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Quantum Theory of Electrical Transport Phenomena. II*
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In a previous paper we have developed a theory of electrical transport phenomena for a simple quantum-
mechanical model. That treatment was based on an expansion in powers of the strength of the scattering
mechanism. In the present paper we consider the same model, but obtain the transport equation in powers of
the density of scatterers without restricting ourselves to weak scattering potentials. The expansion involves
scattering operators for single centers, pairs of centers, etc. , in a manner in many ways analogous to the
virial expansion of equilibrium properties. The lowest order terIns yield the usual Boltzmann equation. The
first correction, in density, to this equation is explicitly given. For the case of spherically symmetric scatterers
the solutions of these equations are also obtained.

I. INTRODUCTION
' 'N a recent paper' we have given a theory of the trans-
- - port equation which describes electrical conductivity
for a simplified but physical model of a real substance.
The model is as follows. We have a closed system with
particles, say electrons, which can carry a current. These
electrons are treated as free and independent except for
their interaction with an external electric field, and
with a collection of fixed but randomly located im-

purities. By assuming that the interaction between the
electrons and impurity centers was weak, we were able
to show that to the lowest order in perturbation theory
the diagonal matrix elements' of the density matrix
satisfy the usual Boltzmann equation. (The off-diagonal
elements were expressed in terms of the diagonal ones. )
In higher orders it was found that the usual Boltzmann
equation was rot valid, and the corrections were calcu-
lated up to X4, where X is some dimensionless measure of
the strength of the interaction of the impurities with the
electrons. As was already noted in I, however, all the
correction terms were at least of one order smaller in the
density of scattering centers than the "Boltzmann
terms, " so that in the low-density limit the usual

Boltzmann equation recovered its validity.
It is the 6rst purpose of this paper to establish this

result independently of perturbation theory on the
potential. In doing this, we shall set up a general method
of approach which enables us to obtain (in principle at
least) the transport equation to any desired power of e,
the density of scatterers. To illustrate the method in

detail, the first-order terms in e (which yield the usual

Boltzmann equation), and the second-order terms are
computed. The latter are already so complicated that it

is probably not feasible to push the method any
further.

It should be mentioned at this point what the basic
technique is. We have found that it is possible to arrange
the solution of the equation for the density matrix in
such a way that it involves first the effects of a single
scatterer, then of pairs, then triplets, etc. , just as in a
virial expansion of equilibrium properties. It is then
seen that this is a density expansion. The mathematical
entities which enter the transport equation are just the
"scattering operators'" (on and off the energy shell) for
an electron on a single center, on a pair of fixed centers,
etc. These quantities are assumed known in principle,
though of course in practice it may be very difficult to
And them exactly, or even to find reasonable approxi-
mations to them.

In Sec. II, the general theory of the density expansion
is developed. In Sec. III, the "collision" terms (that is

the field-independent terms of the transport equation)
are calculated to the erst and second order in the
density. In Sec. IV the "field" terms of the transport
equation (that is those terms proportional to the ex-
ternal electric field) are calculated to the zeroth- and
first-order in the density. In Sec. V the final transport
equation is given to an accuracy which enables us to go
one step beyond the lowest order in density. For spheri-
cally symmetric scattering centers, the solution is given.
Finally in Appendices A, B, and C some of the details
not included in the text are treated.

II. GENERAL METHOD

We erst recall brieAy some of the formulas from I.
Let the total density matrix for an ensemble of electrons
be pz. Further, let the electric field be turned on at a
rate

p (t) g oe"* Part of this work was performed while the authors were
summer guests at the Bell Telephone Laboratories, Murray Hill,
New Jersey. Assistance by the Once of Naval Research is grate-
fully acknowledged.
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Then we may write

pr= p+fe' p (2)

where p is the equilibrium density matrix and f is of the
first order in the electric field strength. The matrix f
(which we shall often also refer to as the density matrix)
satisfies the equation

(H,f) isf=—C. (3)

Here H is the total Hamiltonian in the absence of the
electric field, and C is the commutator

C=Lp, Hi7,

f=F+g (14)

where F is the diagonal part of fand g is the oG-diagonal
part. That is,

Fi:i = fi~ai",

gai =f» (1 br, ~)—.

(15)

(16)

fi,. The process was actually carried out in I as a series
in rising powers of X, i.e., by perturbation theory. We
shall now indicate another method which is valid for
arbitrarily strong potentials, but which requires an ex-
pansion in the density of impurities.

To do this, let us write f as follows

H, = —~g„og.

The Hamiltonian B may be written

(5) Substituting in (3) gives

PH, g7 isg =[F,H'7+isF+C, (17)

where
H=Hp+H',

H =p'/2m,

H'=pi p(r ri), —

(6)

(7)

(8)
(L»g7 isg)»'=Q»' (k&k )

([H,g7)» isf, +——C„
(18)

(19)

since F commutes with Bo. Taking matrix elements of
this equation, we get

p=Ee ~~,

E '=Tr(e ~~),

(9)

(10)

p(r) being the interaction energy of an electron with an
impurity center located at the origin and the r~ the
locations of the 1V impurity centers (r and r i are position
vectors) Finally. , for completeness, we shall give the
equilibrium density matrix. Either the Maxwell-Boltz-
mann or the Fermi-Dirac function may be chosen. For
the sake of definiteness we shall think of the Maxwell-
Boltzmann distribution (as in I):

Q= LF,H'7+ C', — (20)

where CI, is the diagonal element of C and

Qi~ = (LF,H'7)~a+C~i, ' (krak')

In I, (18) was used to. express g in terms of F and then
(19) became the transport equation.

For purposes of obtaining a formal solution of (18)
valid for any strength potential it is convenient to
rewrite (18) again as an operator equation. To do this,
the following definitions prove useful:

but everything goes through just as well for an arbitrary
distribution.

Now in I, (3) was solved as follows. It was written in
the plane-wave representation (with periodic boundary
conditions). The normalized eigenfunctions are

where C' is the nondiagonal part of C, i.e.,

C iii =C»1 (1—S'il).

Then, since Ii is diagonal,

(21)

(22)

where 0 is the volume of the container. The allowed k
are given by

(12)

As it stands (18) is satisfied Nitless k= k'. We now intro-
duce a matrix G which has the same oG-diagonal
elements as g, but also suitable diagonal elements. That
is, we may write

where

Further

with

e =0, &1, &2, +3,

Holi:=ed',

.,=k'/2m.

(13)

g=G —I',

F being the diagonal part of G,

I'I
A: =GI I,~I I'

Then (18) gives

([H, G—I'7 —is(G —I'))ii =Qi, k, (krak').

Or, since F is diagonal,

(23)

(24)

(Units are again chosen so that h= 1.)
In this representation it was found that the diagonal

and off-diagonal elements of f behaved very differently.
The k, k' matrix element (krak') of (3) enabled us to
express fi, i, (krak') in terms of fi, (=—fii,), and the
diagonal element gave rise to the transport equation for

(/H, G7 isG LH', I'7) ii =Qii, —

(krak—

'). (25)

The quantity F is completely at our disposal, and we
choose it so that (25) is valid even if k=k'. That is, I' is
determined by

(LH', G7) ii—zsI'i=0,
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ol on the right, we obtain at once the operator identities
zsI'i ——([H,g)) „„, (26)

since the diagonal part of G or II cannot contribute to
the commutator. Since the choice (26) of I' makes (25)
valid for all k and k', we may write the operator
equation

[H,G)—isG —(H', I') =Q.

Further, the "transport" Eq. (19) becomes, very simply

where

1 1
R(s) = y H'R(s),

d(s) d(s)

1
R(s) = +R(s)H'

d(s) d(s)

d(s) = s—Hp.

