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Decay of the Neutral ~ Meson~

JEREMY BERNsTEIN) AND KENNETH A. JOHNBONt
Los Altos Scientific Laboratory, Vmeersity of California, Los A/amos, 3Vm 3fexico
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The possibilities of detecting the parity of the ~0 meson by electromagnetic experiments involving the
decay p rays are discussed. It is shown that no experiment can be performed which distinguishes scalar and
pseudoscalar decays unless azimuthal angular correlations are measured, assuming that the m' decays at
rest. As an example, the total coincidence Compton scattering cross section from polarized electron targets
is calculated explicitly and shown to be identical for the scalar, pseudoscalar, and parity-nonconserving decay.

I. INTRODUCTION cidence Compton scattering experiment, in which the
electron targets were polarized and in which one
would measure just the total number of scattered
electrons, might produce spin correlations in the cross
section which would serve to distinguish between a
scalar and a pseudoscalar two-photon state. In this
note we shall show that no such experiment is possible,
providing one neglects effects produced by the pion
motion and integrates over azimuthal angles. The
azimuthal integration, in e6ect, washes out any correla-
tions which depend on the parity of the two-photon
state. The proof which is given in the next section
covers any electromagnetic process involving the two
photons including the type of experiment in which one
would observe, say the pairs produced by one photon
and the total Compton scattering of the other. As an
example we have made an explicit calculation of the
experiment suggested by Marshall, coincidence Comp-
ton scattering from polarized electron targets. In this
case one 6nds for the number of coincidences per x
decaying at rest with respect to the electron targets

A LTHOUGH it is generally assumed that the parity
of the m' is pseudoscalar there has not been, as yet,

any direct experimental confirmation of this supposi-
tion. As is well known, if the x' is a pseudoscalar, a wave
function describing the two-photon state into which it
decays will be of the general form k. SIXes, where k is
the relative photon wave number and a.~ and s2 are the
photon polarization vectors, assuming both that the
x' decays at rest and that parity is conserved in the
decay. In Sec. II we shall exhibit the wave function for
the two-photon state produced by a ~' decaying in
Qight. If the m' were a scalar, then the wave function
would be of the form s& z2. Conventionally one says
that for a pseudoscalar x' the decay photons have
orthogonal polarization vectors and for a scalar m' they
are parallel; always assuming that the m' decays at
rest and that the decay mechanism is parity-conserving.
Yang' suggested an experiment to measure the parity
of the m' based on this observation. One would attempt
to measure the angular correlation in the distribution
of electron-positron pairs produced in coincidence by
the x' decay p's. Another experiment along similar
lines was suggested by Wightman' who proposed a
measurement of the azimuthal angular distributions
for photons which undergo Compton scattering from a
suitable electron target. He was actually interested in an
experiment to determine the parity of the '5 ground
state of positronium, but the same calculation serves
for the two-photon decay of the m'. These experiments
have in common that one must measure azimuthal
angular distributions. Hence they are very dificult in
practice and to our knowledge have never been tried
for the x' decay.

One might hope to construct an experiment which
wouM involve the determination of total cross section
rather than angular distributions. For example
Marshalp recently made the suggestion that a coin
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Here kf is the final photon energy, ko the initial photon
energy ( 70 Mev), nI and ns are the photon directions,
and N(Q) is a geometrical factor given by the experi-
mental setup. One can see that the spin correlation
eGects are as large as the Compton cross section itself,
but, unfortunately, they are identical in the scalar,
pseudoscaI. ar, and parity nonconserving cases.

As Wightman noted, ' such long-range correlations
arise because of purely quantum mechanical coherence
effects. Namely, one must. treat the annihilation photon'
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as particles in intermediate states whose possible
polarizations are summed over, in the usual quantum
mechanical sense, before one squares the matrix element
to And the transition probability. In the experiments
under discussion no observation of the photon polariza-
tion is made between the decay and the Compton
scattering so that no measurement intervenes to spoil
the coherence of the possible intermediate photon
polarization states. The formalism in the next section
will reflect and make precise these remarks.
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Here k„and ~„are the four-dimensional photon wave
and polarization vectors, respectively. In writing Eq.
(1) we are allowing for the possibility that the decay
interaction might not be parity-conserving and hence
the scalar and pseudoscalar wave functions are added
with amplitudes n and P. We shall now show that in this
case n and P must be taken as real numbers. To see
this we recall that the decay interaction, B', will

effectively take the form (Note that EP is not invariant
under CP as well as P.)

