C4) in (C3),

we obtain
1
l=¢ ( 14— ) ,
d

so that ¢ is just the scattering operator for a scatterer
located at the origin.

Similarly, starting with the scattering operator T';,
for scatterers at 7; and 7,,, we can easily show (by just
writing out the Eq. (A3) for T,) that

(Tim) k=T pr (r) e~ 1 CF—EITL

(Cs)

(Co)

where r=r,—7,;, the distance between the two scat-
terers. Trx () is just the scattering operator for a
particle being scattered by two centers; one at the
origin and one at 7.

The quantity T, may be expressed in terms of T,
and T, as follows.? Define operators M; and M, as the

8 See, for example, K. M. Watson, Phys. Rev. 89, 575 (1952).
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solutions of the coupled equations

1
1
M= 14T (C8)
Then
Tin=TM+TnM,. (C9)

Equation (C9) is verified by simply substituting (C9) in
(A3) and making use of (C7), (C8) and (C1).

These relationships may be used to obtain the so-
called multiple-scattering expression for T';,,. Assuming
that T; and T, are in some sense small, we can solve
(CT) and (C8) by iteration, obtaining

1 11 1 11
My=14-Tp AT T1+-Ty-T Tyt -+, (C10)
d d d d d d

1 11 11 1
M=14+-T+-T+Tp4+-T+TwTi+---. (Cl11)
d d d d d d
Substituting in (C9) gives

. 1 1
Tlm= Tl+ Tm+ Tlng_i_ Tm;Tl

1 1 11
+T+-TT+TwTr-Tp+---. (C12)
d d d d
We shall also need some analytical properties of the

scattering operators. Making use of (49) for the case of a
single scattering center, we have

1
t=d——d—d,
z—h

(C13)

where

h=Ho+ o, (C14)

the Hamiltonian of a particle in the presence of a single
scatterer at the origin. Call the eigenfunctions and
eigenvalues of %, ¥,, €, respectively; i.e.,

hlpv:evipv: (H0+ <P)\bv- (ClS)
In this representation (C13) becomes
dyyrdyry
tw’= ——— Qyy’. (C16)
v’ g— €yrr

Transforming this back to the k-representation, we
obtain

I

—drr, (C17)

lpr =

v g€y
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where
duv= [Wikitdr, dunie= [[urdppar. (19

Since ¥ is an eigenfunction of d, we may write
A= (k[v")d,
dyrw= " |F)dy,

where (k|v"’) are the usual transformation coefficients

(C19)

(k| ") = f Vi, (C20)

Therefore

ElVNG" B
oy 3 CED

v’ Z— €yrr

—ddrw.  (C21)

Now in general the spectrum of % will consist of two
parts: a set of bound states e,(<0), and a quasi-
continuous spectrum (continuous in the limit of an
infinite volume) ¢,(>0). Thus we may write (C21) as

E|b)(b|F
tkk,:,ik.d,c,[z GRIGLY
4 Z—€p
klo)(a|k
+> M}—dkakk’. C(22)
v Z— €4

Therefore ¢,z has simple poles at z= ep. The residues at
these poles are

7w =[didw (k]5) (0| ') Je=cv
= (e—ex) (s—ew) (k] D) (B| K).  (C23)

The contribution to ¢zx from the “continuum” e, has a
more complicated analytical behavior. If, however, we
assume that the transformation coefficients (k|s) are
smooth functions of the energy (they will depend in
general on other parameters as well) then in the limit of
infinite volume the sum over ¢ may be replaced by an
integral. It is clear that as long as 2 is not on the positive
real axis the denominator never can vanish, so that this
contribution to Zxx is perfectly regular. Right on the
positive real axis (C22) has no meaning. Immediately
above the positive real axis we have z=E-in(y—0%).
Then

1

1 1
= —>P( )—-i'er(E-— ), (C24)
E—e+in E—e,

so that (C22) takes on a definite value there. Immedi-
ately below, 2=E—1in and

1 1

1
= P )+' §(E—e,). (C25
P (E—e., ind(E—-c,). (C25)

Z2—€g

Z2— €q

Therefore ¢ (%) changes its value abruptly as we cross
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the positive real axis but is analytic everywhere else in
the finite z plane (except at the simple poles €;). In the
limit of infinite volume ¢z (2) has a branch line along the
positive real axis.

We also need the behavior of ¢ for very large |z|. This
is found by iterating (CS5):

1 11
I=ote-ote-o-ot- -,
d d d

(C206)
(pkk!lgokllkl
bek = Qrwrt2, ———

B g—epr

For fixed % and %' and localized scattering centers
orrr o will decrease rapidly as || increases and
the summation will converge long before e is com-
parable with |z|. Therefore for large |z| we have

Z ¢kkl!¢kllkl
kll
tow (8)= @t
b4
(&) krr
= Qi (€c27)
2z

That is, for large |2| and fixed &, %, ¢ (2) is simply a
constant.