(39)

(40)

zsi'z= zsf),+&„ (28)

As in I, f), is regular for small s, so we may drop isf i, and
obtain for our 6nal transport equation

These identities will prove useful in what follows.
The expression (32) for G is most easily verified in the

representation which makes B diagonal. In this repre-
sentation

zsr I =cA:. (29) i
= eA'i. (41}

where
[H,G) zsG =A, —

A =Q+ [H', I').

(30)

(31)

If we regard A as known, Eq. (30) is satisfied by the
following expression

R+(E)AR (E)dE

This shows that I'), must have, for small s, a 1/s singu-
larity if (29) is to be valid as s approaches zero. The
explicit calculations below will show this to be the case.

The problem has then been reduced to ending the
diagonal matrix element of the solution of the operator
Eq. (27).

Now the advantage of having an operator equation of
the form of (27) is that it allows for a simple formal
solution valid for all interaction strengths. This forrnal
solution will then be expanded in powers of the density.

We may write (27) as

Using (41), (30) yields at once

G) i ' =A) ) '/(ei e) ' zs).

On the other hand, (32) gives

(42)

F00

A.„„,
2zl ~ E pp+ze E pp' ze

Q =Q(i) +Q(z)

G=GO)+G(z) I'=P(i)+P(z) (43)

I'~" and r(2) being the diagonal parts of G&» and G('),
respectively. G"' and G(z) satisfy

Carrying out the indicated integration (by closing the
contour in the lower half of the E plane, for example),
we obtain (42) again, so that (32) is really the solution
of (30).

We note next that (27) is a linear equation for G.
That means that if Q consists of two parts,

H,G(')) —isG(') —(H', I (')) =Q(')

[H G( )) '
G( ) (HI I'( )) =Q( )

In this expression

(33)R+(E)= 1/(E —Ha ip),

p=s/2
For our case we takewith

(34)
Q(') = [FH')
Q(2) —Glis the well-known resolverzt or Greezzs fzznctiozz operator

for our problem. It is often convenient to define an
operator R(s) where s is a general complex variable by We shall consider G") first. Equation (32) gives

(44)

(45)

(46)

Then
R(s) = 1/(s —H) (35)

R+(E) =R(E+ie), R (E)=R(E—ie). (36)

G("=— R+[U,H')R dE,
2m~ „ (47)

From the Hermiticity of H it follows that U=F—r&». (48)

(R )t =R+. -

Rt(s) =R(s*), (37) U is diagonal in the k representation.
We next introduce —exitzzs (zct(z prob(zt in place ofR—

where the dagger means Hermitian conjugate. Therefore the sc(ztterirzg operator T. In terms of T, (47) will simplify
considerably. The scattering operator is defined formally

(38) as follows.

Multiplying both sides of (35) by (s—H) on the left or T(s) =d(s)R(s)d(s) —d(s),
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or

1 1 1
R(s) = + T(s)

d(s) d(s) d(s)

I
1

(49) rko&= —
~ dE U, T„-

2K ~ oo dk

Tt(s) = T(s*). (50)

Further, inserting (49) in (39), we obtain the identities

( 1 ) ( 1)
E d )'

E d)
(51)

If II' were a localized scattering potential, the limit
Tkk (ek+ie), aS e~, WOuld fully determine the SCat-

tering. ' For the present, however, we shall only need
some formal properties of T(s).

From (37), we have at once that

2ie Q—

~kk ~kkdE
+

-I dk+I' -—dk dk+ ~

&kk+&k k Ua
(56)

ik fd,+I2

The 6nal simplification comes from the identity
(The variable s or E will often not be written explicitly. )
Finally, it is convenient to introduce T+(E) defined by 1=- X+8 dE, (57)

T+(E)= T(E+ie). (52)

i ( 1 1 1 1
G('& =—

I

I dE U—T ———T+—U
2w~ „d+ d- d+ d-

c f dE Tkk Tkk Tkk' Tk'k
. (5g)

& „Id„+I' d; d+ ' ld +I'1 U 1—2ik—T+ T , (53)—
The first integral may be performed at once, giving m./e,

where we have also used the fact that U commutes with
d. Taking diagonal matrix elements of (53), we obtain ~kk' ~k'kTkk Tkk+

+ +2
ldk+I' dk dk+ k' ldk+I'

(59}f dE
p„()—

~dk da
Uk(Tkk —Tkk+)

(This result is very closely related to the well-known
optical theorem of ordinary scattering theory, and will be

(54) investigated further in Appendix C.) Multiplying (59)
by Uk and subtracting from (56), we obtain our final
result for Fk&'), i.e.,

T'kk+Tk a Ua

ld'+I'
2ie P—

Now Tkk+(E) regarded as a function of the complex
variable E is regular in the upper half-plane, ' the c I' Tkk~ Tk~ k

singularities of T
I
from (49)) being the same as those I'k&" =Q — dE (Uk —Uk),

of R. (Those of R are found most easily in the repre- or
sentation (41) where we have an explicit expression for
R.) Similarly Tkk (E) is regular in the lower half of the i@I'k&»=pk. Jkk (Uk —U'„)
E plane. Therefore we have =2,.~„I (f,.-f,)—(r, "&—r,&»)], (6o)

where
Tkk

dE
00

=O= " dE
dk dk

2Ze' I'" Tkk'+Tk'k

Id+I'ld'+I'
(55)

Now inserting (49) in (47) and making use of (51), we which is most easily seen by doing the integration in the
have representation (41), or by using (32) for the special

A=1. Inserting (49) in (57) and taking the diagonal
element, we have

since in one case we can close the contour in the upper
half plane and enclose no singularities while in the other
we can close in the lower half plane. We can now rewrite
(54) as

4 See B.A. Lippman and J. Schwinger, reference 3.' See K. M. %atson, reference 3.

Equation (60) is not an explicit expression for I'k&'&.

In fact, if we replace the summation over k' by an
integration, (60) becomes an integral equation for I'k&'i.

However, if we want a density expansion this fact gives
us little trouble. Since we anticipate that in the dilute
limit the usual Boltzmann equation is valid, we may
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conclude [via (29)] that Jkk will have as its lowest
order term something linear in n (this will be verified
below). Therefore Eq. (60) may be made the basis of a
systematic iteration procedure in which first F&'" is
ignored on the right-hand side of (60). That is, assume
we have somehow gotten a density expansion for J»,

indices are unequal. The Q's are given by

(67)

(68)Qt =Ti (Qi—+Q )=Ti —Ti—T,
Q -=T .-(Q.+e.+e.+e+Q+e.)

= Ti~n Tt,~—T„—„Tni—+Ti+T„+T„, (69)
&kk =&kk '"+&kk "'+. (62)

where J» "& is proportional to e, J» '" to e', etc.
Further put

(63)'sI' "'=g o'+gP'+
where once again A J,

('& is proportional to e, A J,
(') to e',

etc.
Substituting (62) and (63) in (60), we obtain on

equating terms of the same order in n:

(64)&k"'=Z &kk "'(fk —fk),

&k"'=P &kk "'(fk fk)—
k'

1
»k "'(&k "'—&k"')

2'6 C

1
(65) Tkk.+Tk, k =P Xiy——P' X,

2! im

etc.
The T&, T&, etc. are the scattering operators if only

the center at r& is present, if only those at r&, r are
present, etc. , respectively. (See Appendix A for the
formal definitions. )

The expression (66) is an identity. We have however
arranged things so that the first term refers to properties
of a single center, the next to those of any fmo centers,
etc. As in the theory of equilibrium properties this type
of arrangement gives rise to a density expansion.