H'=a (dx) p (X) (E'—IP)

+P ~ (dx) y, o(x) (E H). (2)

Since we deal with a spin-zero, chargeless particle,
q o, which is the ~ annihilation operator, will be real.
Hence, from the Hermitian character of H' it follows
that n and P are real, as stated above. We shall normalize

Eq. (1) in such a way that n'+P'=1.
Let us denote by t„e& the transition amplitude leading

from a photon of a given initial polarization e& and
some target state to any specified 6nal state. In terms
of this notation any coincidence photon process in-
volving the m' decay p's will be described by a transition
amplitude of the form

by"fypg E2"imp (b)bg~7t' ) (3)

II. CALCULATION

We wish to compute the transition amplitude from
an initial state consisting of two targets and two y's in
the state prepared by the decay of the x', to some state
produced by the interaction of the decay &'s with the
targets. For example, the Anal state might be two
Compton electrons and two scattered y's. The state of
the p's produced by the m' decay may be described by a
wave function in the representation aRorded by the
polarization vectors and photon wave numbers of the
two photons, On the basis of invariance principles, the
most general two-photon state of angular momentum
zero which is Lorentz- and gauge-invariant is of the form

(b&e2
~

~b) is given by Eq. (1) and the superscripts a and
b on the t„ indicate the possibility of measuring distinct
processes for each of the two photons; for example, one
might wish to measure Compton scattering in one
target and pair production in the other. To find the
transition probability, we multiply Eq. (3) by its
complex conjugate and learn that

w= (D")„,S s(D )„sS„„*=Tr/D"S(D")S *j, (4)

where Tr denotes the trace over the indicated dyadic
indices and A~ is the transpose of A while A~* is its
Hermitian conjugate. In writing Eq. (4) we have in-
troduced the notation

S~s=Q Ey EP(Eying
~
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Physically, 5 represents the density matrix of the initial
two-photon state and in virtue of the reality of n and P
it is real. By way of additional notation,

(D.)
(Db) —Q ] b@] b

are the dyadics which describe the processes by which
the photons are transformed.

P means a sum overYthose 6nal quantum numbers
which are not measured in the Anal state. If we do not
sum over an invariant subset of final states then D will

no longer be a true tensor. As a erst case let us imagine
that we sum over all final states so that the D's can
be taken as Lorentz tensors. Hence it is important to
ask what the most general form of D is, consistent
with the invariance principles which are at hand.

To get an insight into this question, let us consider
the problem in the frame in which the ~' decays at rest,
and let us use the radiation gauge appropriate to this
frame. Now the dyadic D must be transverse to the
incident photon directions since it is multiplied on both
sides by the initial photon polarization vectors. We
shall denote the direction of the relative photon wave
number by the unit vector n. Further let e' and e"
specify the two independent directions transverse to
n. Then D can always be expressed as a linear combina-
tion of the dyadics ~ 6b ~ 6b ~ 6b and t" 6b . Since
we have assumed that all 6nal states are summed over,
including final directions, D must be invariant against
rotations about n or, in other words, under the trans-
formation e

'—+e "e "—+—~,'. From this it follows that
D must be composed of just the dyadics ~ tb +~

|' /t 1/ I
~ab '+a+b +ab and &a &b &a &b &abc'+cy where Eabc

is the Levi-Civita symbol. Which is to say

Dab (~ab +a'+b)++&aha@'cps

where A and 8 are, respectively, a scalar and a pseudo-
scalar function.

We shall now write down the generalization of Eq. (7)
to a four-dimensional form and an arbitrary Lorentz-
radiation gauge which will be specified by a time-like
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vector g .
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Here P s=g c d', where the p's are photon polarization
four-vectors which satisfy the Lorentz condition e"k„=0
where k„ is the four-vector photon momentum. The
sum is over independent polarizations. F and 6 are
invariant functions and e)„p is the four-dimensional
Levi-Civita symbol. Using Eq. (1) and the definition
of I' p, the tensor 5 p is given by
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S~s——Q pi 22 (plp2~m') —n Pl &~ 8& — ~P2"~

klk2 )
k&~k2"—p p„„)„P," P2 S. (9)
kgk2

With these definitions we find I see Eq. (4))

Trr D'~S(D") S"*)=2(FlF2'+G, G2'), (10)

where, as above, F and G are invariant functions which
are composed out of the initial photon vectors and
quantities characteristic of the targets. The most im-

portant thing to notice about Eq. (10) is that the result
is completely independent of a and P and hence, in an
experiment in which all 6nal states are summed over,
no detection of the parity of the state of two photons
prepared by the ~' decay is possible.

Ke may now consider a somewhat less special situa-
tion in which we integrate over azimuthal angles but
not zenith angles. For example, in the coincidence
Compton scattering experiment we might measure the
distribution in the angles between the incident photons
and outgoing electrons, summing over 6nal electron
spins and integrating over azimuthal angles. This speci-
6cation of final states is not Lorentz-invariant and for
the sake of simplicity we shall do the calculations as-
suming that the ~0 decays at rest with respect to the
electron targets.