The analyticity arguments given here are admittedly
heuristic. For the case of a one-dimensional §-function
potential, we have explicitly verified the above men-
tioned analytical properties of #. A more complete
treatment is beyond the scope of this paper, however.
The interested reader is referred to our colleague R.
Jost.

We conclude this appendix with the generalization of
the usual Optical Theorem which we shall need. If we
apply (59) to the case of a single scatterer located at the
origin, we obtain

2¢ r* dE (tpxt ter 5%k
== [ by (C28)
™ Jo AP dt dim w |dit]?
=i|:tkk(ek—is)—tkk(ek—}—is)]—l-z O Lk’ (ng)
k’

on evaluating the first two integrals and using (91).
As s approaches zero, this becomes, on using (101),

0=i[tkk(ek_)—tkk(ek+)]+z Whi's (C30)
k/
We may write (C30) as
2 Im[tkk(ek_)]=z Wkr'y (C31)
kl

which is the usual Optical Theorem.
We need the correction to this of order s, which is
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t(trr (er) —text(er)

O trxt (E)+ini (E
+€[ Ltwit (E) i ( )]] 4 eae=0. (C32)
aE E=¢f 124
From (134) this may be written
0AL(E)
Zrk(ek)=z O‘kk'—f-é‘l:*——*——] (C33)
k’ 0E e=¢€f

If we had started the derivation with the identity

¢ )
1= f R-R*dE, (C34)
T Y _n
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then one could easily see that
0AL(E)
2ri(en)=2 akrk+s[——] (C35)
K’ E €k
replaces (C33). Therefore we have
ROk =2k Ok, (C36)
which becomes for s—0
2 Wrk =D Wik, (C37)
P &
a Well-knOWn identity.
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Semiconducting Properties of Mg,Si Single Crystals*}

R. G. Morris,i R. D. RepiN,§ AND G. C. DANIELSON
Institute for Atomic Research and Department of Physics, Iowa State College, Ames, Iowa
(Received November 4, 1957)

High-purity #-type single crystals of the semiconducting compound Mg,Si were prepared from melts of
stoichiometric proportions of the constituents in graphite crucibles; p-type crystals were obtained when
the melt was doped with silver or copper. Carrier concentrations in the saturation region were as low as
8X10¢ cm™ for n-type and 4X 10" cm™3 for p-type samples. Electrical resistivity p and Hall coefficient R
were measured from 77°K to 1000°K. Hall mobility R/p showed a temperature dependence in the intrinsic
range of approximately T for all samples. At 300°K, R/p was as high as 406 cm?/volt-sec for n-type and
56 cm?/volt-sec for p-type material. The ratio of electron mobility to hole mobility was approximately
five. The energy gap, determined from the least-square slopes at high temperature of the curves
log (RT?) vs 1/T, was 0.78 ev. The electron mobility at any temperature in the range 77° to 400°K can
be explained quantitatively by a combination of scattering by optical modes and scattering by ionized

impurities.

INTRODUCTION

HE compounds Mg,X, where X is silicon,

germanium, or tin, are semiconductors having
the antifluorite structure. Single crystals of #-type and
p-type Mg.Sn have been studied by Blunt ef al!
Winkler? has investigated polycrystalline Mg,Sn,
Mg,Ge, and Mg.Si and Whitsett and Danielson® and
Nelson? have studied single crystals of n-type Mg,Si.
A complete analysis of Hall and resistivity data re-
quires both n-type and p-type material, and measure-

* This work was performed in the Ames Laboratory of the U. S.
Atomic Energy Commission. .

t Based in part upon a dissertation submitted by Robert G.
Morris to the Graduate School, Jowa State College, in partial
fulfillment of the requirements for the degree of Doctor of
Philosophy, 1957. ) )

1 Present address: Eidgenossische Technische Hochschule,
Zurich, Switzerland. .

§ Present address: U. S. Navy Electronics Laboratory, San
Diego 52, California.
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ments on single crystals are more likely to yield carrier
mobilities unobscured by the effects of grain boundaries,
eutectic inclusions, and dislocations. The present paper
reports results of resistivity and Hall effect measure-
ments on high-purity n-type and p-type Mg.Si single
crystals.® The following paper® reports results for
Mg,Ge.

PREPARATION OF SAMPLES

Sublimed magnesium with a purity of 99.999, or
higher, supplied by Dow Chemical Company, and
Sylvania transistor-grade silicon were used to prepare
Mg.Si single crystals. Stoichiometric proportions of
Mg and Si were melted together in a graphite crucible
with a spectrographically-pure graphite liner 6.4 cm
long and 1.6 cm in inside diameter. Thermocouples
were placed in the crucible wall near the top and bottom

5R. G. Morris, Ph.D. thesis, Towa State College, 1957
(unpublished). Preliminary results appear in Bull. Am. Phys.
Soc. Ser. 1T, 2, 120 (1957).

6 Redin, Morris, and Danielson, Phys. Rev. 109, 1916 (1957),
following paper.