We now must substitute (66) in (61). If we do this
and again collect those terms which refer to a single
center, those which refer to two centers, etc. , the result
is—after some algebra —again quite simple. I et us put

etc.
All that is required is the expansion (62) of Jkk . It

may be pointed out that (65) seems to imply that 2 k&"

gets singular as s or &~0. This is only apparent however;
we shall see in the detailed calculations given below that
the first term of (65) also has a singularity which just
compensates this.

We come finally to the crucial part of our entire
analysis, the density expansion (62). This is obtained by
means of what we shall call the virial expansion of the
scattering operator T. The derivation of this expansion
is given in Appendix A. The result may be stated as
follows

1 1
T=P Qi+—P' Qi„+—P' Qi„„+, (66)

3!&~n

Then. we find

1
+—P'Xt „+ . (70)

3! i~~

Xi= (Ti+)kk (Tr) k k=
I
(Ti+)kk I',

Xi = (Ti +) kk (Ti ) k k
—(Xi+X )

= I(Ti-+)kk I' —I(Ti+)» I' —l(T-")» I',

(71)

(72)

Xlmn I (Tlmn ) kk'
I

—(Xi„+X„„+X„i+Xi+X„+X„),(73)

and so forth.
As we shall see, the decomposition (70) gives rise in

fact to a density expansion. Anticipating this we may
write

&il (Ti+) kk I'
where l, m, n, . are indices labeling the X scattering J»,&»=

centers. The prime on the summation means all the ~ "~ Idk+I'Idk+I'
(74)

i"
1

"Zi-[I(Ti-+)k I'—l(Ti+)kk I'—I(T-+)kk I'3
Jr, a "'=— (75)

etc. The evaluation of these expressions up to and
including J»'@ will be carried out in Sec. III, and by
means of them FJ,'" will be obtained to the second
order in e.

To complete the discussion of the left-hand side of the
transport Eq. (29), we need I'k&'&. From (45), (46), and
(32) we have

The second term in the integrand may be treated by the
identical procedures that led from (47) to (61), so that

isl'ki'& = —— dE(R+C'R ) kk
7f Qo —Z. &kk (I'k '"—I'k"'). (77)

Z
(2)—

2' Qo

dE[R+(C' (r&'&,H'))R jkk. (—76)
Again, let us put

»I'ki" =&2"+&ki"+ (78)
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8&() being linear in the density, B&(@ quadratic, etc.
Then, just as in the discussion following (60), since Jkk

starts with terms linear in e, to the lowest order in n the
last term of (77) may be ignored. This can be made,
exactly as before, part of a systematic expansion in
powers of e. Therefore it only remains to obtain a
density expansion for the first term on the right-hand
side of (77).

Let us write, using (49),

f 1 (2 kkr (C ) kk' (C ) k'kr k'k+-
ldk

I
k ~ dk' dk'

(C') kk
+ E 2'kk+

O', I&:" dk~+d foal ~

(79)

since (C') kk ——0.
We now make once again a "virial" expansion for the

integrand. This is done by using (66) and noting from
Appendix B LEq. (B7)) that we may write

C'= P (C') +—P' (C') &„+
Em

inserting these in (79) and collecting together terms
which refer to only a single center, those which refer to
two distinct centers, etc. , we obtain a series of the form

~ 00 1
dE(R+C'8 )kk

——Q I'&+—Q' F& + (80)
s 2! gm

where

dE
P)= ——

((T&+)kk (Ci')k k (C&')kk (7'&—
)k k )

xQ Pl
d&,+ dk- )
(Ti+)kk (C&')k krr (Ti )krr k

da dI"
(81)

Bk&)=++& F (82)

The higher order terms are not dificult to write down,
but they are very unwieldly. For our purposes, the
leading term (81) will be sufficient. As we shall see, the
decomposition (80) gives rise to a density expansion, so
that

To summarize the results of this section we may say
that the left-hand side of the "transport equation" (29)
can be expanded in powers of the density

isrk=Ak&')+Ak&')+ +B &'&+B &'&+ . (83)

A k&" and A k&" being obtained from (64) and (65), Bk&"

from (82).
The A terms in (29) are linear in the distribution

function fk, and we shall refer to them as the "collision"
terms. The 8 terms and the commutator Cl, are linear in
the electric field, and we shall call them the "field"
terms. The transport equation then has the form

ZI,F=eE '3E g, (84)

where Z I,F is some linear operator acting on the diagonal
elements of f, and M k is some function of k. From all

that has gone before, we know that

ok=~(Z, &')+Z,&')+ ) (85)

M k=M k&'&+M k&"+M k&"y . (86)

the superscript indicating to which power of e the term
is proportional. It therefore follows that, if we expand F
in n, its first term is O(1/e) and we may write

F= (1/I) (F&')+ F&')+ ). (87)

Substituting (85), (86), and (87) in (84) and equating
equal powers of e, we obtain

g~(o)p(o) = gjv gf
g OF&1)+g &i)F&0)=&E OM &i)

(88)

(89)
etc.

Equation (88) is the lowest order transport equation.
It requires a knowledge of the collision terms to the first
order in e, and the 6eld terms to the zeroth order. As we
shall see in Sec. V, this is the ordinary Boltzmann equa-
tion. Equation (89) enables us to calculate the first
correction to J ('). It requires knowledge of the collision
terms to e' and of the field terms to e. The main labor of
this paper lies in the calculation of the relevant quanti-
ties entering into (89).

III. CALCULATION OF THE COLLISION TERMS

To obtain the collision terms to O(e'), we need Jkk "'
and J» &'&, as given by (74) and (75), from which A k&"

and Ak&2) may be calculated from (64) and (65). Be-
cause of the presence of the 1/e in (65), knowledge of

J» '" is required up to and including terms linear in 6.

We begin with J».'". By Eq. (C4) of Appendix C

(T +),—
&
—i&k—k') r~~,+ (90)

where 3+ is the scattering operator for a single scatterer
located at the origin. Equation (74) then becomes

I ~kk+(E) I'g, ()—~
[dk+ f'[dk, +/2

$kkr+(E)fkrk (E)21k
=E dE

'il ~ gg (E Ek+'iE) (E 6kr+ZE)(E Ek M)(E fk' —'l6)
(91)
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I
tbb+(e»l' Itbb+(eb) I'

x(x i—s) x(x+is)

. [~lt»'(E) I'/~E7 ='
X X—ZS

[cl
I
t»'+(E) I'/clE7a=. ~

X(x+is)

We can evaluate the integral in (91) most easily by Eq. (93) becomes
contour integration. The integrand has, in the complex
E plane, the following singularities (Appendix C):
simple poles at E= &~&is, ~k+ie, eA, &i&, branch cuts
starting at +ie and extending to + ~ parallel to the
real axis. Now since we are integrating along the real
axis, the value of the integrand is not changed if we
move the branch cuts in any way which does not make
them cross the real axis. This is convenient to do because
the poles of the integrand now no longer lie on the branch ZC

cuts. The situation is given in Fig. 1, where the branch
lines have been rotated to the imaginary axis. By de-
forming the path of integration, we may now write (96)

f='+ + +
"Vi &&2 &~3 -74

(92)
Writing

+i
x is x+s x+s

+ (It»+(e»I'+It»+(eb) I')
x'+s'

I
tbb+(e» I'—

I
tbb+(. , ) I'

x +s

The integral around the branch cut (y4) is the most E (9Q)
dificult to evaluate. However, the integrand on y4 is
perfectly regular (e& and e& are fixed and assumed not
zero) as e—+0 so that the result is independent of c.
However, Jbb "& contains an extra factor of e' [from
(91)7, so that the error in. neglecting y4 is O(e'). To the s

order (in I) which we are considering, we only need
Jbb 111 to O(e), so that it is permissible to drop the y4
integral. Evaluating the yi, y~, and ya integrals by
residues we have ZS

Jbb 111=2ieN Ip
I (kI b) I'I (O'lb) I' [~ I

t '(E) I'/~E7'+[~
I
t-'(E) I'/~E7

tbb (eb.+)tb b(eb —es)

x(x—is)

tbb (eb.+)tb b(eb is)

x(x+is)
(93)

E- pLANE,

(97)

where (k I b) is the Fourier transform of the bound state
function fb associated with a single center [see Ap-
pendix C, (C20), (C23)7. Further, x=oIbb = eb eb, and—

t„,.(eb+) = lim tbb (eb+iII).
~~o+

(94)

The form (93) which arises out of the contour integra-
tion is unsymmetric, and it is convenient for later
purposes to transform it somewhat.