If we specialize Eq. (9) to this frame and work in the
radiation gauge with a n =0, where n is the unit relative
photon wave vector and s is either of the two photon
polarization vectors, then we 6nd

S22=~(t'l22 nanl)+P —222 n

If we use Eq. (4) we learn that the transition ampli-
tude can be written

metric and antisymmetric parts D=Ds+D~ and the
trace, Tr, is always taken over the dyadic indices. It is

easy to see that all terms which involve D~ and D~

together, and which might have appeared in Eq. (12),
vanish because of the symmetry properties of the trace.

At this point it becomes clear that the coeKcients of
n2 and P2 in Eq. (12) are identical. This follows from
the fact that, as above, the dyadics D are transverse
to n. Now the operator (1—nn) applied to D picks out
its transverse part, and since D is already transverse
this has no efEect. On the other hand, the operator eX 1.

applied to D on both sides will rotate it through 90
about the transverse direction n. Since all of the
azimuthal angular integrations have been done in D,
this rotation will again have no eBect on the dyadic.
Thus Eq. (12) can be written, using the fact that
~2+p2 —1

2P' tr(Dl )I(sD2)5sJ+Tr[(Dla) A (D2 b) A)) (13)

In this expression the real numbers P and n which

weight the components of the incident photon state with
diGerent parities do not appear. Hence, in an experiment
in which the azimuthal angles have been integrated
over, it is not possible to detect the parity of the state
of the pion-decay y's.

In this argument we have used the fact that the m'

decays at rest with respect to the targets. In reality, if
the m is produced in a charge-exchange reaction, it will

have at least the velocity characteristic of the x, x'
mass difference (v/c)2 1/15. Hence in an experiment
like the one above, in which one integrates over
azimuthal but not zenith angles, we might expect
parity-dependent eGects of this relative order which

are then dificult to observe. However, in virtue of the
first proof)there will be no such effects in the total
cross section in which zenith angles are also integrated
over.

After these very general statements it may be
interesting to consider explicitly the theory of the coinci-
dence Compton scattering of the decay p's from
polarized electron targets.

We may rewrite the well-known matrix element for
Compton scattering of a photon from a polarized
electron as follows:

n8f (Pf) Y' eX f'' 8
y(P+kp)+2n

22t a.' Tr[(D' )s(1 nn) (D' )s(1 n

+P' Tr((D'~) (nX1) (D22)s(nX1)$
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+P2 TrL(D")~(nX1) (D22)~(nX1)j. (12) where

+v & Y er I o(Po)
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= (erA+eyXB), (14)

In writing Eq. (12) we have introduced some notation.
(1—nn) stands for the dyadic 5,&

—n,n&. nX1 stands for
e,y,m, . The dyadics D have been split into their sym-

and

A =Nqt(1 —ape n+)n;,
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(15)

(16)
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Here the N's are appropriately normalized Dirac
spinors; 0 is the vector spin matrix which is related to
the p's by the equation ipopse = y where we have chosen
p's with property that y~*= —y, go~*——po and ps' ———1;
n+= (n+n')/2 and n = (n —n')/2, where n and n' are
the initial and final photon directions. Equation (14) is a
correct expression for the Compton scattering, with the
definitions Eq. (15) and Eq. (16), only in the frame of
reference in which the electron is initially at rest so that
the kinematics are simply py+kr ——ko and E(pr)+kr
=m+ko. In the present example the dyadic D of Eq. (6)
becomes

dy P (erA+erXB). (egA+egXB) z) (17)
Vp 8j'

while for f, (8) we find

/kr kp)
f;(8)=zr cos8i ——
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From this calculation of the .dyadic D and from the
form of Si,& given by Eq. (11), it is entirely straight-
forward to calculate the number of coincident Compton
scatterings per x' decaying at rest with respect to the
electron targets. We find

where P.r stands for the sum over final polarizations,
JP~ dy is the integral over outgoing azimuthal angles

and Pai is the sum over final spins. After the indicated
operations are performed, D takes the form indicated
in Eq. (7):

D,b fo(8) (1———zzzz), 1,+z(n e) (zzX1),if, (8), (18)

(kf kQ

fo(8) =zr] —+—sin'8 ),
&ko kr ) (19)

where e stands for the matrix element of the spin in

the initial state and 0 is the angle between the incident
and outgoing photon directions. The tedious part of the
calculation is the determination of fo(8) and f, (8)

Since this calculation must reduce to the usual

Compton cross section when initial spins are summed

over, fo(8) is essentially the Klein-Nishina function

The notation has been explained; however, we remind
reader that F(0) is a geometrical factor which depends
upon the experiment.

As we have seen, this result is completely independent
of the parity nature of the two-photon state produced
by the decaying +' and hence one cannot use the zenith
angular distributions of the Compton electrons to
measure the xo parity. In any event it may be of
interest that purely quantum mechanical coherence
requirements can produce observable correlations in
the spins of electron targets which are widely separated
in space.
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