Writing

tbb (eb+)tb b(eb —is)

= 11111tbbb(eb+4e+4rl Ze)tbib(eb ee Ie)
74

)i

=tbb.+(eb)tb. b (e»

Z6

&
I
tb'+(E) I' ~p(,n+ (e j& ( ) FIo. 1. Contours for the evaluation of (91). The heavy dots

represent Pres and the heavy lines branCh CutS.
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In (97) we have again dropped a term of the order of s'.
In the limit of s—+0, we have

s/(xs+s') =s-b(a). (98)

We can take this limit for the last two terms of (97)
since they are already of the order of s. Doing this, and
noticing that

I t»'(ek) I'—
I t»+(ek ) I'

lim

(84). The leading term of Jkk "& is obtained by letting
s—4 and is, by (98),

Jkk "i=iN2rrfi(oikk ) I
ikk.+(ek) I'+O(s)

= iNu') k k~+ 0(s) (101)

where m» is just the exact transition probability per
unit time for the scattering of an electron in state k' to
the state k by a single scattering center. '

Incidently it should be mentioned that this result can
be obtained much more simply by noting that

~
I
i»+) I'

(99) (e 1
»ml —

I
=~(&—").-o i~ Id+Is)

(102)

we see that the entire square bracket in (97) cancels,
leaving us with

x'+s'

X (I 4k+(ek) I'+
I
tkk. +(ek.) I' =iNo—kk. (10.0)

Since t is proportional to 1/Q and (k I b) to 1/QQ, the
dependence of J» {"on the size of the system goes as
n/Q. If the summation in (64) is replaced by an integra-
tion we have another factor of Q/(2')s, so that Jkk oi

gives rise to an integral operator which is proportional
to n. This checks the assumption made in discussing

Inserting this in the integral (91) gives (101) at once.
The more elaborate derivation given is necessary to
obtain the O(s) terms.

From (101) and (64), we have

(1o3)&k'"=iN Q tekk (fk —fk)
k'

In order to calculate A kt'i we need Jkk "i.By (65) we

need it only up to the zeroth order in e. (There will be
terms in 1/e which of course we must retain. ) Jkk "' is

given by (75). Unlike (74), (75) depends on the positions
of the scatterers. However, just as in I, it can be shown

that for a sufFiciently large volume (75) may be replaced

by its ensemble average, i.e., its average over all possible
positions of the scatterers. Thus, we may put

&'C&l (T -') ' I'& —&l(T ') I'&—&l(1'-') ' I'&j
bn

J», (2) (104)

where the symbol & & indicates the ensemble average.

I See I, Eq. (37).j
The detailed justification of (104) is quite straight-

forward. Making use of the results of Appendix C L(C4)
and the multiple scattering expansion (C12)j, we see
that each term of (104) gives rise to a term in (75) of
exactly the same form as the terms of I, Appendix 8,
Eq. (Bi), for which we have already justified the use of
the ensemble average.

Since the ensemble average for any pair /m is the
same, we may write

Ze f'
Jkk. t'&=N(N —„1)—)' dE

&I (Ti-')- I'& —
&I (Ti+)» I'&—&I(T-')» I'&'. (1o5)

the multiple scattering expansion' (C12), which gives

I(T -+)» I' —l(Ti+)» I' —I(T-+).k I'

I

(T +) (T —
) k k, (T„-)k k

= (Ti+)kk(T )kk+P~
kg l dky

(T,+)kki(T +)kik'(Ti )k k

(T,+)kki(T +)k,k (T„—)k k

d kg+

(Ti+)kki(T~+) kik'(Tm )k'ks(T i )ksk

ky, k2 dk~+dk2
It is dif6cult to go much further without some

knowledge of the two-center scattering operator Tt +(8)
The reason for this is that in order to do the integral
(105) we need to know the nature of the functional
dependence of the integrand on E, after the ensemble
averaging. This is best obtained by again making use of

+ (l~m) +I.kk . (106)

' In the neighborhood of a bound state {where t has a simple
pole) the multiple scattering series will certainly be invalid since
higher and higher powers of t enter. However, just as in the dis-
cussion of JkI, ('), we see that the bound states of T& and t only
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Here we have written the first few terms down explicitly,
and have indicated the remainder by LI,A, . The meaning
of this decomposition is the following: the terms L~~
have an ensemble average which is a smooth function of
E, and which tend to a well-defined limit as c—&0.~

We would like to emphasize the fact that the calcula-
tion of the ensemble average of L» requires only a
knowledge of the usual scattering operators, that is,
T~, T~, T in the limit of Azfzzzite volume, To see this,
we imagine I.aa expressed in terms of the (finite volume)
scattering operators by (106). It may then be verified
from the explicit expansion of T ~ that in this expression
one may pass to the limit of infinite volume without
affecting the ensemble average of L~~. Substituting
(106) in (105), we obtain

Jaa &') =zS'(Iaa &++Iaa ('&+Iaa (')*

+Iaa '"+Iaa '"*+Iaa '"), (107)
where

using the same contour integration techniques as were
used in evaluating J~~ ('). For I~~ &') this gives at once

Z (x t Is ZSA

Iaa (o =- + +0(s),
x.x—is (x+is)'.

where
n(E) = taa. (E+)tp a(E—is) taa(E —is).

Writing (113) as

i +,~(oa)
X. x—zs (x+zS)

s a(oa ) n(—oa)
X

(x+is)'

(113)

(115)

to the order in s we need, the last term of (115)vanishes.
This may be seen as follows:

2is2x

(Laa (E))

lda+I'lda+I'
(108)

s (116)
(x+is)' x'+s' (x'+ s')' (x'+s')'

However,

I
&aa+ I'~aaI„.()=—, dE

Id aI
+Idz+aI ~z;

2o' 1" l&aa+I'&a aI (~) =— dB

(109)

(110)

lim =5(x),
a o xz+so

lim =—8(x),
a-+o (xz+~o)o

(117)

I&aa-+I'I&' a +I'
Iaa ~') =— dE g . (111)

a" Ida+I'lda+I'ld "+I'

2xs
lim = —~~'(x),

0 x~ $2 2
(119)

Since (Laa (E)) is a smooth function of E, the
technique described in connection with (102) enables us.
to evaluate it at once. We have

Iaa "'= (2~&(~aa)(Laa (oa)))-', . (112)

This gives rise to a term in A I,
(') which is just of the form

of Aa"' with E being replaced by S'/2 (the number of
pairs) and 2zr5(&oaa) IIaa+(oa) I' by 2zr&(~aa)(Laa (oa)).
For this reason we shall refer to the contribution from
(112) as the "true" two particle scattering contribution.

It is easy to see from the explicit expression for (L» )
that it is proportional to 1/II'. It therefore gives a
contribution to ZI, which is proportional to n'. Similarly,
it is seen at once that the other terms in (107) also give
a contribution which is proportional to n'.

The integrals (109) and (110) cannot be evaluated so
simply because of the extra factor of 1/da, which be-
cornes very large at E= eJ,. They are best evaluated by

give rise to a term proportional to c. Since we only need JI,&'2) to
the zeroth power of e, the bound states contribute nothing to our
result. In the evaluation of the integrals we may therefore use the
multiple scattering expansion, but treat t as if there were no bound
states.' The other terms correspond to the part of the scattering from
two centers which does not drop off sufficiently rapidly with the
distance between centers for the ensemble average to exist in the
limit e—+0.

and [a(oa.) —~(aa)]/x remains finite as x—+0, so that

Therefore

»m s ~S(x)—~~(x) =0.
x is '.

i( 1 is
+ I~(oa)

x &x—is ( x+s)z')

(x'+3s'+2isx )
=Z 0!

(x'+s')' )
x'+3s'

= ore(ca) 5'(x)+in(oa)
x' s'

(120)

(121)

x'+3s'
+i

I
taa. +(oa) I'taa —

(oa), (122)
x s

using (119).From (117) and (118) we see that for small
s the last term of (121) behaves like 1/s.

Using now the same type of symmetrization as that. of
(95), and a little algebra, we obtain

&P(E—oa)l&aa+(E)l &aa (E)]
Ir a '"=~
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and
&L&(E—")It-+(E) I't"-(E)j

and making repeated use of the type of analysis which
follows (115), we obtain

x'+3s'
+i It22+(22) I'ta 2 (o2). (123)

(x'+s')'

Finally, we may treat I» &') in a similar fashion. The
contour integration gives at once

p(")
I22 (2) =sQ

2" xz(x—is) (z+is)

x'+y'+z'+ 6s'
I22l @=+ s p(")

2/I (X2+S2) (y2+S2) (Z2+S2)

P( ') —P(")
I+22'(y) . (128)

(x+is)'

When we use (117), (118), and (119), this becomes

where

P(22 ) P(22") x'+y'+z'+6s'
(124) I22 ('&=+ s p(22)

yx(y is) (x+—is) zy(z is)—(y+is) (x'+s') (y'+s') (z'+s')

and

&= &k &k'q

z=22"—22, x+y+z=0,
(125)

-aP(E)-
+2~@(x)~(y)

8E E= e)g

P(E)=—42 (E )t ~ (E—is)t ~ (E+)t (E—is). (126)

Writing

t'» p(")—p(" )
22rt') (y)P—

I
—

I

&xj x
(129)

I22("=sE p(22)
xz(x is) (z+is)—

where P(1/x) is the Cauchy principle value of 1/x.
Using again the same sort of symmetrization as in

(95), and noting that

yx(y is)(x+—is) zy(z is)(y+is)—.
6jgl — 6' CI(;I ~+, (127)

yx(y is) (x+—is) zy(z is) (y—+is)

x2+y2+ z2+ {)$2

we And at once

42
S ()(y)(l(x)+0(1), (130)
(x'+s') (y'+s') (z'+s') s

x'+y'+z'+ 6s' |'1)
I
t»-+(22) I'I t2-2+(22) I'—2~~(y»I —

I(*'+s') (y'+s') (z'+s')

I
t»-+(") I'I t2-2+(22) I' —

I
t»-+(22 ) I'

I t' '+(" ) I'

We now must put all these expressions together to
compute Aq(2). From (64) and (65)

A ('&=+ E (f —f ), (132)

We next have to show that the apparent 1/s singu-

larity in EA, & cancels out, and then calculate the limit of
the remainder as s—&0. We shall first rewrite Ipj, ")
+I22.('&'. Put

t22-(E) =a2(E)+ir2(E),
t„„+(E)=62(E)—ir2(E).

where
1

&22 =A2 "'+—Z(I22 ("A2"("
zs I, -~(~(E- ')&.(E) It-'(E) I').

From (100) arid (107) this may be written as

+J „,(1)J,„„(1) J „„(1)I „„,(1)) (133) I„„,(1)+I„„,(1)@—2~

~ '='~ II» (&+I» (&+I» (&*l —
I

l

+I22 (2)+I22 (2)*+I22'2) Noticing that

x'+3s'
I
t22+(~2) I'r2(o2). (135)

(x2+s2) 2

1+- Q(o22lo 22«+o22lo 2'l2ll —o22l o'2l. 2') . (134)
S g/I

x'+3s' s —s 2 ~11+I"I- I, (»6)
(x2+s2)2 x2+s2 (x2+s2)2 x2gs2 (xj
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where

P'I —
I
=lim—

we may write

X —Sg

g2 $2 2

B= lim—Real part, (137)
Bx (x+is)

Substituting (139) in (135), we have

1
lee '"+~ee "'"=——P ~ee ~ea"+2~~e(ee)

s nfl

'~L~(&— ) I

t +(&) I'3
X =

x'+3s'
I
t»+(ee) I'

(x2+se) 2

2 t'11
I t»+(ee) I'+P'I —

I I t»+(") I'
(x'+s') Ex)

1
t: I

t»+(e~) I'+
I
t»+(e') I'j

x'+s'

1
L I

t„„,+(e,) I'—
I
t„+(e,)gx'+s' Similarly

)11—2re(ee) P'I —Ilt»+(e.) I'+PI —
I

Ex) &x]

It„.+(e,) I2 —It„+(e,) I&

X—

—2 I (& It) I'I (&'I &) I' (14o)

+P'I —
I I

t»+(") I'
1

Iee &'&+Ice &'& = ——P ~pe ~e e"+2~he. (ee )
s ~"

—Z I(&l&)l'I(&'I&)l'

(» It»+(") I' —It»+(e') I'
+PI-

I

&xi g
t1

+P'I —
I I t»+(") I' (138)

&x)

In deriving (138) we have made use of (100). From
the optical theorem (C33), we have

~C~(&—")I t«'(&) I'j
X

BE

(1) ~1)—2r, .(e,.) Pl —
I I

t».+(e, ) I

—PI —
I

&x) & )

It»+(ee) I'—It»+(e') I'
X

M, g, (E)
2re(ee) =g 0 ee-+s

BE x= eg

so that we may write

xe+3s2
2

I
tee+(ee) I're(ee)

(x'+s')

=- Z ~» ~»-+2~~(x)
I
t»+(") I'

s A"

(C33)
—r. I(&I&) I'I(&'I&) I' (141)

If all these results are substituted in (134) we find

indeed that the 1/s terms drop out and —after very
considerable algebra —we are left with the following

result:

&ee =i&'(~ee '"+@ex"'+O'ee "'++ee '")) (142)

where
- aa, (z)-

X +2re(eq) P'I —
I I

tee +(eq) I'
BE x= egg &x)

t » It»+(ee) I' —It»+(e') I'
+Pi-

I(x) S

—&I(&l&) I'I(&'I&) I' (»9)

i.„,„, ,~r
a- (x is) (y+is) (s+i—s)

(x+is) (y is) (» is)—
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&»'"=2 It»+(o')I'

/11x ~~~(oa)&'(x) —ri(o~)P'I —
I + It»+(o~) I'

&x&

where

-~(~lf)
P» =2 /'(oo) (&I&')+(&I&)

8k~ Bk '

8
+ + Dpi, (152)

ak. ak. 'i
&( —~&i (o~ )$ (x)—yo (oi )P

I

—I, (144) 1
I
" t».—(E) t'ai.+(2)

A~ =
~ d&/'(&)

2iri ~o -dx ds di di'+-
(153)

~/(oi) iso—(o~)
I
t»+(o~ )!' —

. + I
t»+(o~) I'

(oi, oi,—. is—)'

6i (og;) pro. (o/) —C.C. '~

6y/ —6y —zs (oi)Pily Pop' to'o (og)
Bq&'&= XieE—o ~ p +o'» '"= —&(~» LI (&"

I &) I'—
I (& I &) I')

I
(&'I &) I' x+is s—zs

The integral in (151) may be evaluated by contour
integration as in all previous cases. After some simplifica-
tions this yields

(145)

+~' o I I
(&"

I &) I' —
I
(&'I &) I') I (& I &) I') (146)

The first three terms in (142) also appeared in I,
where they were computed to the fourth order in X. The
last term, which refers to bound states, did not appear
at all in the perturbation theoretic calculations of I.

Again, as in I, 6,» (" may be roughly interpreted via
(145) as being due to a shift in the unperturbed energy
of a state k by an amount XAi(oq) and a natural lifetime
for this state of Pq" m»".

IV. CALCULATION OF THE FIELD TERMS

The field terms eE 'M
& of (84) may be written

e4'M k=ck (&o"'+&I'"—+. )

from (29) and (83). We only want (147) to the first
order in w, so that all we need is

( o)oPg' "ito" i (oo)

(x+is) (s+is)

+pl(elf) I E (f lu')P, , ,-(u" lf) . (1s4)

x+Ls x—zs

tii;+(oi)Pi, i," tg."i-(oo)

(x+is) (s+is)

Therefore, by (B31),we have

~t'( )os~I(&lb)I' ~D»
M ' ='EI8 +P p'( ) +

Bn & Bk Bk

4i;+(oi)Pi, i" P» "ti i
—

(oi)+p +

&@ o~ ~(o) C~(o)

go) —Cyo) jap(&)

(148)

(149)

+Zl(&l&) I' 2 (bl&')P" '"(&"I&)
I (155)

5 g/ Q//

C&& & =i' 'Bp'(oi)/Bk, (B30)

The commutator C is investigated in detail in Ap-
pendix B. From (B30) we have

Putting (152) in (155) we find —after some work —that
the Ioo(o&) terms cancel out completely This is. to be
expected since if only the single-center bound states
were occupied there could be no conductivity. We then
have

so that
(1so) '/'('")

M i'"=iE 8 +
Bk Bk

Mggo =zBp (oi)/Bk~.

ap'(. & )—2 2 I(&l&) I'I(&l&') I'
k/ Bk '

The expression for Cz&'& is given by (B31).Before we
make use of this, however, it is necessary to evaluate
8&&'&. By means of (81), (82), (B35),and (C4), we have
at once

c r" dE thy. +PI ~ EII, tr g-
Bo&'& = —XieE '— Q +

~~ ~ !do+I' &' A+ da

(151)

x+is s—zs

4s+(oo)Po i," ta"i, (o~)

(x+is) (s+is)

t»~+(og)Pp~o" Pop~ t/~y (oo)
'

+p +

(156)
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The identical process may be carried out for f&&'& since
it involves the same kernel mkk . Therefore for the case
of spherically symmetric scattering centers the solution
of the transport equation can be obtained explicitly.

Writing

wllele

Dkk'
. Bk Bk

f&,
~'& =eE„'k u&'& (l kl), (162)This expression is easily seen to be proportional to the

density m.

It does not seem possible to go appreciably further we obtain at once
with (156), without a more detailed knowledge of the
single-center scattering operator t.

-ok&» =ex.o~.k(». (157)

Making use of (103) and (150), (157') becomes

(158)

This is just the usual Boltzmann equation in our
notation, and we have therefore proved that in the limit
of low density it is valid.

The next order is given by (86). Making use of (132),
this becomes

V. THE TRANSPORT EQUATION

We now collect the results of the previous sections in
order to obtain the transport equation in the lowest
order in the density, and the first correction to it. From
(85) and (87) the lowest order equation is

1
L(k k') ~'"(I &'I) —&'~"'(I

& l)]

iQQ w&, i, (k k' —k')
(163)

Here M &,
"& and E'i,i are defined in (156) and (142),

respectively.
The order of magnitude of the m' correction, for a

simple case, has been mentioned at the end of Sec. III
of I.

(A1)

Now dehne a sequence of operators T~, T~, which
satisfy

APPENDIX A. EXPANSION OF SCATTERING
OPERATOR

The scattering operator T satisfies the operator
equation

i P nw&, &, (f&,
&"—f&,"')+—Q && & (f& '"—fa"')

=eE 'M &"&. (159)

1
1+

E d )' (A2)

f.&»=eE.ou..«&(lul). (160)

The fact that w&, &, contains a 5(cok~ ) then enables one to
take a(l kl) outside the summation and solve for it at
once, giving

2 ap'(ei, )
~"&(I& I)=-" (161)

0 ae„g wi, &, [(k k') —k'j

If we think of fi, c."& as given [obtained by solving (158)j
then the second term on the left-hand side of (159) may
be regarded as an inhomogeneity. Therefore (159) as an
equation for f&&'& is exactly of the same form as (158) for
f&& &, with a somewhat difFerent inhomogeneity.

In general these equations are imtegrul eglutioms, and
nothing can be done until more is known about the
kernel mkk. If, however, the scattering centers have
spherically symmetric potentials, then, as is well known
for (158), the equations may be solved at once. This is
because in this case mkk is invariant under simultaneous
rotations of k and k' and M k, being a vector, must be
of the form 0 p (l k l). Therefore f&,

&'& must have the form

2'i-=(«+.-) l
1+-T'i- I,

d
(A3)

( 1
=(&p&+v' +y )I 1+ Ti I etc., (A4)

d

1
T=~Q,+—~'Q, +—~'Q, + . , (A5)

3~ tmn

where Qi depends only on the position of the lth scat-
terer, Qi~ on the l and m scatterers, etc. The prime on
the summation means that mome of the indices are to be
taken equal (in the second term l=m, in the third
l=m=e, etc). Further, Qi is assumed completely
symmetric in all the indices since any nonsymmetric

where l/ m/ m, etc. T & is the scattering operator if only
one scatterer were present and located at r~, T~ is the
scattering operator if scatterers were present only at r ~

and r, etc.
Now we shall try to solve (A1) in terms of the

operators defined by (A2), (A3), and (A4). To do this
let us write for T the following expression:
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part would vanish under the summation. If we substi-
tute (A5) into (A1), we get equations for the Q's. That
1S)

1 1
l l l

2f lm 3! lmn

Z —PLANE

1( 1
+(2 .)-I Ze+—2'Q-+ .

I (A6)"dE~ 2! i )

Equating terms in (A6) which refer to ore center, then
those which refer to two distinct centers, etc. , we obtain

( 1
Z~ Qi —p ~

—v~e~ 1=0 (A7)
d )

1 1 1( 1 1
&' —Q-—~ -Q ——

I v -Q-+v=e I
=o (AS)

&~ 2! d 2!& d d

etc.
Comparing (A7) and (A2), we see that (A7) is

identically satisfied if we choose

(A9)

FIG. 2. Contour y for Kq. (82).

Upon using (49), (82) becomes

e
—PH—

27rz ~ ~

1 1
ds — + T(s) e ~'

d(s) d(s) d(s)

1
=e ~~p+ t ds T(s) e—~'

2si ", d(s) d(s)
(83)

on evaluating the contour integral for the first term.
Making use of (66), we now have

In (AS), if we symmetrize the second term we see that
(AS) is satisfied when

1 1 1
Q~ =p Qi+vi Q—+(qi+s— ) Qi . (A1—0)

where

1
p= pp=2 pt+ 2' p—lm+

l 2f lm

po
—+e—P 0

(84)

(85)

Comparing (A10) with (A3) and (A2), we see at once
that

Q )„——T ( (Q)+Q~) =—T(„Tg T~. (A11—)—
Similarly

Q ..= T .-(e.+e.-+Q-+Q+e.+Q-)
=T(„„T(„T„T—„(+T—(+T —+T„. (A12)

It is very easy to continue this process and establish
expressions analogous to (A12) for arbitrarily many
centers, but for our purposes the two terms (9) and (11)
will suKce.

APPENDIX B. EXPANSION OF THE COMMUTATOR

E
t

1 1
Pl=

~

dz-1'l-e &',
2xz ~, d d

E 7 1 1
p,„= ds (T, T, T—„) e e-*, — ——

2~i ~,
(86)

1
. C=Cp+Q C~+—P C~~+' ' ',

l 2t lm
(87)

etc. The expansion (84) is not quite a density expansion
since the quantity E itself as determined by (10)
should also be expanded in powers of the density.
Substituting (84) in (81) we obtain

C= cE P[p,x— (81)

where
We obtain in this appendix an expression for the

quantity
Cp eE,'[pp, x ], ——

(C=e „E[pP(,x ],
(BS)

(89)

analogous to the "virial" expansion used for the other
quantities of interest. From Eq. (9) we see that we must
expand e &H. This is done most conveniently through
the identity

1 p e&' 1
e ~~= ' ds = dsR(s)e ~* (82)

2si ", s H27ri &, —

where y is the contour shown in Fig. 2, and ~0 is the
smallest eigenvalue of B.

etc. Therefore C has also been developed in a virial-like
expansion.

In the k representation, C is given by

(~ + ipse,
Ec!k Bk 'J (810)

[see I, Eq. (A19)].
Important for the discussion of FA, '" is the fact that

since po is diagonal in the k-representation so is Co, and
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therefore
1

C'=Q C('+—Q' C(„'+
l tm

The diagonal elements of C are given by

~Pea
Cp ——ieE '

Bk~

(811)

(812)

negative real axis (corresponding to possible bound
states), and a branch cut along the positive real axis.
Call t+ the value of t at a distance e above the positive
real axis, and t its value at c below. Further let the
residue of t at a bound state ea((0) be r&a'. Then,
deforming y so that it encircles the poles at e~ and is
within o (c—+0 eventually) of the real axis above and
below, we obtain

Lsee I, Eq. (A22) j.
We shall push the evaluation of these formulas one

step beyond the lowest order, since this is all we need
for the purposes of this paper; Let us write to this order

E=Eo(1+Nb), (813)

where Eo is determined by

Daa =P p'(e.) +
(ea—oa) (oa—eI, ) 2ori

t'taa (E) taa+(E) )
dEp'(E)

i
— (. (824)

d.+d'+ &

The 6rst term can be simpli6ed by noting that
Eo-' ——tr(e-~~o) =pa e e". -

Further, let us de6ne

(814)

where

raa ("=(ea oa) (oa oa ) (k~ b) (b~ k'), (825)

Then
po(Ho) =Koe ~~o

p = (1+Nb)p',

(815) (klb)= ~.V.d =(blk)*, (826)

and
poaa = (1+N&)p'(ea)4a .

Therefore, to the order in question,

paa = (1+Nb)p'(oa)baa

pa being the normalized bound state wave function.
(816) Therefore

D a a~ =P p'(oh) (k
~
b) (b

~

k )

P ~(&i) aa
+ ' ds po(s). (817

271 1 ~ ~ dIt„djt;r

The constant 8 is determined by

E p.a=1. (818)

(2') =e—'( —"')'t (819)

where t is the scattering operator. for a single center
located at the origin. Therefore (817) may be written

Now we have (see Appendix C for properties of the
scattering matrix)

1 (E) taa~+(E)
+ dEp'(E)

2x'z 0 da dI +

—=g, p'(. ,)(k~b)(b~k')yD. , (827)

Not much more can be done with the integral DA, ~

without further knowledge of the scattering operator t.
For the diagonal elements of p~A, , we have

paa = (1+Nb)p'(ea)+ND„„
=p'(oa)+N~p'(oa)+NDaa.

The second and third terms are proportional to e, the
6rst is independent of e. Therefore

with
paa = (1+Nb) p'(oa)baa +Saa Daa,

e
—i(k—k') -r)kk'=~ l )

"I I '
p'(s).

21' ~ ~

(820)

(821)
Ca«'=ieE oBpo(oa)/Bk,

~p'(oa)
Ca"'=NieE ob

Bk

C,=ieE.o&paa/ak. = Ca«)+Ca&», (829)

(830)

The quantity b is given by (818) as

(823)

8
i (k

i
b) i' 8D

+2 «'(oa) + . (831)
Bk

Since taa is proportional to 1/0, Daa is proportional
to 1/0' and therefore b is proportional to 1/&, giving a
correction proportional to the density of impurities, as
anticipated.

From Appendix C we know that taa. (s) is a regular
function of s except for isolated simple poles on the

(832)

( 8 8+, IDaa, (kW k') (833)
EBk cjk 'J

The off-diagonal elements are given by

paa =&aa Daa, (krak')
so that
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1
Mi= 1+ T-M,(B34)

where

since S» is a function of k —k alone. Using (B27), we solutions of the coupled equations
have finally

(C7)

8(kgb) cl(beak')
pj, i "=p p'(eb) —(b~k')+(k~b)

Bk Bk„

1
M =1+ TtM—(. (c8)

t' cl ct

+ I +, I&»' (B35)
Qk ')

APPENDIX C. PROPERTIES OF THE
SCATTERING OPERATORS

We begin by discussing the scattering operator T & for
a single scatterer located at r~. From Appendix A, Eq.
(A2) we have

Ti„T(M(+——T„M„. (C9)

Equation (C9) is verified by simply substituting (C9) in
(A3) and making use of (C7), (C8) and (C1).

These relationships may be used to obtain the so-
called multip/e scatteri-ng expression for T~ . Assuming
that T~ and T are in some sense small, we can solve
(C7) and (C8) by iteration, obtaining

( 1
1+ Tt —

I
~

Taking matrix elements, and remembering that

(C1)

1 1 1 1 1 1
M =1+ Ti+ T( —T~+ —Tr—T T—(+.. .— (C11)

(q i)~~+~ '" "'"'p
Substituting in (C9) gives

C2

(where p~i is the matrix element of the potential for a
scatterer at the origin), we have

1 1
T( =Tt+T gT) T+T T—(-

1 1
+T~ Tns T~+ Ten T~ Two+ ' ' ' (C12)

This is satisfied by the ansatz
We shall also need some analytical properties of the

scattering operators. Making use of (49) for the case of a

(C4) single scattering center, we have

where t is independent of r~. Substituting (C4) in (C3),
we obtain (C13)

1~
t=qi 1+—t I,

d J' (c5)
where

h= HO+ p, (C14)

so that t is just the scattering operator for a scatterer
located at the origin.

Similarly, starting with the scattering operator T&

for scatterers at r& and r, we can easily show (by just
writing out the Eq. (A3) for T& ) that

(T~ )ii.——T». (r)e '&"—"'&"', (c6)

See, for example, K. M. Watson, Phys. Rev. 89, 575 (1952).

where r=r —r~, the distance between the two scat-
terers. T». (r) is just the scattering operator for a
particle being scattered by two centers; one at the
origin and one at r.

The quantity T& may be expressed in terms of T)
and T as follows. ' Dehne operators 3f ~ andi' as the

hfdf = &~4'r = (IIO+ p)4'v

In this representation (C13) becomes

dvv"dv" v'

(C15)

(C16)
v" 6v"

Transforming this back to the k-representation, we
obtain

6v"
(C17)

the Hamiltonian of a particle in the presence of a single
scatterer at the origin. Call the eigenfunctions and
eigenvalues of h, P„, e„respectively; i.e.,
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where

dPkrdr.

Since fk is an eigenfunction of d, we may write

dk„»=(k~P )dk,

4"k'= (z'
~

k )dk')

(C18)

(C19)

the positive real axis but is analytic everywhere else in
the finite s plane (except at the simple poles ek). In the
limit of infinite volume t kk (s) has a branch lAze along the
positive real axis.

We also need the behavior of t for very large
~

s
~

. This
is found by iterating (C5):

1 1 1
t = (p+ q p+ ko

—y- y+

where (k~ p") are the usual transformation coefficients (C26)

(k( i")= ~~~ipk*ip„dr.

Therefore
(k is")(v" ik')

tkk dkdk P—— —dI,~I A."
v" 6v"

(C20)

(C21)

PI I "PI"a
tkk =qkk+Z +

8—alt;rr

For fixed tgt; and k' and localized scattering centers
&pkk pk k will decrease rapidly as ~k"

~

increases and
the summation will converge long before e~ is com-
parable with ~s~. Therefore for large ~s~ we have

Now in general the spectrum of h will consist of two
parts: a set of bound states ek((0), and a quasi-
continuous spectrum (continuous in the limit of an
infinite volume) e,()0).Thus we may write (C21) as

(k I b) (b I
k')

tkk =dk'dk' 2

tkk'(S) P kk" +

(V') kk
=qkk+ +' ' '

+' ' '

(C27)

(kio)(oak')+2 —dkbkk" C(22)
Z 6tr

Therefore tkk has siznP1e Potes at s= ek. The residues at
these poles are

rkk'"=[dkdk (k~b)(b~k')g. =.k

= (ek —ek) (ek —ek ) (k
~
b) (b

~

k'). (C23)

The contribution to t» from the "continuum" ~ has a
more complicated analytical behavior. If, however, we
assume that the transformation coeKcients (k

~
o) are

smooth functions of the energy (they will depend in
general on other parameters as well) then in the limit of
infinite volume the sum over o. may be replaced by an
integral. It is clear that as long as s is not on the positive
real axis the denominator never can vanish, so that this
contribution to t» is perfectly regular. Right on the
positive real axis (C22) has no meaning. Immediately
above the positive real axis we have s=E+izt(rt~0+).
Then

t' dE "kk+ tkk ~tkk +~'
(C28)

=i[tkk(ek —is) —tkk(ek+is)]++ Irkk (C29)

That is, for large
~
s

~

and fixed k, k', tkk. (s) is simply a
constant.

The analyticity arguments given here are admittedly
heuristic. For the case of a one-dimensional 6-function
potential, we have explicitly verified the above men-
tioned analytical properties of t. A more complete
treatment is beyond the scope of this paper, however.
The interested reader is referred to our colleague R.
Jost.

We conclude this appendix with the generalization of
the usual Optical Theorem which we shall need. If we

apply (59) to the case of a single scatterer located at the
origin, we obtain

s e~ E eg+zz/

( 1
~Pi i izrb(E e,), —(C24)—

EE—e.j

on evaluating the first two integrals and using (91).
As s approaches zero, this becomes, on using (101),

0=i[tkk(ek )—tkk(ek+) j+p zokk . (C30)
so that (C22) takes on a definite value there. Immedi-
ately below, s=E—iq and We may write (C30) as

Ger E 6y Zg

~Z~ ~+z~b(E —..). (C25)
kE—e.&

Therefore tkk (s) changes its value abruptly as we cross

2 Im[tkk(ek )j=p zokk. , (C31)

which is the usual Optical Theorem.
We need the correction to this of order s, which is



ELECTRICAL TRANSPORT PHENOMENA 1909

i(tss—
(es) —t ss+(es))

c)Ltss+(E)+tss—(E)j
+Z ass =o (C32)

then one could easily see that

2rs(es) =Q as s+s (C35)

From (134) this may be written

2rs(es) =Z ass +s
BE 6=~10

(C33)

replaces (C33). Therefore we have

I oaA: = aoA: u,

which becomes for s—+0

(C36)

e
1=— R R+dE,

—QQ

(C34)

If we had started the derivation with the identity
Z ross'=Z to@'s,
k' J0'

a well-known identity.

(C37)
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Semiconducting Properties of Mg&Si Single Crystals*f
R. G. MORRIs, f R. D. REDIN, ) AND G. C. DANrELsoN

&Nstitute for Atomic research and Departmertt of Physics, iowa State Cottege, Ames, korea

(Received November 4, 1957)

High-purity n-type single crystals of the semiconducting compound Mg2Si were prepared from melts of
stoichiometric proportions of the constituents in graphite crucibles; p-type crystals were obtained when
the melt was doped with silver or copper. Carrier concentrations in the saturation region were as low as
8X10"cm ' for n-type and 4X10"cm ' for p-type samples. Electrical resistivity p and Hall coefficient &
were measured from 77'K to 1000'K. Hall mobility R/p showed a temperature dependence in the intrinsic
range of approximately T=' for all samples. At 300'K, R/p was as high as 406 cm'/volt-sec for n;type and
56 cms/volt-sec for p-type material. The ratio of electron mobility to hole mobility was approximately
five. The energy gap, determined from the least-square slopes at high temperature of the curves
log(&T~) ss 1/T, was 0.7g ev. The electron mobility at any temperature in the range 77' to 400'K can
be explained quantitatively by a combination of scattering by optical modes and scattering by ionized
impurities.

INTRODUCTION

'HF compounds Mg2X, where X is silicon,
germanium, or tin, are semiconductors having

the antigorite structure. Single crystals of e-type and
p-type MgsSn have been studied by Blunt et a&.'
Winkler' has investigated polycrystalline Mg&Sn,
Mg2Ge, and Mg2Si and Whitsett and Danielson' and
Nelson' have studied single crystals of m-type Mg2Si.
A complete analysis of Hall and resistivity data re-
quires both st-type and p-type material, and measure-

* This work was performed in the Ames Laboratory of the U. S.
Atomic Energy Commission.

/Based in part upon a dissertation submitted by Robert G.
Morris to the Graduate School, Iowa State College, in partial
fulfillment of the requirements for the degree of Doctor of
Philosophy, 1957.

f Present address: Eidgenossische Technische Hochschule,
Zurich, Switzerland.

)Present address: U. S. Navy Electronics Laboratory, San
Diego 52, California.

' Blunt, Frederikse, and Hosier, Phys. Rev. 100, 663 (1955}.
U. Winkler, Helv. Phys. Acta 28, 633 (1955).

s C. R. Whitsett and G. C. Danielson, Phys. Rev. 100, 1261(A)
(1955).

4 J. T. Nelson, Am. J. Phys. 23, 390(A) (1955).

ments on single crystals are more likely to yield carrier
mobilities unobscured by the eGects of grain boundaries,
eutectic inclusions, and dislocations. The present paper
reports results of resistivity and Hall eGect measure-
ments on high-purity rt-type and p-type MgsSi single
crystals. ' The following paper' reports results for
Mg2Ge.

PREPARATION OF SAMPLES

Sub1imed magnesium with a purity of 99.99oro or
higher, supplied by Dow Chemical Company, and
Sylvania transistor-grade silicon were used to prepare
Mg2Si single crystals. Stoichiometric proportions of
Mg and Si were melted together in a graphite crucible
with a spectrographically-pure graphite liner 6.4 cm
long and 1.6 cm in inside diameter. Thermocouples
were placed in the crucible wall near the top and bottom

~ R. G. Morris, Ph, D. thesis, Iowa State College, 1957
(unpublished). Preliminary results appear in Bull. Am. Phys.
Soc. Ser. II, 2, 120 (1957).

'Redin, Morris, and Danielson, Phys. Rev. 109, 1916 (1957},
following paper.


